Inferring metabolic fluxes by maximizing information entropy conditioned on gene expression

Marcelo Rivas-Astroza

Departamento de Biotecnología Universidad Tecnológica Metropolitana

Metabolism at the cellular level

T.Lengauer et al 2007

Inferring metabolic fluxes is useful but complicated

nature biotechnology

Explore content v About the journal v Publish with us v

<u>nature</u> > <u>nature biotechnology</u> > <u>articles</u> > article

Article | Published: 21 February 2022

Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale

Fungmin Eric Liew, Robert Nogle, ... Michael Köpke 🖂 🕇 Show authors

Cancer metabolism

sabosciences

Inferring metabolic fluxes is useful but complicated

Framework of the problem

Simplifying assumptions

Evidence of improvement over alternative models

T.Lengauer et al 2007

 $A \leftrightarrow B + C$ Reaction 1 а $B + 2C \rightarrow D$ Reaction 2 Genome-scale metabolic reconstruction ... Reaction n n diorrasionse opper Reactions 1 2 ... b Mathematically represent B C 1 -1 Metabolites metabolic reactions 1 -2 = 0 * and constraints Ď m Stoichiometric matrix, S Fluxes, v V_{2} Va Constraints Optimization ... = 0 $-V_{1} +$ С Mass balance defines a 1) Sv = 0 maximize Z $V_2 + ... = 0$ V_1 system of linear equations 2) $a_i < v_i < b_i$ $V_1 - 2V_2 + ... = 0$ $V_2 + ... = 0$ etc. ► V1 Allowable Unconstrained Optimal solution solution space solution space Orth et al 2010

Ambiguous inferences

Not phenotype-specific

Cancer metabolism

It is not always easy to derive the metabolic objective function

Ludwig Boltzmann

Claude Shannon

$$-\log(0.25) = 2$$

$$E[-\log(p_i)] = -\sum p_i \log(p_i)$$
$$= H$$

Framework: Using the principle of maximum_entropy Jaynes

$$\max_{v} H_v(X)$$

subject to:

$$Sv = 0$$
$$LB \le v \le UB$$

- 1. How do we define H in the context of the fluxome space?, and
- 2. How do we incorporate gene expression data into H?

Assumptions: MaxEnt

$$v_i = e_i f_i$$

For example, in Michaelis-Menten:
$$v = k \left(\frac{S}{K+S} \right) e$$

$$H(v) = -\sum_{i=1}^{R} P_i \log P_i$$
$$= -\sum_{i=1}^{R} \frac{vi}{V} \log \frac{vi}{V}$$

We defined a constraint-based model, MaxEnt, as: $\max H(v)$

subject to: Sv = 0 LB < v < UB

$$P_{i} = \frac{e_{i}}{E}$$

$$P_{i} = \frac{v_{i}/f_{i}}{\sum_{j} v_{j}/f_{j}}$$

$$P_{i} = \frac{v_{i}}{V}$$

Rivas & Conejeros PLoS ONE 2018

MaxEnt compared to alternative methods

MaxEnt does not eliminate flux loops nor produced fluxes reaching their bounds

Some flux loops are thermodynamically feasible

In *Escherichia coli*, it is know that the glyoxylate shunt carries flux.

Ishii et al 2007 Science

Results: MaxEnt does not eliminate flux loops nor produced fluxes reaching their bounds

MaxEnt produces an structured distribution of fluxes (<u>Almaas et al 2004</u> <u>Nature</u>)

It is unlikely that flux sampling results in fluxomes with high entropy. On the other hand, MaxEnt produces better fluxome estimates than alternative methods.

Phenotype-specific estimations

Cancer metabolism

Constraint-based models conditioned on phenotypespecific data

Defining H and adding gene expression (g) into it.

 $v_i = f_i e_i$ $v_i = f_i q_i$ $f_i = v_i/q_i$ $P_g(v_i) = \frac{v_i/g_i}{V}$

$$H_g(v) = -\sum_{i=1}^R \sum_{j=1}^{g_i} P_g(v_i) \log P_g(v_i)$$
$$= -\sum_{i=1}^R g_i P_g(v_i) \log P_g(v_i)$$
$$= -\sum_{i=1}^R g_i \frac{v_i/g_i}{V} \log \frac{v_i/g_i}{V}$$
$$= -\sum_{i=1}^R \frac{v_i}{V} \log \frac{v_i/g_i}{V}$$

We called our approach Pheflux

$$\max_{v} H_g(v)$$

subject to:

$$Sv = 0$$
$$LB \le v \le UB$$
$$V = k$$

Gonzalez, Inostroza, Conejeros & Rivas iScience 2023

Infinite fluxomes (v) \rightarrow One v per phenotype maximizing entropy (H_g)

How does Pheflux compare to SPOT?

How does Pheflux performance compares to alternative methods?

We used as benchmark C13 labeling (~20 fluxes)

Organism & genome- scale metabolic model	Culture conditions	Transcriptomic Data	Fluxomic Data
S. cerevisiae iMM904 [1]	Two conditions —chemostat and batch— supplemented by glucose as carbon source.	Nookaew et al. (2012)[2]: Data measured using RNA-seq technology. Three replicates per condition. Normalized by FPKM.	Papini et al. (2012)[3]: Fluxes measured using ¹³ C labeled. No replicates.
S. stipitis iTL885 [4]	Two conditions —chemostat and batch— supplemented by glucose as carbon source.	Papini et al. (2012)[3]: Data measured using RNA-seq technology. Three replicates per condition. Normalized by FPKM.	Papini et al. $(2012)[3]$: Fluxes measured using ¹³ C labeled. No replicates.
Y. lipolytica iYali [5]	One condition —mixed culture— supplemented by glycerol and glucose as carbon source.	Sabra et al. (2017)[6]: Data measured using RNA-seq technology. Two replicates. Normalized by FPKM.	Sabra et al. $(2017)[6]$: Fluxes measured using ¹³ C labeled. No replicates.
E. coli iJO1366[7]	Eight conditions supplemented by glucose, gluconate, galactose, succinate, pyruvate, glycerol, succinate, acetate and fructose, respectively.	Gerosa et al. (2015)[8]: Data measured using microarray technology. Three replicates per condition. Normalized by quantile normalization.	Gerosa et al. (2015)[8]: Fluxes measured using ^{13}C labeled. No replicates.
B. subtilis iYO844 [9]	Eight conditions supplemented by glucose, fructose, gluconate, succinate + glutamate, glycerol, malate, malate + glucose and pyruvate, respectively.	Nicolas et al. (2012) [10]: Data measured using microarray technology. Three replicates per condition. Normalized by quantile normalization.	Chubukov et al. (2013) [11]: Fluxes measured using ${}^{13}C$ labeled. No replicates.

How does Pheflux performance compares to alternative methods?

We used as benchmark C13 labeling (~20 fluxes)

Does the situation changes at genome-wide scale?

Does Pheflux recapitulates the Warburg effect?

How Pheflux inferences add new insights into cancer metabolism?

Results: Can Pheflux be run in a reasonable time?

Conclusions

Pheflux:

- 1. outperforms alternative CBMs (SPOT and FBA at genome-wide scale),
- 2. it produces phenotype-specific predictions that matches the literature (Warburg effect),
- 3. it may inform therapeutic targets (experimental validation needed), and
- 4. it can be run to model genome-scale models.

Room for improvement:

- 1. Pheflux does not prevent thermodynamically infeasible fluxes (M. Farias & N Améstica),
- 2. Using proteomic data, rather than gene expression data, should improved predictions.

Work in progress: Epigenetics

Bárbara Guzmán Universidad Tecnológica Metropolitana

Baker 2011. Nature Methods

Work in progress: Epigenetics

Work in progress: Entropic sampling

Andrea De Martino Politecnico di Torino

Daniele De Martino Biofisika Bizkaia Fundazioa

Raúl Conejeros Pontificia Universidad Católica de Valparaíso

Selection of the most entropic fluxome (v) given v_1

$$H(v) = -\sum_{i=1}^{N} \frac{v_i}{V} Log(\frac{v_i}{V})$$

fluxomes among cells

Thanks for your attention

This project was supported by the

- UTEM Internal Research Projects Grant (code LPR20-07), and
- The System of High Performance Computing PIDi-UTEM (SCC-PIDi-UTEM - CONICYT - FONDEQUIP - EQM180180).