GNSS Multipath: Characterization, Modeling & Mitigation

Eastern Africa Capacity Building Workshop on Space Weather and Low-Latitude Ionosphere

> Malindi, Kenya October 3 – 12, 2023

Dr. Gary A. McGraw, PNT Consultant Genova Technologies Phone: +1-319-210-9707 Email: mcgraw.pnt@gmail.com

© 2023 Gary McGraw, All Rights Reserved

Overview

Part 1: GNSS Multipath Characterization & Modeling

- GNSS multipath introduction & definitions
- Multipath effects on GNSS measurements
 - SNR
 - Pseudoranges (code)
 - Carrier Phase
- Multipath mitigation techniques
 - Code type
 - Antenna design & siting
 - Receiver signal processing
 - Measurement processing

Part 2: Multipath Mitigation via Measurement Processing

- GNSS measurement combinations
 - Wide and narrow-lane carrier phase
 - Ionospheric free
 - Ionospheric estimation
 - Divergence free
- Carrier smoothed code processing
 - Processing overview
 - Smoothing filter gain
 - Divergence-free smoothing

Part 1: GNSS Multipath Characterization & Modeling

Multipath vs. Non-LOS Reception

- Multipath = Multiple signal propagation paths, including direct signal
- Non-LOS reception = Direct signal is blocked, but strong reflected signals are present

Specular vs. Diffuse Multipath

- For specular reflection $\psi_r = \psi_i$
- Amplitude of multipath dependent on surface composition
- GNSS signals are right-hand circularly-polarized (RHCP) signals; multipath usually dominated by left-hand circularly-polarized (LHCP) signals

Multipath Error Characteristics

- Diffuse multipath appears like bandlimited noise
- Strong specular multipath has sinusoidal characteristics
- Often both types are present

Specular Multipath Characterization

Received Signal Model

$$r(t) = \sqrt{2P} \sum_{i=0}^{n} \left\{ \alpha_i C(t - t_0 - \Delta_i/c) D(t - t_0 - \Delta_i/c) \times \exp\left(j \left[2\pi \left(f_L + f_D + \delta f_i\right) \left(t - t_0 - \Delta_i/c\right) + \phi_i\right]\right) \right\} + w(t)$$

P =direct signal power

n = number of reflected signals (i=0 is the direct signal)

 α_i = relative amplitude of reflected signals ($\alpha_0 = 1$)

 $C(\cdot)$ = pseudorandom noise (PRN) spreading code $D(\cdot)$ = downlink data

 t_0 = propagation delay for the direct signal (sec)

c =speed of light (m/s)

 f_L = carrier frequency (Hz)

 f_D = Doppler shift (Hz)

 δf_i = relative multipath Doppler (Hz)

 Δ_i = relative multipath delay (m)

 ϕ_i = phase shift relative to direct (rad)

 $w(\cdot)$ = bandlimited white Gaussian noise (WGN)

Relative Multipath Amplitude

 $\alpha_i = \sqrt{\frac{G_i R_i k_i}{G_0 R_0 k_0}}$

- G_0 = antenna gain for direct signal
- G_i = antenna gain for the *i*th multipath component
- R_i and R_0 = reflection coefficients (R_0 = 1 in our case)
- k_i and k_o = signal attenuation coefficients (due to foliage, etc.)

- Antenna gain for direct signal typically ranges from -6 dB to +3 dB
- Multipath antenna gain typically smaller than direct – but not true for mobile devices!
- Reflection coefficients depend on the properties of the reflecting surface
 - Calm water, metal, glass can have reflection coefficients as large as 0.5-0.7
 - Other surfaces will have lower reflection coefficients
- Attenuation coefficients ~1, unless foliage or scattering is present

Multipath Delay & Phase

Ground Reflected Signal Delay

 $\Delta_i = e - g = 2h\sin(\theta)$ (m)

Building Reflected Signal Delay

$$\Delta_i = a - b = 2d\cos(\theta)$$
 (m)

Phase Shift

$$\phi_i = \left(rac{2\pi\Delta_i}{\lambda_L} + \phi_{Ri}
ight) \mathrm{MOD}2\pi$$
 (rad)

 ϕ_{Ri} = Phase shift at reflection = π rad when incidence angle is less than the Brewster angle

 λ_L = wavelength (m)

Multipath delay in code chips

 $\delta_i = \Delta_i / \lambda_C = \Delta_i / cT_C$

 λ_{C} = PRN code chip length (m)

 T_C = PRN code period (s)

- Delay increases with antenna height / distance
- Elevation angle greatly influences multipath characteristics

Multipath Fading Frequencies - Ground Reflection Relative Doppler

Ground Reflected Signal

$$\delta f_i = \left(\frac{2}{\lambda_L}\sin\theta\right)\frac{\partial h}{\partial t} - \left(\frac{2h}{\lambda_L}\cos\theta\right)\frac{\partial \theta}{\partial t}$$

Example:

h = 1 m (fixed)

GNSS satellite angular rate:

```
\frac{\partial \theta}{\partial t} \approx 180 \text{ deg}/6 \text{ hrs} \approx 0.15 \text{ mrad/s}
```

L1 wavelength: λ_L =19 cm

$$= \left\{ \begin{aligned} &\delta f_i \approx 1.6 \text{ mHz near the horizon} \\ &\delta f_i \approx 0 \end{aligned} \right. \text{ near zenith} \end{aligned}$$

- Frequencies dependent on relative satellite and antenna motion
- LEO satellite orbital angular rate ~10X faster than GNSS

Multipath Fading Frequencies – Building Reflected Relative Doppler

Building Reflected Signal

$$\delta f_i = \left(\frac{2}{\lambda_L}\cos\theta\right)\frac{\partial d}{\partial t} - \left(\frac{2d}{\lambda_L}\sin\theta\right)\frac{\partial\theta}{\partial t}$$

Example:

Antenna horizontal speed:
$$\frac{\partial d}{\partial t} = 1$$
 m/s

Satellite elevation angle: $\theta = 30^{\circ}$

L1 wavelength: λ_L =19 cm

 $\delta f_i \approx 5.3 \ \mathrm{Hz}$

- At higher speeds, fading frequency would exceed carrier tracking loop bandwidth and would appear as noise
- Effects due to satellite motion similar to ground bounce case

Receiver Signal Processing Block Diagram

Correlator Output Signals

$$\begin{split} IE &= \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^n \Big[\alpha_i R \big(\tau - \delta_i T_C + dT_C \big) \operatorname{sinc} \big(\pi \big(\delta f + \delta f_i \big) T_{PDI} \big) \operatorname{cos}(\delta \varphi + \phi_i) \Big] + w_{IE} & c/n_0 \\ (\text{ration}) \\ IP &= \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^n \Big[\alpha_i R \big(\tau - \delta_i T_C \big) \operatorname{sinc} \big(\pi \big(\delta f + \delta f_i \big) T_{PDI} \big) \operatorname{cos}(\delta \varphi + \phi_i) \Big] + w_{IP} & R(\cdot) \\ IL &= \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^n \Big[\alpha_i R \big(\tau - \delta_i T_C - dT_C \big) \operatorname{sinc} \big(\pi \big(\delta f + \delta f_i \big) T_{PDI} \big) \operatorname{cos}(\delta \varphi + \phi_i) \Big] + w_{IL} & \delta f = 0 \\ QE &= \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^n \Big[\alpha_i R \big(\tau - \delta_i T_C + dT_C \big) \operatorname{sinc} \big(\pi \big(\delta f + \delta f_i \big) T_{PDI} \big) \operatorname{sin}(\delta \varphi + \phi_i) \Big] + w_{QE} & \delta \varphi = 0 \\ QP &= \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^n \Big[\alpha_i R \big(\tau - \delta_i T_C \big) \operatorname{sinc} \big(\pi \big(\delta f + \delta f_i \big) T_{PDI} \big) \operatorname{sin}(\delta \varphi + \phi_i) \Big] + w_{QP} \\ QL &= \sqrt{2(c/n_0)T_{PDI}} \sum_{i=0}^n \Big[\alpha_i R \big(\tau - \delta_i T_C \big) \operatorname{sinc} \big(\pi \big(\delta f + \delta f_i \big) T_{PDI} \big) \operatorname{sin}(\delta \varphi + \phi_i) \Big] + w_{QL} \\ \end{split}$$

 c/n_0 = carrier-power-to-noise-density ratio (ratio-Hz), $R(\cdot)$ = PRN code autocorrelation function $\tau = \hat{t}_0 - t_0$ = code tracking error (s) δf = carrier frequency tracking error (Hz) $\delta \varphi$ = carrier phase tracking error (Hz)

sinc(
$$\theta$$
) =
$$\begin{cases} \sin \theta / \theta, & \theta \neq 0 \\ 1, & \theta = 0 \end{cases}$$

I and Q denote in-phase and quadra-phase, E, P and L denote early, prompt and late

 w_{IE} , w_{IP} , w_{IL} , w_{QE} , w_{QP} , w_{QL} = I/Q WGN (zero mean and unit variance)

Ideal autocorrelation function for BPSK signals:
$$R(\tau) = E\{C(t)C(t-\tau)\} = \begin{cases} 1 - |\tau/T_c|, & |\tau| < T_c \\ 0, & |\tau| \ge T_c \end{cases}$$

Composite Signal with Single Multipath

Ideal Code Correlation Functions for Single Multipath

- Binary Phase-Shift Key (BPSK) signal
- Infinite bandwidth
- Multipath distorts the shape of the correlation function

EML Code Tracking Error Discriminator

Early-Minus-Late (EML) Delay Lock Detector (DLD) function:

$$D_{EML}(\tau) = [R(\tau + dT_C) - R(\tau - dT_C)]/2$$

Ideal Code Tracking Error Envelopes

• Dot-product code tracking error detector:

$$\varepsilon_{D} = \frac{ID_{EML} \cdot IP - QD_{EML} \cdot QP}{IP^{2} + QP^{2}},$$

$$ID_{EML} = (IE - IL)/2, \quad QD_{EML} = (QE - QL)/2$$

- Ideal PRN code and infinite receiver bandwidth assumed
- Bounds represent perfect in-phase or out-of-phase multipath cases ($\theta = 0, \pi$)
- Other multipath phases will lie in between these two bounds
- MP bias represents average over full phase cycle at a given MP delay MP is not zero mean
- Multipath with delay bigger than 1+d chip has little or no effect on PR measurements

Multipath Code Tracking Error Envelopes for Different Code Types

Infinite bandwidth

MP Error Envelopes, α =0.2, d=1/20 BPSK(1) chip MP Error Envelopes, α =0.2, d=1/20 BPSK(1) chip 3 3 BPSK(1) --- BPSK(1) **BPSK(10)** BPSK(10) 2 BOC(1,1) 2 BOC(1,1) PR Error (m) PR Error (m) 0 -1 -1 -2 -2 -3 -3 0.2 0.4 0.6 0.8 1.2 0.2 0.4 0.6 0.8 1.2 0 0 Multipath Delay, BPSK(1)-Chips Multipath Delay, BPSK(1)-Chips

Band-limited with 10 MHz low-pass filter

Multipath Phase Tracking Error Envelopes for Different Code Types

Infinite bandwidth

Band-limited with 10 MHz low-pass filter

1.2

GNSS Multipath Mitigation Techniques

- Code type
- Antenna design & siting
- Receiver design
 - Adaptive antenna array processing
 - Polarization processing
 - Correlator signal processing
 - Multipath estimation
- Measurement processing
 - Code & carrier combinations
 - Carrier smoothing

Not discussed here

Discussed in Part 2

Code Type

Higher chipping rates have improved multipath error characteristics

Antenna Design & Siting

Minimize gain to the undesired signal

Siting

- Move antenna away from strong reflectors
- Raise antenna above reflecting objects in the vicinity

Try to increase Direct/Undesired (D/U) signal ratio

Part 2: GNSS Measurement Processing & Carrier Smoothing

Overview

- Measurement models
- Dual frequency code & carrier measurement combinations
 - Ionospheric-free
 - Wide-Lane (WL) / Narrow-Lane (NL)
 - Geometry-free
 - Divergence-free
- Code-Carrier smoothing
 - Single frequency
 - Dual frequency divergence free

Measurement Model @ f_L

 $\rho_L = r + \delta_T + \delta_R + I_L + T + \delta\rho_{ML} + \varepsilon_{\rho L}$ $\varphi_L = r + \delta_T + \delta_R - I_L + T + \delta\varphi_{ML} + \varepsilon_{\varphi L} + N_L\lambda_L$

 ρ_L = Code pseudorange measurement (in meters) φ_L = Carrier phase measurement (in meters)

r = Geometric Line-of-Sight (LOS) range

 δ_T = Satellite clock and ephemeris errors projected along LOS

 δ_R = Receiver clock bias

$$I_L = K_I / f_L^2$$
 = lonospheric refraction at f_L

T = Tropospheric delay

 $\delta \rho_{ML}$, $\delta \varphi_{ML}$ = Code and carrier multipath at f_L

 $\varepsilon_{\rho L}$, $\varepsilon_{\varphi L}$ = Code and carrier receiver noise and other errors

 $N_L \lambda_L$ = Carrier phase ambiguity for the carrier with wavelength λ_L , where N_L is an integer.

Simplified Measurement Model @ f_L

 $\rho_L = r + I_L + \varepsilon_{\rho L}$ $\varphi_L = r - I_L + \varepsilon_{\varphi L} + N_L \lambda_L$

 ρ_L = Code pseudorange measurement (in meters)

 φ_L = Carrier phase measurement (in meters)

r = Geometric Line-of-Sight (LOS) range (including SV & rcvr clocks and tropo)

 $I_L = K_I / f_L^2$ = lonospheric refraction at f_L

 $\varepsilon_{\rho L}$, $\varepsilon_{\varphi L}$ = Code and carrier receiver noise, multipath and other errors

 $N_L \lambda_L$ = Carrier phase ambiguity for the carrier with wavelength λ_L , where N_L is an integer.

Code - Carrier Combinations

Iono-Free:

$$\rho_{IF} = \frac{f_1^2}{f_1^2 - f_2^2} \rho_1 - \frac{f_2^2}{f_1^2 - f_2^2} \rho_2,$$

$$\varphi_{IF} = \frac{f_1^2}{f_1^2 - f_2^2} \varphi_1 - \frac{f_2^2}{f_1^2 - f_2^2} \varphi_2$$

Wide-Lane Carrier Phase/Narrow-Lane Code:

$$\rho_{NL} = \frac{f_1}{f_1 + f_2} \rho_1 + \frac{f_2}{f_1 + f_2} \rho_2,$$

$$\varphi_{WL} = \frac{f_1}{f_1 - f_2} \varphi_1 - \frac{f_2}{f_1 - f_2} \varphi_2$$

Narrow–Lane Carrier Phase/Wide–Lane Code:

$$\rho_{WL} = \frac{f_1}{f_1 - f_2} \rho_1 - \frac{f_2}{f_1 - f_2} \rho_2,$$

$$\varphi_{NL} = \frac{f_1}{f_1 + f_2} \varphi_1 + \frac{f_2}{f_1 + f_2} \varphi_2$$

Divergence Free Carrier Combinations:

$$f_{1}: \rho = \rho_{1}, \quad \varphi = \frac{f_{1}^{2} + f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{1} - \frac{2f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{2}$$
$$f_{2}: \rho = \rho_{2}, \quad \varphi = \frac{2f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{1} - \frac{f_{1}^{2} + f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{2}$$

Geometry-Free (f_1 lono-Estimation):

$$\rho = \frac{f_2^2}{f_1^2 - f_2^2} (\rho_2 - \rho_1), \ \varphi = \frac{f_2^2}{f_1^2 - f_2^2} (\varphi_2 - \varphi_1)$$

Iono-Free

$$\begin{split} \rho_{IF} &= \frac{f_1^2}{f_1^2 - f_2^2} \rho_1 - \frac{f_2^2}{f_1^2 - f_2^2} \rho_2 = r + \frac{f_1^2}{f_1^2 - f_2^2} \epsilon_{\rho 1} - \frac{f_2^2}{f_1^2 - f_2^2} \epsilon_{\rho 2} \end{split} \\ \varphi_{IF} &= \frac{f_1^2}{f_1^2 - f_2^2} \varphi_1 - \frac{f_2^2}{f_1^2 - f_2^2} \varphi_2 = r + \frac{f_1^2}{f_1^2 - f_2^2} \epsilon_{\varphi 1} - \frac{f_2^2}{f_1^2 - f_2^2} \epsilon_{\varphi 2} + N_{IF} \lambda_{IF} \end{split}$$

Frequencies	PR Noise	λ_{IF} (cm)
	Amplification	
L1, L2	2.98	0.31
L1, L5	2.59	0.28

- Iono canceled
- PR and CP noise amplified
- Short effective CP wavelength

Wide-Lane Carrier Phase/Narrow-Lane Code

$$\rho_{NL} = \frac{f_1}{f_1 + f_2} \rho_1 + \frac{f_2}{f_1 + f_2} \rho_2 = r + \frac{k_l}{f_1 f_2} + \frac{f_1}{f_1 + f_2} \epsilon_{\rho 1} + \frac{f_2}{f_1 + f_2} \epsilon_{\rho 2}$$

$$\varphi_{WL} = \frac{f_1}{f_1 - f_2} \varphi_1 - \frac{f_2}{f_1 - f_2} \varphi_2 = r + \frac{k_l}{f_1 f_2} + \frac{f_1}{f_1 - f_2} \epsilon_{\varphi 1} - \frac{f_2}{f_1 - f_2} \epsilon_{\varphi 2} + N_{WL} \lambda_{WL}$$

Frequencies	PR Noise	λ_{WL} (cm)
	Amplification	
L1, L2	0.713	86.3
L1, L5	0.714	75.2

- PR noise & multipath attenuated
- CP noise amplified
- Long effective CP wavelength aids ambiguity resolution
- PR & CP iono have same sign

Narrow–Lane Carrier Phase/ Wide–Lane Code

$$\rho_{WL} = \frac{f_1}{f_1 - f_2} \rho_1 - \frac{f_2}{f_1 - f_2} \rho_2 = r + \frac{k_l}{f_1 f_2} + \frac{f_1}{f_1 - f_2} \epsilon_{\rho 1} - \frac{f_2}{f_1 - f_2} \epsilon_{\rho 2}$$

$$\varphi_{NL} = \frac{f_1}{f_1 + f_2} \varphi_1 + \frac{f_2}{f_1 + f_2} \varphi_2 = r + \frac{k_l}{f_1 f_2} + \frac{f_1}{f_1 + f_2} \epsilon_{\varphi 1} - \frac{f_2}{f_1 + f_2} \epsilon_{\varphi 2} + N_{WL} \lambda_{WL}$$

Frequencies	PR Noise	λ_{WL} (cm)
	Amplification	
L1, L2	5.74	10.7
L1, L5	4.93	10.9

- PR & CP iono have same sign
- PR and CP noise amplified
- Reduced effective CP wavelength
 , CP noise reduced

Geometry-Free (f₁ lono Estimation)

 $\rho_{GF} = \frac{f_2^2}{f_1^2 - f_2^2} (\rho_2 - \rho_1) = I_1 + \frac{f_2^2}{f_1^2 - f_2^2} (\epsilon_{\rho 2} - \epsilon_{\rho 2})$ $\varphi_{GF} = \frac{f_2^2}{f_1^2 - f_2^2} (\varphi_1 - \varphi_2) = I_1 + \frac{f_2^2}{f_1^2 - f_2^2} (\epsilon_{\varphi 1} - \epsilon_{\varphi 2}) + N_{GF} \lambda_{GF}$

Frequencies	PR Noise	λ_{GF} (cm)
	Amplification	
L1, L2	2.19	0.25
L1, L5	1.78	0.21

- Iono delay measured
- PR and CP noise amplified
- Small effective CP wavelength

Divergence-Free Carrier Combinations for Single Frequency Code PR Measurements

$$f_{1}: \ \rho = \rho_{1}, \quad \varphi = \frac{f_{1}^{2} + f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{1} - \frac{2f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{2} = r + I_{1} + \frac{f_{1}^{2} + f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\epsilon_{\varphi 1} - \frac{2f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\epsilon_{\varphi 2} + N_{D1}\lambda_{D1}$$

$$f_{2}: \ \rho = \rho_{2}, \quad \varphi = \frac{2f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{1} - \frac{f_{1}^{2} + f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\varphi_{2} = r + I_{2} - \frac{f_{1}^{2} + f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\epsilon_{\varphi 2} + \frac{2f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}}\epsilon_{\varphi 1} + N_{D2}\lambda_{D2}$$

Frequencies	PR Noise	λ_{DF}
	Amplification	
L1, L2	1	<1 mm
L1, L5	1	<1 mm

- PR & CP iono have same sign
- Tiny CP ambiguity wavelength

Code Carrier Smoothing

- Code PR have large noise+multipath errors (meter-level) but are unbiased
- Carrier phase measurements have small noise+multipath errors (cmlevel) but have an integer cycle ambiguity
- Main idea: combine code and carrier measurements to yield a lowernoise, unbiased PR measurement
 - Low pass filter code and high pass filter carrier phase

Carrier Smoothing – Equivalent Formulations

Complementary Filter Formulation

Hatch Filter Formulation

Initialize:
$$\overline{\chi}(t_0^-) = 0$$

For: $t_n, n = 1, 2, ...$
Input: $\chi(t_n) = \rho(t_n) - \varphi(t_n)$
Update: $\overline{\chi}(t_n) = \overline{\chi}(t_n^-) + K_n \left(\chi(t_n) - \overline{\chi}(t_n^-)\right)$
Output: $\overline{\rho}(t_n) = \overline{\chi}(t_n) + \varphi(t_n)$
Extrapolate: $\overline{\chi}(t_{n+1}^-) = \overline{\chi}(t_n)$

Initialize:
$$\overline{\rho}(t_0^-) = 0$$

For: $t_n, n = 1, 2, ...$
Input: $\rho(t_n)$
Update/Output:
 $\overline{\rho}(t_n) = \overline{\rho}(t_n^-) + K_n \left(\rho(t_n) - \overline{\rho}(t_n^-)\right)$
Extrapolate: $\Delta \varphi(t_n) = \varphi(t_n) - \varphi(t_{n-1})$
 $\overline{\rho}(t_n^-) = \overline{\rho}(t_{n-1}) + \Delta \varphi(t_n)$

For time
$$t_n$$
, $n = 1$, ..., the gain is: $K_n = \begin{cases} 1/n, & n = 1, ..., N_{max} \\ 1/N_{max}, & n \ge N_{max} \end{cases}$

© 2023 Gary McGraw, All Rights Reserved

Qualitative Error Analysis

Complementary filter operation: $\bar{\rho} = F(\rho - \phi) + \phi = F\rho + (1 - F)\phi$

For the steady-state gain, $K = 1/N_{max}$, and the complementary filter iterative equations for F can be written as:

$$\bar{\chi}(t_n) = (1 - K)\bar{\chi}(t_{n-1}) + K\chi(t_n)$$

а

This discrete time equation can be written in terms of a Z-transform as:

$$F(z) = \frac{K}{1 - (1 - K)z^{-1}} = \frac{Kz}{z - (1 - K)}$$
 This is a low-pass filter => 1-F is high-pass

An error model for the smoothed single-frequency PR is:

$$\bar{\rho}_L = (r + \delta_T + \delta_R + T) + (2F - 1)I_L + F(\delta\rho_{ML} + \varepsilon_{\rho L}) + (1 - F)(\delta\varphi_{ML} + \varepsilon_{\varphi L} + N_L\lambda_L)$$
LOS range terms Iono delay is Code PR errors are are unaffected filtered low-pass filtered high-pass filtered

Smoothing Filter Steady State Gain Calculation

The value for N_{max} can be determined by relating the CMC filter F to a first-order, continuous-time, low-pass filter:

$$F(s) = \frac{1}{T_0 s + 1}, T_0 = \text{time constant (s)}$$

Discrete-time equivalent: $F(z) = \frac{(1 - e^{-\Delta T/T_0})z}{z - e^{-\Delta T/T_0}} = \frac{Kz}{z - (1 - K)}$

$$K = \frac{1}{N_{max}} = 1 - e^{-\Delta T/T_0} \approx \Delta T/T_0, \quad \Delta T << T_0$$
$$\Rightarrow N_{max} \approx T_0/\Delta T$$

For white noise, smoothed standard deviation given by:

$$\sigma_{s} = \sigma_{\rho} \sqrt{\frac{K}{2 - K}} = \sigma_{\rho} \sqrt{\frac{1 - e^{-\Delta T/T_{0}}}{1 + e^{-\Delta T/T_{0}}}} \approx \sigma_{\rho} \sqrt{\frac{\Delta T/T_{0}}{2 - \Delta T/T_{0}}} = \frac{\sigma_{\rho}}{\sqrt{2N_{max} - 1}}$$
© 2023 Gary McGraw, All Rights Reserved

Single Frequency Smoothing Example Results

- Single frequency code and carrier phase
- Smoothing reduces meter-level noise to sub-decimeter level
- Longer smoothing time constant induces large bias due to iono divergence

Dual Frequency Smoothing

- Code-carrier iono divergence limits length of single frequency smoothing
 - Iono delays code and advances carrier phase
- Certain PR and CP combinations have equal iono delays (same sign)
 - Divergence free (single frequency code, dual frequency CP)
 - Iono Free
 - WL/NL
- Divergence free combinations enable extended carrier smoothing time constants

Dual Frequency Smoothing Example Results

- Examples use L1/L2 P(Y) code
- No iono divergence effects

 ~3X noise amplification due to iono-free combination is evident

Summary

- Multipath reception affects essentially all GNSS receiver applications
- For many applications it is the dominant error source
- Many techniques are available to mitigate multipath errors:
 - Antenna siting to avoid multipath
 - Antenna types that enhance direct signals and attenuate reflected signals, particularly for fixed sites
 - Adaptive antenna array processing
 - Correlation signal processing
 - Measurement processing techniques like carrier smoothing
 - Navigation processing to de-weight or exclude measurements impacted by multipath
 - Post-processing and modelling techniques that provide estimates to correct multipath errors
- Applicability of these techniques to different GNSS receiver types varies greatly, with mobile phones being especially constrained

Bibliography

- Gary A. McGraw, Paul D. Groves and Benjamin W. Ashman, "Robust Positioning in the Presence of Multipath and NLOS GNSS Signals," Chapter 22 of *Position Navigation & Timing Technologies in the 21st Century*, Jade Morton, Frank van Diggelen, James Spilker, and Bradford Parkinson, Editors. Wiley, 2021.
- 2. M. Braasch, "Multipath", *Springer Handbook of Global Navigation Satellite Systems*, ed. P. Teunissen, and O. Montenbruck, Springer, pp. 445-470, 2017.
- 3. M. S. Braasch, "Multipath Effects," In Global Positioning System: Theory and Applications Volume I, B. W. Parkinson and J. J. Spilker, Jr., (eds.), Washington, DC: AIAA, 1996, pp. 547–568.
- 4. P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, 2nd Edition, Ganga-Jamuna Press, 2006.
- 5. A. J. Van Dierendonck, P. Fenton, and T. Ford, "Theory and Performance of a Narrow Correlator Spacing in a GPS Receiver," in NAVIGATION, Vol. 39, No. 3, pp. 265–283, 1992.
- 6. A. J. Van Dierendonck, "GPS Receivers," in *Global Positioning System: Theory and Applications Volume I*, B. W. Parkinson and J. J. Spilker, Jr., (eds.), Washington, DC: AIAA, 1996, ch. 8, pp. 329–407.
- 7. P. W. Ward, J. W. Betz, and C. J. Hegarty, "Satellite Signal Acquisition, Tracking and Data Demodulation," In *Understanding GPS Principles and Applications*, 2nd ed., E. D. Kaplan and C. J. Hegarty, (eds.), Norwood, MA: Artech House, 2006, ch. 5, pp. 153–241.
- 8. P. Y. C. Hwang, G. A. McGraw, and J. R. Bader, "Enhanced Differential GPS Carrier-Smoothed Code Processing Using Dual Frequency Measurements," *NAVIGATION, Journal of The Institute of Navigation,* Vol. 46, No. 2, Summer 1999, pp.127-137.
- 9. R.G. Brown and P.Y.C. Hwang, Introduction to Random Signal Analysis and Applied Kalman Filtering, 3rd Ed., Wiley, 1997.
- 10. McGraw, G. A., "Generalized Divergence-Free Carrier Smoothing with Applications to Dual Frequency Differential GPS," *NAVIGATION: Journal of the Institute of Navigation*, Vol. 56, No. 2, Summer 2009, pp. 115-122.