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Detection and Attribution
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What is detection and attribution analysis

• Detection and attribution seeks to determine whether climate is 
changing significantly, and if so, what has caused such changes (Stott
et al. 2010).
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Detectable and attributable changes

• Detectable observed change: highly 
unlikely to occur due to internal 
variability alone. 
• Attributable change: the relative 

contribution of causal factors has been 
evaluated along with an assignment of 
statistical confidence (Knutson 2017). 
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Figure: Global mean surface temperature anomalies 
compared with climate model simulations (Stott et al. 2010).



The purpose of attribution

• Identify the impacts of anthropogenic climate change that are already 
occurring (Eyring et al. 2021).
• Facilitate an understanding of the current risks of extreme events 

(Stott et al. 2010).
• Improve confidence in model predictions and point out areas where 

models are deficient and need improving (Stott et al. 2010).
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Methodology

• Fingerprint-based methods, e.g., optimal fingerprinting.
• Non-fingerprint-based methods, e.g., Granger causality test, and 

direct comparison of time series and spatial patterns.
• Multistep attribution
• Extreme event attribution
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Extreme Event Attribution
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Probability(risk)-based attribution

• To determine whether the 
frequency and/or magnitude of a 
class of extremes is changing due 
to anthropogenic climate change 
(Philip et al. 2020).
• Probability of extreme event in 
• Counterfactual world: P0
• Factual world: P1

• Probability ratio = P1/P0.
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Figure: Schematic of the distribution of a climatic 
variable under different climate conditions (Otto 2017). 



Generalized extreme value (GEV) distribution

• The GEV distribution describes the largest 
observation from a large sample (Coles, 
2001, Philip et al. 2020). 
• It can be formulated as 

• where x is the variable of interest, μ is the 
location parameter, σ is the scale 
parameter, and ξ is the shape parameter.
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Figure: Generalized extreme value distribution 
with different shape parameter. (Figure from: 
https://en.wikipedia.org/wiki/Generalized_extre
me_value_distribution)



Representation of the counterfactual and 
factual world
• Empirical approach
• Separating the period
• Non-stationary GEV fit (Philip et al. 2020) 

• Shift fit: μ = μ0 + αT’, where α is the trend to be estimated, and T’ is the global mean 
surface temperature. 

• Scale fit: μ = μ0exp(αT’/μ0), and σ = σ0exp(αT’/μ0)
• Shift and scale fit

• Climate model approach
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Attribution of extremely rate events in the 
Mediterranean Region using high-resolution 

COREX ensemble
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Background and objective

• For unprecedented extreme 
events, observational record may 
show a probability of occurrence 
close to 0. 
• Such extremes might be captured 

by climate models. 
• Objective: to explore the 

applicability of high-resolution 
climate model ensemble in 
extreme event attribution. 
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Figure: Schematic of the distribution of a climatic 
variable under different climate conditions (Otto 2017). 



Data and methodology

• Data
• Daily precipitation from the E-OBS gridded dataset. 
• Nine members of CORDEX EUR-11 ensemble that has the historical and 

RCP4.5 scenarios. 

• Methodology
• Quantile mapping for bias correcting the model-simulated daily precipitation. 
• Probability-based attribution on both observed and modeled data. 
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Figure: 
Normalized 
histogram for 
annual 
maximum
Precipitation. 
For each 
region, the 
grids and 
RCMs
are pooled to 
produce the 
distribution.

Bias correction

Figure: 
Normalized 
histogram for 
annual 
maximum
precipitation 
of the 
observation, 
raw RCM, 
and bias-
corrected
RCM; an 
example for a 
single grid in 
one RCM.
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Attribution based on E-OBS

• The historical period is separated 
into two: 
• Counterfactual: 1951 to 1986
• Factual 1987 to 2022

• Annual maximum precipitation of 
each period is used to fit the GEV 
distribution.
• Definition of extremely rare events: 
• Multiplying the historical maximum 

precipitation of E-OBS by coefficients 
from 1.0 to 5.0 in steps of 0.5. 
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Figure: 
Empirical 
and fitted 
GEV 
distribution 
for the 
historical 
period 
based on 
EOBS data. 



Attribution based on CORDEX ensemble
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Figure: 
Probability 
ratio over the 
historical 
period based 
on E-EOBS 
and CORDEX 
ensemble. 

Figure: 
Empirical and 
fitted GEV 
distribution 
for the 
historical 
period based 
on bias-
corrected 
CORDEX 
data. 



Projected future risk
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Figure: 
Probability 
ratio for the 
two future 
periods. 

Figure: 
Empirical and 
fitted GEV 
distribution 
for the 
historical and 
future 
periods 
based on 
bias-
corrected 
CORDEX 
data. 
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