Conversely providences of a survey of the Converse of the Conv

ICTP RegCM5

11th Workshop on the Theory and Use of Regional Climate Models Trieste, 2-6 October 2023

Graziano Giuliani, ICTP ESP ggiulian@ictp.it

ICTP

Reference paper AGU ADVANCING EARTH AND SPACE SCIENCES

Giorgi, F. et al. (2023)

The fifth generation regional climate modeling system, RegCM5: Description and illustrative examples at parameterized convection and convection-permitting resolutions.

Journal of Geophysical Research: Atmospheres, 128, e2022JD038199.

https://doi.org/10.1029/2022JD038199

ICTP

Coming soon ...

Coppola. et al. (2023 ?)

The Fifth Generation Regional Climate Modeling System, RegCM5: the first CP European wide simulation and validation over the CORDEX-CORE domains.

Regional Climate Model

- Limited Area model Physical Boundary Conditions from a GLOBAL model
- Climate : Radiation Scheme Boundary Conditions following a CMIP protocol
- Model Internal atmospheric (+ land) system status dynamical evolution
 - User defined geolocation and resolution of the computational grid
 - Primitive equations numerically integrated with BC
 - Parameter based packages to describe physical processes that modify status variables by emergent properties coming from the smaller scale phenomena.

Parameterization: The specification of a curve, surface, etc., by means of one or more variables which are allowed to take on values in a given specified range.

Regional Model advantages

- Better description of the surface
 - Topography at a higher resolution
 - Land Model can use regional data providing a better description
 - Extremes, extremes!
- More physics is possible: "better" description
- Tailored schemes for the Region Of Interest
 - Different settings for different domains
 - Multiple physical schemes options: greater parameter space
- Simple model can double up as study and learning tool

Regional Model problems

- Conservation more problematic
 - Local radiative equilibrium: no global system budget possible
 - BC schemes:
- HUGE parameter space. Sometime "good" results clash with physics.
- Does not CORRECT the parent model "BIG" problems
 - Garbage in -> garbage out (double ITCZ? OLR vs. cloud problems? Huge biases?)
 - GCM selection: few GCM "available" as" BC (complete, available, reasonable)
- CORDEX down the line from the global models
 - Always second to the goal: data lags at best 1-2 year behind GCM results
 - Computational and storage effort comparable to GCMs for the CORDEX runs
 - CORDEX as the "younger sister" community of CMIP global elders

RegCM5 NH Atmosphere

- MOLOCH (H coordinate LOCal MOdel)
 - Eulerian time integration
 - Arakawa C grid

- Hybrid height terrain following coordinate with rigid top
- No diffusion, only local divergence damping present
- Weighted Average Flux advection scheme (WAF)
- Vertical propagation of sound waves implicit equation

RegCM model grid

Staggered U: JX, IY-1,KZ Staggered V: JX-1,IY, KZ Staggered W: Jx-1,IY-1,KZ+1 Scalar : Jx-1,IY-1,KZ

RegCM output grid

Output : JX-3, IY-3, KZ

All variables are interpolated on the scalar grid in output. The output grid doesn't contain though first/last line/column.

Model Grid

Educational, Scientific and Cultural Organization

 $\Delta \zeta = \frac{Z_{top}}{kz}$ $Z_f = \frac{Z_{top}}{e^{\frac{Z_{top}}{H} - 1}}$

 $-\zeta_1$

 ζ_{kz-3}

 Z_1

 Z_{kz-3}

 Z_{kz-2}

 Z_{kz-1}

 Z_{kz}

Equations

 $\frac{du}{dt} = mc_{p_d}\Theta_v\frac{\partial\Pi}{\partial x} - mG(\zeta)\frac{\partial h}{\partial x}\left(g + \frac{dw}{dt}\right) + fv + K_u$ $\frac{dv}{dt} = mc_{p_d}\Theta_v\frac{\partial\Pi}{\partial y} - mG(\zeta)\frac{\partial h}{\partial y}\left(g + \frac{dw}{dt}\right) - fu + K_v$ $\frac{dw}{dt} = -F_z c_{p_d} \Theta_v \frac{\partial \Pi}{\partial z} - g + K_w$ $\frac{d\Theta_v}{dt}$ $\approx K_{\Theta_v}$ $\frac{d\Pi}{dt} \approx -\Pi \frac{R_d}{c_{v_d}} \nabla \vec{V}$

 $\nabla \vec{V} = F_z \left\{ m^2 \left[\frac{\partial \left(\frac{u}{mF_z} \right)}{\partial x} + \frac{\partial \left(\frac{v}{mF_z} \right)}{\partial y} \right] + \frac{\partial \left(\frac{s}{F_z} \right)}{\partial \zeta} \right\}$


```
! Physical parametrizations and boundary
!
call physical_parametrizations_and_boundary
extime = extime + dt
end do
```


Physical Parameterization

- Radiation Scheme
 - FORCING for future climate projections
- Boundary Layer Scheme
- Cumulus Scheme
- **Cloud Fraction Scheme**
- Micro-physics Scheme

Input Layer - Reanalysis

• ERA5 data - 0.25 deg 1940 - today

- https://tinyurl.com/ECMWFERA5
- ERAXX : average 1970-2022 of ERA5 for MIV studies
- JMA JRA55 1.25 deg 1958 today
 - https://tinyurl.com/JMAJRA55

- NCEP–DOE Reanalysis II 2.5 deg 1948 today
 - https://tinyurl.com/NCEPDOE

Input Layer GCM

	es-c	doc Dataset Errata - Se		arch vo.8.0.0 Supp	ort Doc	s S	earch	Login	
Proje	ect: E	xperiment ID:	Institution ID:	Source ID:	Variable ID:	Severity:		Status;	
СМ	IP6 v	historical	Y NEPENK			¥ 83847		New	×
Total I	ssues = 456. Filte	red Issues = 48.			Page 1 of 2	>	>>	25 / [page 🗸
#	Institute	Title	010125 (1122)	ALLEN N. N. MARCELL	Created 🗸	Updated	Closed	Severity	Status
1	NASA-GISS	Pressure level calculation incorrect due to erroneous			2023-08-09	2023-08-10	11-11	High	New
2	NCC	retracting variable od550aer with frequency AERday			2023 07 06			High	New
3	NCC	retracting and rep	ublishing new datasets t	or ta, ua a	2023-02-13	1 2 1		Medium	New
4	NCC	wrong hus and wa	ap datasets		2022-12-08			High	New
5	CSIRO	6-hourly tsl in ESM1.5 r6 incorrectly calculated			2022-09-12	2022-09-15	1-19	Critical	New
6	NCC	Error in fLuc and fHarvest datasets			2022-09-05			Critical	New
7	NCC	removing most datasets associated with variable sftlf			2022-04-05	1.50	2774	Medium	New
8	AWI	sto3max_AERday	Incorrect, o3_E3hrPt n	ot required sinc	2022-03-25	2022-03-25		High	New
9	E3SM-PROJECT	mirro variable appears inconsistent with land-sea mask			2022-03-16	10 - 10	159	High	New
10	NCC	Issue with longitude datasets with atoms and aerosol			2022-01-14			High	New
11	CAS	Incorrect unit conversion for hfds data of Omon			2022-01-11	2022-01-11	1-10	Medium	New
12	CSIRO-ARCCSS	b(lev) values incorrect for all published ACCESS (CM2			2021-10-05				New
13	NCC	error with variables msftmrhompa, msftmzmpa and msftm			2021-08-24	110-11		High	New
14	NCC	error related to variable sndmasssnf			2021-08-13			Medium	New
15	NCC	information related to variable areacello, thkcello a			2021-08-11	61410		Low	New
16	NCC	correction for wo data on gr grid			2021-06-28			High	New
17	NCC	retracting and republishing of datasets for dryss, dr			2021-05-26	3 2 3		High	New
18	NCC	Retracting and republishing few datasets for Scenario			2021-05-26			Critical	New
19	NCC	deleting datasets chlos for Omon frequency			2021-04-15	SU = 97/	1991	High	New
20	NCC	deleting datasets with variable slareas			2021-04-15			High	New
21	NCC	fNup data are rem	noved as having some u	nit problem	2021-03-22	- 01	1-18	Medium	New
22	NCC	corrupted file or missing data			2021-03-22		1.		New
23	CSIRO	Data accidentally multiplied by 10*9			2021-03-16	10-201	1-16	Critical	New

https://errata.es-doc.org/static/index.htt

CMIP3 ECHAM5

CMIP5

CanESM2, CNRM-CM5, CSIRO-Mk36, EC_EARTH, GFDL-ESM2M, HadGEM2, IPSL-CM5A-LR, MIROC5, MPI-ESM-LR, MPI-ESM-HR, NorESM1-M

CMIP6 – OpenDAP from ESGF option

 MPI-ESM1-2-HR, HadGEM3-GC31-MM, NorESM2-MM, CNRM-ESM2-1, CESM2, EC-Earth3-Veg, MIROC6, MIROC-ES2L, CanESM5, CMCC-ESM2

CMIP6 Input4MIPS forcing

- Shared Socio-Economic Pathways Greenhouse gases SSP
 - CO₂ CFC11 CFC12 CH₄ N₂O
 - Sustainability-focused growth and equality (SSP1) 119 126
 - Middle of the Road (SSP2) 245
 - Regional Rivalry (SSP3) 370
 - Inequality (SSP4) 434 460
 - Fossil-fueled Development (SSP5) 534 585
- SOLARIS HEPPA solar irradiance forcing
- Simple Plume Aerosol model
- Chemistry Climate Model Initiative Ozone data NO LUC data

Spatial Interpolation

- Horizontal interpolation
 - K-d tree based nearest neighbor research
 - Spherical Barycentric Coordinate GenLin interpolation
 - ROTLLR projection for MOLOCH dynamical core
- Vertical Interpolation
 - Linear and logarithmic hydrostatic with surface level extrapolation

Figure 1: Construction of spherical barycentric coordinates.

T. Langer, A. Belyaev, H.-P. Seidel/Spherical Barycentric Coordinate.

RegCM5 Atmosphere-Land

- Dynamical core for time integration
- Integrated Land Model CLM4.5 / CLM3.5 / BATS
- Prescribed SST in the boundary condition
- Input4MIPS forcing

Reanalysis, Scenario runs, What ifs, Paleo

RegCM-ES

- Uses the RegESM (Turunçoğlu) based upon ESMF
 - https://github.com/uturuncoglu/RegESM
- RegCM5 is coupled through RegESM with:
 - MIT GCM c65 (ROMS)
 - CHyM river routing (HD)

11 km MEDCORDEX experiment protocol

Very High Resolution

- Convection permitting CP
 - Deactivate Cumulus clouds evolution parameterization
- Cumulus evolution explicitly resolved by the micro-physics package

OPEN PROBLEMS

- Vertical levels position user defined placement problematic
- CLOUD MODEL ? What is cloud fraction at HR?
- Micro-physics in RegCM is still missing graupel / hail
- High frequency output: data handling is still poor

FPS evolving into longer term simulation Needs good surface description datasets

- RRTMG radiation scheme is now working in MOLOCH
- MERRA2 Aerosol optical properties over 5 wavebands can be used for reanalysis run (1980-2020)
- · Vertical interpolation target levels in post processing are now configurable in the namelist
- Stochastic parameters possible for MIT scheme
- Implementation of RCEMIP phase 1 protocol settings
- New CMIP6 models (corrected vertical top interpolation).
- Tuning of the NoTo Micro Physics scheme
- Started the implementation of PMIP input layer
- Bug fixes (as always... never ending process).

Near Future

NEW coupler. • Developed for Ocean model SYMPHONIE coupling (LEGOS) using OASIS3-MCT

CLM5 land model. • PhD project ongoing in ICTP • LUC in CLM5!!

ICTP Development branch

OpenACC directives partially added to the dynamical core MPI3 communication

Code Development

Law and the second seco

and the second state and the second state of t

https://github.com/ICTP/RegCM

RegCM Tutorial

- Today : new user guided model installation and configuration, first model run
- Tomorrow : use cases, start group work on projects
- How to evaluate the output of a simulation?
- What will not be covered:
 - Operating system installation and use
 - Requisite libraries installation

The second produces of some fragment of the contained of the

I The Brits and the Stream of Stream

The second se

Questions?

AT AT A AN AND I MANAGER & MAN & C.M. 1

and a station

THE PART OF A CONTRACT OF A DESCRIPTION OF

United Nations Educational, Scientific and Cultural Organization