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Overview

Part 1: GNSS Multipath 
Characterization & Modeling
• GNSS multipath introduction & 

definitions
• Multipath effects on GNSS measurements

• SNR
• Pseudoranges (code)
• Carrier Phase

• Multipath mitigation techniques
• Code type
• Antenna design & siting
• Receiver signal processing
• Measurement processing

Part 2: Multipath Mitigation via 
Measurement Processing

• GNSS measurement combinations 
• Wide and narrow-lane carrier phase
• Ionospheric free
• Ionospheric estimation
• Divergence free

• Carrier smoothed code processing
• Processing overview
• Smoothing filter gain
• Divergence-free smoothing 
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Part 1: GNSS Multipath 
Characterization & Modeling
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Multipath vs. Non-LOS Reception 

4

• Multipath = Multiple signal propagation paths, including direct signal
• Non-LOS reception = Direct signal is blocked, but strong reflected signals are present
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Specular vs. Diffuse Multipath 

5

• For specular reflection 𝜓𝜓𝑟𝑟 = 𝜓𝜓𝑖𝑖
• Amplitude of multipath dependent on surface composition

• GNSS signals are right-hand circularly-polarized (RHCP) signals; multipath usually dominated by 
left-hand circularly-polarized (LHCP) signals  

Direct

Specular Multipath

Fresnel Zone
Radius 𝑟𝑟𝜆𝜆𝐿𝐿

𝑟𝑟
σℎ
λ𝐿𝐿

 < 1
Surface Roughness

Direct

Diffuse Multipath

Surface 
Roughness

σℎ
λ𝐿𝐿

 > 1
“Glistening radius” depends on surface roughness

Reflected 
Angle  𝜓𝜓𝑟𝑟Incidence

Angle  𝜓𝜓𝑖𝑖

𝜆𝜆𝐿𝐿 = Signal Wavelength
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Multipath Error Characteristics

6

• Diffuse multipath appears like bandlimited 
noise

• Strong specular multipath has sinusoidal 
characteristics

• Often both types are present

Change in SV signal arrival 
path over time

Time

PR Error

Diffuse

Diffuse
Specular
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Specular Multipath Characterization 

7

Illustration with two multipath signals 
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Received Signal Model

8
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P = direct signal power 
n = number of reflected signals (i=0 is the direct 

signal)
αi = relative amplitude of reflected signals (α0  = 1)
C(∙) = pseudorandom noise (PRN) spreading code 
D(∙) = downlink data 
t0 = propagation delay for the direct signal (sec)

c = speed of light (m/s)
fL = carrier frequency (Hz)
fD = Doppler shift (Hz)
δfi = relative multipath Doppler (Hz)
∆i = relative multipath delay (m)
φi = phase shift relative to direct (rad)
w(∙) = bandlimited white Gaussian noise (WGN) 
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Relative Multipath Amplitude 

9

0 0 0

= i i i
i

G R k
G R k

α

G0 = antenna gain for direct signal 
Gi = antenna gain for the ith multipath 

component
Ri and R0 = reflection coefficients (R0 = 1 in 

our case)
ki and k0 = signal attenuation coefficients 

(due to foliage, etc.)

• Antenna gain for direct signal typically 
ranges from -6 dB to +3 dB

• Multipath antenna gain typically smaller 
than direct – but not true for mobile 
devices!

• Reflection coefficients depend on the 
properties of the reflecting surface

• Calm water, metal, glass can have reflection 
coefficients as large as 0.5-0.7

• Other surfaces will have lower reflection 
coefficients

• Attenuation coefficients ~1, unless 
foliage or scattering is present 
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Multipath Delay & Phase

10

• Delay increases with antenna height / 
distance

• Elevation angle greatly influences multipath 
characteristics

Ground Reflected Signal Delay

 Δ𝑖𝑖 = 𝑒𝑒 − 𝑔𝑔 = 2ℎ sin θ   (m)

Building Reflected Signal Delay

 Δ𝑖𝑖 = 𝑎𝑎 − 𝑏𝑏 = 2𝑑𝑑 cos θ   (m)

Phase Shift

 𝜙𝜙𝑖𝑖=
2𝜋𝜋𝛥𝛥𝑖𝑖
𝜆𝜆𝐿𝐿

+ 𝜙𝜙𝑅𝑅𝑖𝑖 MOD2𝜋𝜋  (rad)

𝜙𝜙𝑅𝑅𝑖𝑖 = Phase shift at reflection = 𝜋𝜋 rad when incidence 
angle is less than the Brewster angle

𝜆𝜆𝐿𝐿 = wavelength (m)

𝛿𝛿𝑖𝑖 = ⁄𝛥𝛥𝑖𝑖 𝜆𝜆𝐶𝐶 = ⁄𝛥𝛥𝑖𝑖 𝑐𝑐𝑐𝑐𝐶𝐶

Multipath delay in code chips

λ𝐶𝐶  = PRN code chip length (m)

𝑐𝑐𝐶𝐶  = PRN code period (s)
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Multipath Fading Frequencies - Ground Reflection Relative 
Doppler

11

• Frequencies dependent on relative 
satellite and antenna motion

• LEO satellite orbital angular rate ~10X 
faster than GNSS

Ground Reflected Signal 

𝛿𝛿𝛿𝑓𝑓𝑖𝑖 =
2
𝜆𝜆𝐿𝐿

sin𝜃𝜃
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

−
2ℎ
𝜆𝜆𝐿𝐿

cos 𝜃𝜃
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

Example:
ℎ = 1 m (fixed)

GNSS satellite angular rate:  

𝜕𝜕θ
𝜕𝜕𝜕𝜕

≈ 180 deg/ 6 hrs ≈ 0.15 mrad/s

L1 wavelength: λ𝐿𝐿=19 cm

=>
𝛿𝛿𝛿𝑓𝑓𝑖𝑖 ≈ 1.6 mHz near the horizon

𝛿𝛿𝛿𝑓𝑓𝑖𝑖 ≈ 0  near zenith



© 2023 Gary McGraw, All Rights Reserved

Multipath Fading Frequencies – Building Reflected Relative 
Doppler

12

• At higher speeds, fading frequency would exceed carrier 
tracking loop bandwidth and would appear as noise

• Effects due to satellite motion similar to ground bounce 
case

Building Reflected Signal

𝛿𝛿𝛿𝑓𝑓𝑖𝑖 =
2
𝜆𝜆𝐿𝐿

cos 𝜃𝜃
𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕

−
2𝑑𝑑
𝜆𝜆𝐿𝐿

sin𝜃𝜃
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

Example:
Antenna horizontal speed:  𝜕𝜕𝑑𝑑

𝜕𝜕𝑡𝑡
= 1 m/s 

Satellite elevation angle: θ = 30∘

L1 wavelength: λ𝐿𝐿=19 cm

𝛿𝛿𝛿𝑓𝑓𝑖𝑖 ≈ 5.3 Hz 
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Receiver Signal Processing Block Diagram

13
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Correlator Output Signals
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I and Q denote in-phase and quadra-phase, E, P and L denote early, prompt and late

𝑤𝑤𝐼𝐼𝐼𝐼 ,𝑤𝑤𝐼𝐼𝐼𝐼 ,𝑤𝑤𝐼𝐼𝐿𝐿 ,𝑤𝑤𝑄𝑄𝐼𝐼 ,𝑤𝑤𝑄𝑄𝐼𝐼 ,𝑤𝑤𝑄𝑄𝐿𝐿 = I/Q WGN (zero mean and unit variance)

𝑐𝑐/𝑛𝑛0 = carrier-power-to-noise-density ratio 
(ratio-Hz),

𝑅𝑅(⋅) =  PRN code autocorrelation function

𝜏𝜏 = �̂�𝜕0 − 𝜕𝜕0 = code tracking error (s) 

𝛿𝛿𝛿𝑓𝑓 = carrier frequency tracking error (Hz)

 𝛿𝛿𝛿𝛿𝛿 = carrier phase tracking error (Hz)

Ideal autocorrelation function for BPSK signals:    𝑅𝑅(𝜏𝜏) = 𝐸𝐸{𝐶𝐶(𝜕𝜕)𝐶𝐶(𝜕𝜕 − 𝜏𝜏)} = �1 − 𝜏𝜏/𝑐𝑐𝐶𝐶 , 𝜏𝜏 < 𝑐𝑐𝐶𝐶
0, 𝜏𝜏 ≥ 𝑐𝑐𝐶𝐶

)sinc( 𝜃𝜃 = �
⁄sin 𝜃𝜃 𝜃𝜃 , 𝜃𝜃 ≠ 0

1, 𝜃𝜃 = 0
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Composite Signal with Single Multipath

15

( )R τDirect Signal 
Phasor

Multipath Signal 
Phasor

1 1( )−Rα τ δ

1φ

Composite 
Signal Phasor

1δϕ

𝜙𝜙𝑖𝑖=
2𝜋𝜋𝛥𝛥𝑖𝑖
𝜆𝜆𝐿𝐿

+ 𝜙𝜙𝑅𝑅𝑖𝑖 MOD2𝜋𝜋  (rad)

• Composite signal amplitude fluctuates 
as a function of multipath phase angle

• Deep fading can cause loss of lock
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Ideal Code Correlation Functions for Single Multipath

16

• Binary Phase-Shift Key (BPSK) signal
• Infinite bandwidth
• Multipath distorts the shape of the 

correlation function
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EML Code Tracking Error Discriminator 

17

Early-Minus-Late (EML) Delay Lock Detector (DLD) 
function:

𝐷𝐷𝐼𝐼𝐸𝐸𝐿𝐿 𝜏𝜏 = 𝑅𝑅 𝜏𝜏 + 𝑑𝑑𝑐𝑐𝐶𝐶 − 𝑅𝑅 𝜏𝜏 − 𝑑𝑑𝑐𝑐𝐶𝐶 /2
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Ideal Code Tracking Error Envelopes 

18

• Dot-product code tracking error detector:

𝜀𝜀𝐷𝐷 =
𝐼𝐼𝐷𝐷𝐼𝐼𝐸𝐸𝐿𝐿 ⋅ 𝐼𝐼𝐼𝐼 − 𝑄𝑄𝐷𝐷𝐼𝐼𝐸𝐸𝐿𝐿 ⋅ 𝑄𝑄𝐼𝐼

𝐼𝐼𝐼𝐼2 + 𝑄𝑄𝐼𝐼2
,

𝐼𝐼𝐷𝐷𝐼𝐼𝐸𝐸𝐿𝐿 = (𝐼𝐼𝐸𝐸 − 𝐼𝐼𝐼𝐼)/2, 𝑄𝑄𝐷𝐷𝐼𝐼𝐸𝐸𝐿𝐿 = (𝑄𝑄𝐸𝐸 − 𝑄𝑄𝐼𝐼)/2

• Ideal PRN code and infinite receiver bandwidth 
assumed

• Bounds represent perfect in-phase or out-of-phase 
multipath cases (𝜃𝜃 = 0,π)

• Other multipath phases will lie in between these two 
bounds

• MP bias represents average over full phase cycle at a 
given MP delay – MP is not zero mean

• Multipath with delay bigger than 1+d chip has little or 
no effect on PR measurements 
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Multipath Code Tracking Error Envelopes for Different Code Types

19

Infinite bandwidth Band-limited with 10 MHz low-pass filter
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Multipath Phase Tracking Error Envelopes for Different Code Types

20

Infinite bandwidth Band-limited with 10 MHz low-pass filter
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GNSS Multipath Mitigation Techniques

• Code type
• Antenna design & siting
• Receiver design

• Adaptive antenna array processing
• Polarization processing
• Correlator signal processing
• Multipath estimation 

• Measurement processing
• Code & carrier combinations
• Carrier smoothing

21

Not discussed here 

Discussed in Part 2
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Code Type

22

Higher chipping rates have improved multipath error characteristics

BPSK(10) signals immune to 
multipath with delays >40 m
• GPS P(Y) code L1 & L2
• GPS L5
• Galileo E5a, E5b
• Beidou B2a

BPSK(1) signals immune to 
multipath with delays >300 m
• GPS C/A code
• L1 SBAS 

BOC(1,1) have reduced 
response to longer delay 
multipath
• GPS L1c
• Galileo E1 OS
• Beidou B1c

All code types have the same 
error for short multipath delays
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Antenna Design & Siting

23

Enhance gain to the direct signal

Minimize gain to the undesired signal

Try to increase Direct/Undesired (D/U) signal ratio

Siting
• Move antenna away from strong 

reflectors
• Raise antenna above reflecting 

objects in the vicinity
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Part 2: GNSS Measurement 
Processing & Carrier Smoothing
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Overview

• Measurement models
• Dual frequency code & carrier measurement combinations

• Ionospheric-free
• Wide-Lane (WL) / Narrow-Lane (NL)
• Geometry-free
• Divergence-free

• Code-Carrier smoothing
• Single frequency
• Dual frequency divergence free

25
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Measurement Model @ fL

26

𝜌𝜌𝐿𝐿 = 𝑟𝑟 + 𝛿𝛿𝑇𝑇 + 𝛿𝛿𝑅𝑅 + 𝐼𝐼𝐿𝐿 + 𝑐𝑐 + 𝛿𝛿𝜌𝜌𝐸𝐸𝐿𝐿 + 𝜀𝜀𝜌𝜌𝐿𝐿
𝛿𝛿𝐿𝐿 = 𝑟𝑟 + 𝛿𝛿𝑇𝑇 + 𝛿𝛿𝑅𝑅 − 𝐼𝐼𝐿𝐿 + 𝑐𝑐 + 𝛿𝛿𝛿𝛿𝐸𝐸𝐿𝐿 + 𝜀𝜀𝜑𝜑𝐿𝐿 + 𝑁𝑁𝐿𝐿𝜆𝜆𝐿𝐿

𝜌𝜌𝐿𝐿= Code pseudorange measurement (in meters) 
𝛿𝛿𝐿𝐿= Carrier phase measurement (in meters)
𝑟𝑟 = Geometric Line-of-Sight (LOS) range 
𝛿𝛿𝑇𝑇= Satellite clock and ephemeris errors projected along LOS
𝛿𝛿𝑅𝑅= Receiver clock bias
𝐼𝐼𝐿𝐿= 𝐾𝐾𝐼𝐼/𝑓𝑓𝐿𝐿2 = Ionospheric refraction at 𝑓𝑓𝐿𝐿 
𝑐𝑐 = Tropospheric delay
𝛿𝛿𝜌𝜌𝐸𝐸𝐿𝐿 , 𝛿𝛿𝛿𝛿𝐸𝐸𝐿𝐿  = Code and carrier multipath at 𝑓𝑓𝐿𝐿
𝜀𝜀𝜌𝜌𝐿𝐿, 𝜀𝜀𝜑𝜑𝐿𝐿  = Code and carrier receiver noise and other errors
𝑁𝑁𝐿𝐿𝜆𝜆𝐿𝐿= Carrier phase ambiguity for the carrier with wavelength 𝜆𝜆𝐿𝐿,  where 𝑁𝑁𝐿𝐿 is an integer.
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Simplified Measurement Model @ fL

27

𝜌𝜌𝐿𝐿 = 𝑟𝑟 + 𝐼𝐼𝐿𝐿 + 𝜀𝜀𝜌𝜌𝐿𝐿
𝛿𝛿𝐿𝐿 = 𝑟𝑟 − 𝐼𝐼𝐿𝐿 + 𝜀𝜀𝜑𝜑𝐿𝐿 + 𝑁𝑁𝐿𝐿𝜆𝜆𝐿𝐿

𝜌𝜌𝐿𝐿= Code pseudorange measurement (in meters) 
𝛿𝛿𝐿𝐿= Carrier phase measurement (in meters)
𝑟𝑟 = Geometric Line-of-Sight (LOS) range (including SV & rcvr clocks and tropo)
𝐼𝐼𝐿𝐿= 𝐾𝐾𝐼𝐼/𝑓𝑓𝐿𝐿2 = Ionospheric refraction at 𝑓𝑓𝐿𝐿 
𝜀𝜀𝜌𝜌𝐿𝐿, 𝜀𝜀𝜑𝜑𝐿𝐿  = Code and carrier receiver noise, multipath and other errors
𝑁𝑁𝐿𝐿𝜆𝜆𝐿𝐿= Carrier phase ambiguity for the carrier with wavelength 𝜆𝜆𝐿𝐿,  where 𝑁𝑁𝐿𝐿 is an 

integer.
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Code - Carrier Combinations

28

Divergence Free Carrier Combinations:

𝑓𝑓1: 𝜌𝜌 = 𝜌𝜌1, 𝛿𝛿 =
𝑓𝑓12 + 𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿1 −

2𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿2

𝑓𝑓2: 𝜌𝜌 = 𝜌𝜌2, 𝛿𝛿 =
2𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿1 −

𝑓𝑓12 + 𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿2

Iono−Free:

𝜌𝜌𝐼𝐼𝐼𝐼 =
𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
𝜌𝜌1 −

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝜌𝜌2,

𝛿𝛿𝐼𝐼𝐼𝐼 =
𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿1 −

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿2

Wide−Lane Carrier Phase/Narrow−Lane Code:

𝜌𝜌𝑁𝑁𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 + 𝑓𝑓2
𝜌𝜌1 +

𝑓𝑓2
𝑓𝑓1 + 𝑓𝑓2

𝜌𝜌2,

𝛿𝛿𝑊𝑊𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 − 𝑓𝑓2
𝛿𝛿1 −

𝑓𝑓2
𝑓𝑓1 − 𝑓𝑓2

𝛿𝛿2

Narrow−Lane Carrier Phase/Wide−Lane Code:

𝜌𝜌𝑊𝑊𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 − 𝑓𝑓2
𝜌𝜌1 −

𝑓𝑓2
𝑓𝑓1 − 𝑓𝑓2

𝜌𝜌2,

𝛿𝛿𝑁𝑁𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 + 𝑓𝑓2
𝛿𝛿1 +

𝑓𝑓2
𝑓𝑓1 + 𝑓𝑓2

𝛿𝛿2

Geometry-Free (f1 Iono-Estimation):

𝜌𝜌 = f22

f12−f22
𝜌𝜌2 − 𝜌𝜌1 ,  φ = f22

f12−f22
𝛿𝛿2 − 𝛿𝛿1
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Iono-Free

29

𝛿𝛿𝐼𝐼𝐼𝐼 =
𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿1 −

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿2 = 𝑟𝑟 +

𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
ϵφ1 −

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
ϵφ2 + 𝑁𝑁𝐼𝐼𝐼𝐼λ𝐼𝐼𝐼𝐼

𝜌𝜌𝐼𝐼𝐼𝐼 =
𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
𝜌𝜌1 −

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝜌𝜌2 = 𝑟𝑟 +

𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
ϵρ1 −

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
ϵρ2

PR noise amplification

Frequencies PR Noise 
Amplification

λ𝐼𝐼𝐼𝐼 (cm)

L1, L2 2.98 0.31
L1, L5 2.59 0.28

• Iono canceled
• PR and CP noise amplified
• Short effective CP wavelength
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Wide−Lane Carrier Phase/Narrow−Lane Code

30

𝛿𝛿𝑊𝑊𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 − 𝑓𝑓2
𝛿𝛿1 −

𝑓𝑓2
𝑓𝑓1 − 𝑓𝑓2

𝛿𝛿2 = 𝑟𝑟 +
𝑘𝑘𝐼𝐼
𝑓𝑓1𝑓𝑓2

+
𝑓𝑓1

𝑓𝑓1 − 𝑓𝑓2
ϵφ1 −

𝑓𝑓2
𝑓𝑓1 − 𝑓𝑓2

ϵφ2 + 𝑁𝑁𝑊𝑊𝐿𝐿λ𝑊𝑊𝐿𝐿

𝜌𝜌𝑁𝑁𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 + 𝑓𝑓2
𝜌𝜌1 +

𝑓𝑓2
𝑓𝑓1 + 𝑓𝑓2

𝜌𝜌2 = 𝑟𝑟 +
𝑘𝑘𝐼𝐼
𝑓𝑓1𝑓𝑓2

+
𝑓𝑓1

𝑓𝑓1 + 𝑓𝑓2
ϵρ1 +

𝑓𝑓2
𝑓𝑓1 + 𝑓𝑓2

ϵρ2

PR noise & multipath attenuation

Frequencies PR Noise 
Amplification

λ𝑊𝑊𝐿𝐿 (cm)

L1, L2 0.713 86.3
L1, L5 0.714 75.2

• PR noise & multipath attenuated
• CP noise amplified
• Long effective CP wavelength 

aids ambiguity resolution
• PR & CP iono have same sign
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Narrow−Lane Carrier Phase/ Wide−Lane Code
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PR noise amplification

Frequencies PR Noise 
Amplification

λ𝑊𝑊𝐿𝐿 (cm)

L1, L2 5.74 10.7
L1, L5 4.93 10.9

• PR & CP iono have same sign
• PR and CP noise amplified
• Reduced effective CP wavelength

𝛿𝛿𝑁𝑁𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 + 𝑓𝑓2
𝛿𝛿1 +

𝑓𝑓2
𝑓𝑓1 + 𝑓𝑓2

𝛿𝛿2 = 𝑟𝑟 +
𝑘𝑘𝐼𝐼
𝑓𝑓1𝑓𝑓2

+
𝑓𝑓1

𝑓𝑓1 − 𝑓𝑓2
ϵφ1 −

𝑓𝑓2
𝑓𝑓1 − 𝑓𝑓2

ϵφ2 + 𝑁𝑁𝑊𝑊𝐿𝐿λ𝑊𝑊𝐿𝐿

𝜌𝜌𝑊𝑊𝐿𝐿 =
𝑓𝑓1

𝑓𝑓1 − 𝑓𝑓2
𝜌𝜌1 −

𝑓𝑓2
𝑓𝑓1 − 𝑓𝑓2

𝜌𝜌2 = 𝑟𝑟 +
𝑘𝑘𝐼𝐼
𝑓𝑓1𝑓𝑓2

+
𝑓𝑓1

𝑓𝑓1 − 𝑓𝑓2
ϵρ1 −

𝑓𝑓2
𝑓𝑓1 − 𝑓𝑓2

ϵρ2

mortonyt
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Geometry-Free (f1 Iono Estimation)
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𝛿𝛿𝐺𝐺𝐼𝐼 =
𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿1 − 𝛿𝛿2 = 𝐼𝐼1 +

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
ϵφ1 − ϵφ2 + 𝑁𝑁𝐺𝐺𝐼𝐼λ𝐺𝐺𝐼𝐼

𝜌𝜌𝐺𝐺𝐼𝐼 =
𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝜌𝜌2 − 𝜌𝜌1 = 𝐼𝐼1 +

𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
ϵρ2 − ϵρ2

PR noise amplification

Frequencies PR Noise 
Amplification

λ𝐺𝐺𝐼𝐼  (cm)

L1, L2 2.19 0.25
L1, L5 1.78 0.21

• Iono delay measured
• PR and CP noise amplified
• Small effective CP wavelength
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Divergence-Free Carrier Combinations for Single Frequency Code 
PR Measurements

33

Frequencies PR Noise 
Amplification

λ𝐷𝐷𝐼𝐼 

L1, L2 1 <1 mm
L1, L5 1 <1 mm

• PR & CP iono have same sign
• Tiny CP ambiguity wavelength

𝑓𝑓1: 𝜌𝜌 = 𝜌𝜌1, 𝛿𝛿 =
𝑓𝑓12 + 𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿1 −

2𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿2 = 𝑟𝑟 + 𝐼𝐼1 +

𝑓𝑓12 + 𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝜖𝜖𝜑𝜑1 −

2𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝜖𝜖𝜑𝜑2 + 𝑁𝑁𝐷𝐷1λ𝐷𝐷1

𝑓𝑓2: 𝜌𝜌 = 𝜌𝜌2, 𝛿𝛿 =
2𝑓𝑓12

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿1 −

𝑓𝑓12 + 𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝛿𝛿2 = 𝑟𝑟 + 𝐼𝐼2 −

𝑓𝑓12 + 𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝜖𝜖𝜑𝜑2 +

2𝑓𝑓22

𝑓𝑓12 − 𝑓𝑓22
𝜖𝜖𝜑𝜑1 + 𝑁𝑁𝐷𝐷2λ𝐷𝐷2
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Code Carrier Smoothing

• Code PR have large noise+multipath errors (meter-level) but are 
unbiased

• Carrier phase measurements have small noise+multipath errors (cm-
level) but have an integer cycle ambiguity

• Main idea: combine code and carrier measurements to yield a lower-
noise, unbiased PR measurement

• Low pass filter code and high pass filter carrier phase

34
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Carrier Smoothing – Equivalent Formulations

35

Complementary Filter Formulation

Hatch Filter Formulation

For time 𝜕𝜕𝑛𝑛, 𝑛𝑛 = 1, …, the gain is: 𝐾𝐾𝑛𝑛 = �1/𝑛𝑛, 𝑛𝑛 = 1, … ,𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
1/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, 𝑛𝑛 ≥ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚



© 2023 Gary McGraw, All Rights Reserved

Qualitative Error Analysis

36

Complementary filter operation: �̄�𝜌 = 𝐹𝐹(𝜌𝜌 − 𝛿𝛿) + 𝛿𝛿 = 𝐹𝐹𝜌𝜌 + (1 − 𝐹𝐹)𝛿𝛿 

For the steady-state gain, 𝐾𝐾 = 1/𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, and the complementary filter iterative equations for 𝐹𝐹 
can be written as:

�̄�𝜒(𝜕𝜕𝑛𝑛) =  (1 − 𝐾𝐾)�̄�𝜒(𝜕𝜕𝑛𝑛−1) + 𝐾𝐾𝜒𝜒(𝜕𝜕𝑛𝑛) 

This discrete time equation can be written in terms of a Z-transform as:

𝐹𝐹 𝑧𝑧 =
𝐾𝐾

1 − 1 − 𝐾𝐾 𝑧𝑧−1
=

𝐾𝐾𝑧𝑧
𝑧𝑧 − 1 − 𝐾𝐾

This is a low-pass filter => 1-F is high-pass

An error model for the smoothed single-frequency PR is:
�̄�𝜌𝐿𝐿 = 𝑟𝑟 + 𝛿𝛿𝑇𝑇 + 𝛿𝛿𝑅𝑅 + 𝑐𝑐 + 2𝐹𝐹 − 1 𝐼𝐼𝐿𝐿 + 𝐹𝐹 𝛿𝛿𝜌𝜌𝐸𝐸𝐿𝐿 + 𝜀𝜀𝜌𝜌𝐿𝐿 + 1 − 𝐹𝐹 𝛿𝛿𝛿𝛿𝐸𝐸𝐿𝐿 + 𝜀𝜀𝜑𝜑𝐿𝐿 + 𝑁𝑁𝐿𝐿𝜆𝜆𝐿𝐿

Phase errors are 
high-pass filtered

Code PR errors are 
low-pass filtered

LOS range terms 
are unaffected

Iono delay is 
filtered
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Smoothing Filter Steady State Gain Calculation

37

The value for 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 can be determined by relating the CMC filter 𝐹𝐹 to a first-
order, continuous-time, low-pass filter:

𝐹𝐹(𝑠𝑠) = 1
𝑇𝑇0𝑠𝑠+1

, 𝑐𝑐0 = time constant (s) 

Discrete-time equivalent: 𝐹𝐹(𝑧𝑧) = 1−𝑒𝑒−𝛥𝛥𝛥𝛥/𝛥𝛥0 𝑧𝑧
𝑧𝑧−𝑒𝑒−𝛥𝛥𝛥𝛥/𝛥𝛥0

 = 𝐾𝐾𝑧𝑧
𝑧𝑧− 1−𝐾𝐾

𝐾𝐾 = 1
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

= 1 − 𝑒𝑒−Δ𝑇𝑇/𝑇𝑇0 ≈ Δ𝑐𝑐/𝑐𝑐0, Δ𝑐𝑐<<𝑐𝑐0

⇒ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 𝑐𝑐0/Δ𝑐𝑐

For white noise, smoothed standard deviation given by:

σ𝑠𝑠 = σρ
𝐾𝐾

2 − 𝐾𝐾 = σρ
1 − 𝑒𝑒−Δ ⁄𝑇𝑇 𝑇𝑇0

1 + 𝑒𝑒−Δ ⁄𝑇𝑇 𝑇𝑇0
≈ σρ

Δ ⁄𝑐𝑐 𝑐𝑐0
2 − Δ ⁄𝑐𝑐 𝑐𝑐0

=
σρ

2𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 1

mortonyt
Pencil



© 2023 Gary McGraw, All Rights Reserved

Single Frequency Smoothing Example Results

38

• Single frequency code and carrier phase
• Smoothing reduces meter-level noise to 

sub-decimeter level
• Longer smoothing time constant induces 

large bias due to iono divergence
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Dual Frequency Smoothing

• Code-carrier iono divergence limits length of single frequency 
smoothing

• Iono delays code and advances carrier phase

• Certain PR and CP combinations have equal iono delays (same sign)
• Divergence free (single frequency code, dual frequency CP)
• Iono Free
• WL/NL

• Divergence free combinations enable extended carrier smoothing 
time constants

39
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Dual Frequency Smoothing Example Results

40

• Examples use L1/L2 P(Y) code
• No iono divergence effects

• ~3X noise amplification due to iono-free 
combination is evident
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Summary

• Multipath reception affects essentially all GNSS receiver applications
• For many applications it is the dominant error source
• Many techniques are available to mitigate multipath errors: 

• Antenna siting to avoid multipath
• Antenna types that enhance direct signals and attenuate reflected signals, particularly for 

fixed sites
• Adaptive antenna array processing
• Correlation signal processing
• Measurement processing techniques like carrier smoothing
• Navigation processing to de-weight or exclude measurements impacted by multipath
• Post-processing and modelling techniques that provide estimates to correct multipath errors

• Applicability of these techniques to different GNSS receiver types varies greatly, 
with mobile phones being especially constrained

41
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