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Chaos control of a remanufacturing duopoly game with
heterogeneous players and nonlinear inverse demand functions

M-S. Abdelouahab1, M. Azioune1, and R. Lozi2

1(Presenting author underlined) Laboratory of Mathematics and their interactions,
Abdelhafid Boussouf University Center, Mila, 43000, Algeria

2Laboratoire J. A. Dieudonné, CNRS, Université Côte d’Azur, CNRS, Nice, France

In this study, we explore the behavior of a discrete two-dimensional map that represents
the interactions between two companies. The first company is an original equipment
manufacturer (OEM) that exclusively produces and sells original products. The second
company, referred to as the third-party remanufacturer, specializes in reconditioning re-
turned goods to create distinct products.

The outcomes reveal that when we consider consumer willingness to pay and the
OEM’s relative speed of the output adjustment as bifurcation parameters, the system
undergoes flip bifurcation and Neimark-Sacker bifurcation under specific circumstances.
The Lyapunov exponents indicate that the system turns chaotic through each of these
aforementioned bifurcations.

Additionally, we formulate a controller to mitigate the unpredictability into the market
caused by chaotic behavior. This involves making minor adjustments to one of the system
parameters within a short time-frame. Finally, we perform numerical simulations to
visually illustrate and underscore the theoretical findings.

[1] H. Meskine, M-S. Abdelouahab, R. Lozi, Nonlinear dynamic and chaos in a remanufactur-
ing duopoly game with heterogeneous players and nonlinear inverse demand functions, J.
Difference Equ. Appl. (2023). DOI: 10.1080/10236198.2023.2228421.

[2] G. Ferrer, J.M. Swaminathan, Managing new and remanufactured products, Manag. Sci.
52(1), 15–26 (2006).

[3] Y. Peng, Q. Lu, Complex dynamics analysis for a duopoly Stackelberg game model with
bounded rationality, Appl. Math. Comput. 271, 259–268 (2015).

[4] A. Cournot, Recherches sur les Principes Mathématiques de la Théoris des Richesses, Ha-
chette, Paris (1838).

[5] L. Shi, Z. Sheng, F. Xu, Complexity analysis of remanufacturing duopoly game with different
competition strategies and heterogeneous players , Nonlinear Dyn. 82, 1081-1092 (2015).
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Double rotations are the simplest subclass of interval translation mappings. A double

rotation is of finite type if its attractor is an interval and of infinite type if it is a Cantor

set. It is easy to see that the restriction of a double rotation of finite type to its attractor

is simply a rotation. It is known due to Suzuki–Ito–Aihara and Bruin– lark that double

rotations of infinite type are defined by a subset of zero measure in the parameter set.

In [1] we have introduced a new renormalization procedure on double rotations, which

is reminiscent of the classical Rauzy induction. Using this renormalization, we prove that

the set of parameters which induce infinite type double rotations has Hausdor↵ dimension

strictly smaller than 3. Moreover, we construct a natural invariant measure supported on

these parameters and show that, with respect to this measure, almost all double rotations

are uniquely ergodic. In my poster I will outline the proof, that is based on the recent

result by Fougeron for simplicial systems.

I will also discuss some work in progress about the weak mixing properties of double

rotations of infinite type.

[1] M. Artigiani, C. Fougeron, P. Hubert, A. Skripchenko. A note on double rotations of infinite

type. Trans. Moscow Math. Soc., 82 (2021), 157–172.
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Complexity and Chaos Control of a Cournot Duopoly Game

with Relative Profit Maximization and Heterogeneous Expectations

M.Azioune
1, M.S.Abdelouhab

1

Laboratory of Mathematics and Their Interactions (Melilab). E2350100,
University Center of Mila, Mila, Algeria 1

The oligopoly market is dominated by a number of companies that of-
fer homogeneous or di↵erentiated products. The two classic oligopoly mar-
kets are named as Cournotmodel (production quantity competition) and
Bertrand-model (price competition).

The first Cournot and Bertrand games studies marked milestones in the
development of models, focusing on basic assumptions. Authors improved
these models by di↵erentiating approaches to company behavior, examining
homogeneous agents and heterogeneous expectations in duopoly models [1].

In real markets, producers lack complete knowledge of the entire demand
function, represented by cost functions. As a result, firms make local es-
timates of demand. Various economic models, such as oligopoly games, fi-
nancial markets, and macroeconomic models, have been used to represent
bounded rationality [2,3]. Firms update production strategies using local
estimates of marginal profits.

The subject of this paper presents the dynamical analysis of a duopoly
game of the Cournot type with di↵erentiated products and heterogeneous
expectations [4]. As demonstrated, changing the three key parameters k
(players’ speed of adjustment), ↵ (second player’s adaptation likelihood),
and µ (percentage domestic energy adequacy) causes the model to produce
complicated, chaotic, and unpredictable ways.

[1] Agliari A, Gardini L, Puu T. Global bifurcations in duopoly when the
cournot point is destabilized via a subcritical neimark bifurcation. Interna-
tional Game Theory Review. 2006;8:120.

[2]Tramontana F. Heterogeneous duopoly with isoelastic demand func-
tion. Economic Modelling. 2010;27:350357.

[3] Sarafopoulos G, Papadopoulos K. Complexity in a Bertrand duopoly
game with heterogeneous players and di↵erentiated goods. Springer Proceed-

1

ings in Business and Economic. 2019;2:15 26.

[4] Sarafopoulos G, Papadopoulos K. On a cournot Duopoly game with rela-
tive profit maximization. Springer Proceedings in Complexity. 2022;385399.
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Geometric conditions to obtain Anosov geodesic flow for
non-compact manifolds

Alexander Cantoral1, Sergio Romaña2

1Universidade Federal do Rio de Janeiro
2Universidade Federal do Rio de Janeiro

Geodesic flows appear naturally when we have a Riemannian metric on a complete man-
ifold. These flows describe the evolution of vectors tangent along geodesics and their
properties are closely related to the geometry of the manifold. For example, the curvature
of the manifold can affect the behavior of the geodesics and certain geometric properties
of the manifold can be deduced from the behavior of the geodesic flow. In this work,
we consider a complete Riemannian manifold (M, g) without focal points and curvature
bounded below. We prove that when the average of the sectional curvature in tangent
planes along geodesics is negative and uniformly away from zero, then the geodesic flow
is Anosov. This result is a version of Eberlein’s result (see [2]) for non-compact manifolds
and gives us a geometric characterization of the Anosov geodesic flows in non-compact
manifolds without focal points. We use this result to construct a non-compact manifold
of non-positive curvature with geodesic flow of Anosov type.

[1] A. Cantoral, S. Romaña, Geometric conditions to obtain Anosov geodesic flow for non-
compact manifolds, preprint arXiv:2304.10606 (2023).

[2] P. Eberlein, When is a geodesic flow of Anosov type? I, Journal of Differential Geometry,
8, 437-463 (1973).
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Fix an irrational number α and a smooth, positive function p on the circle. If
a particle is placed at a point x ∈ R/Z, then in the next step it jumps to x + α
with probability p(x) and to x−α with probability 1− p(x). Sinai proved that if p
is asymmetric (in certain sense) or p is symmetric and α is Diophantine then this
random walk is mixing. Here we show it is mixing for every irrational frequency
and generic symmetric absolutely continuous p. This can be rephrased as mixing
of environment viewed from a particle. This partially answers a question posed by
Dolgopyat, Fayad and Saprykina in 2019.

1
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Integrability and Chaos in Hamiltonian
Systems
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DYNAMICS ANALYSIS, ADAPTIVE CONTROL, SYNCHRONIZATION AND 

ANTI-SYNCHRONIZATION OF A NOVEL MODIFIED CHAOTIC FINANCIAL 

SYSTEM 

 

 

In recent years, researchers from several fields including economics have developed models to 

better understand nonlinear phenomena such as chaos. To this direction, a novel chaotic 

financial system is presented in this work. The proposed novel financial system is obtained by 

modifying a chaotic financial system recently introduced in the literature. The nonlinear 

dynamics analysis of the proposed system has revealed some interesting phenomena such as 

chaos and period-doubling by using tools such as phase diagrams, time series, largest Lyapunov 

exponent, parameters space and bifurcation diagrams. In addition, using bifurcation diagrams, 

the influence of varying certain parameters of the system on its dynamics has been also studied 

in detail. Then, to perform the control, complete synchronization and anti-synchronization of 

the novel chaotic financial system when its constant parameter values are unknown, adaptive 

control laws were derived using Lyapunov’s stability theory. In the synchronization and anti-

synchronization cases, we propose adaptive control laws to force the chaotic regime (period of 

recession for example) to follow (or not follow) periodic behavior, i.e., without chaos. Finally, 

to show the efficiency of theoretical results, numerical simulations were carried out [1].   

 

 

[1] Y.P. Dousseh, A.V. Monwanou, A.A. Koukpémèdji, C.H. Miwadinou, J.B. Chabi Orou, Int. J. 

Dynam. Control 11, 862-876 (2023). 
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Rigidity for multicritical circle maps

Gabriela Estevez1

1Universidade Federal Fluminense

The phenomenon of rigidity occurs when a weak equivalence between dynamical sys-
tems can be transformed into a stronger equivalence. In dimension one, a tool known as
renormalization is often used to establish results about rigidity: topological conjugacies
between certain dynamical systems in the interval or in the circle can be strengthened to
smooth conjugacy.
We are interested in the rigidity phenomena for multicritical circle maps, i.e. homeo-
morphisms of the circle without periodic points and with more than one non-flat critical
point. In this poster we will show that, under certains conditions on the renormalizations,
two topologically conjugate multicritical circle maps are in fact C1 conjugate.
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 Sequence Spaces and Dynamical Systems 

Jhavi Lal Ghimire  

Central Department of Mathematics, Tribhuvan University 
Nepal 

 

Sequence space is a special case of function space when the domain is restricted to the set of 

natural numbers. On the other hand, the dynamical system deals with the study of how the 

variables change over time according to the mathematical rules. Sequence spaces can be viewed 

as a special case of discrete dynamical systems, where the evolution of a sequence of numbers 

over discrete time steps is studied. In this presentation, the relationship and different aspects of 

sequence spaces and dynamical systems will be exhibited along with their applications, 

especially in finance. 

 

 

[1]M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces, Marcel Dekker Inc, New York, (1991) 

 [2]I.J. Maddox: Infinite Matrices of Operators, Lecture Notes in Mathematics, 786(1980) 

[3] M. W. Hirsch, S. Smale and R. L. Devaney: Differential Equations, Dynamical Systems,    

and an Introduction to Chaos, 3rd edition (2013) 

[4] C. Tian and G. Chen: Chaos of a sequence of maps in a 

metric space. Chaos, Solitons & Fractals, 28(4):1067-1075 (2006). 
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The Wade Formula and the oil price fluctua-
tion: An Optimal Control Theory approach

Pierre Mendy, Babacar M. Ndiaye, Diaraf Seck, Idrissa Ly

Abstract. By considering the Wade Formula, we propose a model to study
the evolution of the oil price per barrel. Our model shows that the policy of
diversification of the energy is to be supported. This model is proposed to see
how it is possible to control parameters so that the oil price should decrease.

Keywords. Wade Formula, optimal control, options, volatility, oil prices.

1. Introduction

The rapid increase in oil prices between 2002 and 2008 and their sharp decline in
the second half of 2008 and 2014, (see [1], [2]), and the consequence of covid19 and
Ukraine conflic on oil price, ([3], [4], [5]), has renewed the interest in the causes of oil
price fluctuation [figure 1, curve(d)], and the effects of energy prices on the macroe-
conomy.
A large of studies prove that the oil fluctuations have a considerable consequence in
economic activity ([6],[11],[7], [8],[9], [10], [13], [15], [14]).
While the oil price shock is asymmetric between oil exporters countries and oil im-
porters countries ([12], [16], [17]), this asymmetric oil shock had inspired the Wade
Formula.
Between 2005 and 2006, the full professor in Economics Abdoulaye Wade, former
President of the Republic of Senegal, proposed a formula related to the evolution of
the oil price per barrel. This formula translates the super-profits generated by the oil
companies (selling in the world) and countries which produce oil.
At first, from the Wade Formula, we describ in section 2, the model. We resolve and
show a necessary optimal condition which could give some hints for the orientations of
the energy policies in section 3. We propose some simulations and interpretations of
the obtained results, section 4. As conclusion in section 5, we present some variations
of the obtained results and politics implications.

This work was completed with the support of the NLAGA project.
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2 Mendy et al.

2. Model description

The formula should be stated as follows: Let be the time t ∈ [T0, T ], where T0 is the
initial state. Since it is possible to find the structure of the oil price/barrel without
financial speculation, President Wade studied and proposed a reasonable price (win-
win price) P0 = 29$. For more details, see [18].
The Wade Formula for super profit is defined by the equation (2.1)

(pt − 29)qt = St (2.1)

where pt represents the price which is applied in the world for buying a barrel of oil,
qt is the quantity of oil bought by the countries, and St is the super profit for the oil
companies or the super coast supported by the countries which don’t produce oil.
It is important to remark that this formula is a conservation law.

3. Model resolution: Optimal control approach

In this section, we give a necessary optimal condition to minimize the super coasts,
denoted1, S(t).
A reasonable model to describe the evolution of the reserves of oil in the world can
be written as follows:

dR

dt
= −v(t) + α(t)R(t), t ≥ 0 (3.1)

where α(t) ∈ [0, 1[ is the rate of the increase of oil in the world, R(t) are the reserves
and v(t) is the demand in the world at time t.
In the following, we are going to take α(t) = α a real constant. But the theorem below
is satisfied even if α depends on the time t.

Theorem 3.1. Let a(t) be the demand of the country which doesn’t produce oil, then
a necessary optimal condition to minimize the super coasts for a country which doesn’t
product oil is:

a∗(t) =
c0 exp(−αt)
2(p(t)− 29)2

.

Proof. Let T be a fixed time.

min

∫ T

0

S(t)mdt, m ∈ N (3.2)

s.c

{
dR
dt = −v(t) + αR(t) on [0, T ]
R(0) = Q

(3.3)

where, Q is the initial stock of the reserves,

S(t) = (p(t)− 29)a(t),

1For more details in optimal control theory see [19], [20], [21], [22]
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v = a+ w,

where a is the demand of country which doesn’t produce oil.
Let’s take the Hamiltonian defined by:

H(R(t), a(t), λ(t), t) = S(t)m + λ(t)(−v(t) + αR(t)) (3.4)

and λ(t) being the Pontryagin multiplier.
We have the necessary optimal conditions:

∂H

∂R
= αλ(t) = −dλ

dt
∂H

∂a
= 0

The condition ∂H
∂a = 0 is equivalent to mS(t)m−1(p(t)− 29)− λ = 0.

This implies that:

S(t) =

(
λ

m(p(t)− 29)

) 1
m−1

Since:

−dλ
dt

= αλ(t),

then λ(t) = c0 exp(−αt) where c0 is a real constant.
Finally:

S(t) =

(
c0 exp(−αt)
m(p(t)− 29)

) 1
m−1

If m = 2, we obtain:

S(t) =
c0 exp(−αt)
2(p(t)− 29)

and by the following equality:

S(t) = (p(t)− 29)a(t) we have:

a∗(t) =
c0 exp(−αt)
2(p(t)− 29)2

�

�

3.1. Initial condition variation

We assume that R(t) is Lipschitzian, so there exists a flow defined by:{
X → X space of phases

x0 → φt(x0) = x(t)

with X = Rn, for n= 1, {
x(t)→ R(t)

x0 → Q
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We consider a period of horizon h on the time interval [t0, t0 + h] and Q ∈ [Q0, Q
∗]

with Q0 = Q(t0) and Q∗ = Q(tt0+h).
We define:

Qk = Q0 +
k

t0 + h
(Q∗ −Q0)

The initial conditions vary with the variants of k ∈ [t0, t0 + h].

3.2. Terminal condition variation

We still consider equations (3.3) and (3.4) and rewrite them by varying the terminal
conditions. Let s ∈ [0, T ]. Let t = T − s, Y (s) = R(T − s). The optimization problem
becomes:

min

∫ T

0

[S(T − s)]mds

sc

{
dY (s)
ds = −v(T − s) + αY (s)

Y (0) = RT

where RT is a real value sequence on [Y0, ..., Y
∗] with Y0 = Y (t0) and Y ∗ = Y (t0 +h).

RT (k) = Y0 +
k

t0 + h
(Y ∗ − Y0)

S(T − s) = (P (T − s)− 29) a(T − s)
In the next section we are going to use the curve below. This represents the plot of
the result of the necessary optimal condition. The horizontal axis being the values of
the prices while the vertical axis is the values of the demand a∗.

4. Numerical resolution and results interpretations

The simulation parameters are as follows. In the graphs of figure 1, we have taken as
constant c the average of the percentage rate increase of the world fossil reserves. In
figure 2, we consider the evolution of the rate of the resources over the study period
in the numerical resolution of our optimal control problem The curves in Figures 1-2
are the results of the optimal control resolution. The result could be interpreted as
follows:

1. Between 1980 and 2021, [1d], there were two periods where the average price of
oil was above 29 dollars, 1980 to 1983 and 2004 to 2021, and a period where it
was below 29 dollars. In the first period (1980 to 1983), the average price of a
barrel of oil fluctuated between 30 dollars and 37 dollars. It peaked at 39 dollars
in 1981 due to the Reagan cut taxes. Two other causes of the high fluctuation
of the average barrel price are the Iran embargo in 1980 and the end of the
recession in 1982.
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2. During the second period (2004-2021), the average price of a barrel of oil fluc-
tuated between about 35 dollars in 2004 and 103 dollars in 2011. It reached a
peak of 127 dollars in 2008 during the financial crisis. Other factors that explain
the high fluctuation during this period are Hurricane Katrina in 2005, Bernanke
becomes Fred Chair in 2006, the banking crisis in 2007, the great recession in
2009, Iran threatening the Straits of Hormuz, the increase of the 15 % dollars ,
the US shale oil increased 2015, the decrease of the dollars in 2016, the OPEC
cut oil supply to keep prices stable and demand reduction of the pandemic since
2020.

3. From 1984 to 2003, the average price of a barrel oscillated between 14 dollars
in 1986 and 27 dollars in 2003. During the Gulf War, the peak was reached
with a barrel at almost 33 dollars . Other events during this period allowed this
fluctuation are the prices doubled, the recession and the war in Afghanistan in
2002. The barrel reached the lowest price of 10 dollars in 1999.

4. The curves [1c] and [1d] have the shape of the sigmoid function. The world’s
demand for fossil energy cannot grow in an unlimited way. With climate change
and the strong fluctuations of the oil price, many countries are diversifying their
energy sources toward renewable energies. Fossil fuel reserves are also limited
despite the discovery of new deposits.

5. The evolution of the Super profit (curve c fig1) is consecutive to the differential
between the price 29 and the average price oil with a phase of strong fall between
1984 and 2003

6. The curves [2a] and [2b] have the shape of the sigmoid function. The world’s
demand for fossil energy cannot grow in an unlimited way. With climate change
and the strong fluctuations of the oil price, many countries are diversifying their
energy sources toward renewable energies. Fossil fuel reserves [2c] are also limited
despite the discovery of new deposits.

7. The countries which don’t product oil have to diversify their energy sources as
soon as possible. It would be a good orientation even for the countries which
product oil. Because the resources will disappear at a time T ∗.

8. The strategies to develop the research in the other type of energy and their
production have to be encouraged. This assertion is justified in the following
sense: when we plot the necessary optimal condition (see Figure1 a)2, it is easy
to see that, if the price of the barrel goes far from 29 dollars, a∗ decreases. And
then the super coast S(t) is minimized. But this quantity will not suffice for the
consumption in the country because of growth of the needs in energy.

2The same interpretation can be done for the real data [Figure 1b)]
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(a) Simulated data (c0 =

%ᾱ = 0.2, m=2)

(b) Evolution of world demand

oil

(c) S(t) Real data from from

International Energy Agency
(IEA)

(d) Oil price data from EIA

Figure 1. Wade Curve

5. Concluding and Remarks

The Wade Formula is also satisfied if one day in the future the 29 dollars are not
reasonable like a win win price. It suffices to replace 29 by P0(t) where P0(t) could

satisfy the following system of equation and without financial speculation dP0(t)
dt =

f(i(t)) − µP0(t) and P0(t) = i(t) + pr. The index i is the investment per barrel,
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(a) oil wold demande optimal

control result

(b) Objective optimal control

function

(c) Reserves real data from IEA

Notes: The horizontal lines in Fig. 2 represent the maximum price of a barrel of oil
during the different crises (Subprime around $146, covid19 before the Ukrainian

war, $85 and Russo-Ukrainian war around $124).The vertical lines are the beginning
of the different cries

µ ∈ [0, 1[ is the depreciation rate, pr represents the reasonable profit and f is a
function to be determined.
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Abstract

The aim of the research is to to introduce concepts of inverse problems, direct
problems and moment problems in boundary value problems .

1 Introduction

Let ⌦ be a bounded or unbounded region of R and ⌧ or @⌦ be boundary
of ⌦.If u(x), x = (x1, x2, · · · xn) 2 Rn be function on Rn, L and R be
differential equation in u, and f (x), g(x) be functions of x, then a linear
boundary value problem for u is given by:

Lu(x) = f (x) in ⌦ (1)
LRu(x) = g(x) in ⌧ (2)

If n � 2,

Lu = ↵jkujk + bjuj + cu (3)

where,

1. @
@x, is partial derivative.

2. uj = @u
@xj

,ujk = @u
@xj

@xk.

3. @
@n is outer normal derivative on the boundary (tangent line to the
boundary).

2 Well posed and ill posed problems

Jacques Salomon Hadamard who, said that a Problems possessing the fol-
lowing properties are known to be well-posed problems else the problem
is known to be ill posed or ill condition.

1. Existence, that is, the problem always has a solution.
2. Uniqueness, namely the problem cannot have more than one solution.
3. Stability, that is, small change in the cause (input) will make only small

in the effect (output).

Figure 1: J. Hadamard

3 Direct problem

In direct problems we seek for an effect (output) from the knowledge
causes (input) and a model that transforms the input.

Figure 2: Causes problem

Let X and Y be a Banach Space or a Hilbert space and an operator T .
Given x 2 X and T : X �! Y , direct problem consists of finding Tx

such that,

Tx = y (4)

Such that y 2 Y .

4 Inverse problems

In inverse problems, the aim is to seek unknown causes from the obser-
vation of their effects.

Figure 3: Causes identification problem

Finding model, while causes (input) and effect(output) are known is also
an inverse problems.

Figure 4: model identification problem

Let X and Y be a Banach Space or a Hilbert space and an operator T .
Given an observed output y, finding an input x that produces it is known

to be inverse problem, that is finding x 2 X such that,

y = Tx (5)

and the fixed point of the operator T that is,

Tu = u (6)

Given an output z, finding an input x that produces an output y that is
very close to z such that,

min
x2X

| Tx� z |! 0 (7)

”We call two problems inverses of one another if the formulation of each
involves all or part of the solution of the other.”J.B keller.

Sequel to this definition, reversible chemical reaction is an inverse prob-
lem.

A + B ⌧ C +D (8)

Balancing chemical reaction is also inverse problems as we shall see in
the next section.

4.1 Example of ill-posed problem

Example 4.1. In balancing chemical reaction:

NaOH +H2SO4 �! Na2SO4 +H2O (9)

To balance the equation we insert a, b, c and d to be unknown coefficient
of the equation (4.1),

xNaOH + yH2SO4 �! zNa2SO4 + wH2O (10)

For sodium, x = 2z for hydrogen x + 2y = 2w, for sulphur, y = z,for
oxygen, x + 4y = 4z + w

x� 2z = 0

x + 2y � 2w = 0

y � z = 0

x + 4y � 4z � w = 0

(11)

In matrix form, w have:
2

664

1 0 �2 0
1 4 �4 �1
1 2 0 �2
0 1 �1 0

3

775

2

664

x
y
z
w

3

775 =

2

664

0
0
0
0

3

775 (12)

We then find the minimum positive solution of (12), In this case we have:

2

664

x
y
z
w

3

775 =

2

664

x = w
y = 1

2w
z = 1

2w
w

3

775 (13)

If we choose w = n > 0, thus, the balance equation is of (4.1) is:

nNaOH +
1

2
nH2SO4 �!

1

2
nNaSO4 + nH2O (14)

5 Moment problems

Moment problem is to find input(causes) and output (effect) at particular
or specific situation.

6 Sturm-Liovile equation

Sturm-Liovile equation represent wide range a wide range of physical
phenomena, For detail see (1).The equation is given by:

p(t)u.. + ṗ(t)u̇ + (�(w(t)) + q(t))u = v 2 ⌦

�1u(a) + �1u̇(a) = 0

�2u(a) + �2u̇(a) = 0 a  t  b.
(15)

6.1 Inverse problems in Sturm-Liovile equation

The inverse problem is to find either of the following:

1. Find part of ⌦ by observing the solutions.

2. Find the coefficient p(t) by observing the solutions.

3. Finding � or initial condition by observing the solutions.

7 Conclusion

We have seen definitions of inverse problems,direct problems and mo-
ment problem and example of inverse problem in Sturm-Liovile equation.

8 References

1. Curtain, R.F.and A.J Pritchard Functional Analysis in Modern Applied
Mathematics,Academic Press,London,New York,San Francisco,1977.

2. Isyaku Idris,Inverse Problems in Delay Differentials, AUA Academic
Workshop on Delay Differential Equations and Application to Im-
munology and Infectious Diseases (DDEs - AIIDs). United Arab Emi-
rate University. 2023.

3. Isyaku Idris, INVERSE PROBLEMS IN INTEGRAL EQUATIONS.
AUA Academic Workshop on Delay Differential Equations and Appli-
cation to Immunology and Infectious Diseases (DDEs - AIIDs). United
Arab Emirate University. 2023.

4. Abul Hasan Siddiqi,Mohamed Al-Lawati,Messaoud Boulbrachene,
Modern Engineering Mathematics,CRC Press Taylor & Francis Group.

5. Isyaku Idris, Eigenvalues Inverse Problems in Three Dimensional

Rhotrices,American International Journal of Research in Formal, Ap-
plied & Natural Sciences.2018.

6. Isyaku Idris Isyaku, A Class of Inverse Problems in Mathematical

Imaging,Workshop in Applied Mathematics and Statistics,Organized
by School of Basic Sciences and Research, Sharda University India,
15 October, 2015.

7. A.H Siddiqi,Khalil Ahmad, P.Manchanda.Introduction to Functional
Analysis with Applications.Anamaya

P14



Piecewise Contractions
P15



Constructing New Di↵eomorphisms with
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Non-Trivial Hausdor↵ Dimensions
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Abstract

We discuss the combinatorial construction in Ergodic Theory. We

briefly discuss a very special technique, “Approximation by conjugation,”

that allows the construction of exciting maps on the manifolds with pre-

scribed interesting topological and measure-theoretic properties. We present

an example of an Invariant measure for the smooth category, which is a

generic but non-ergodic measure satisfying other topological, mixing and

ergodic properties on the 2-Torus. Also, present an explicit collection

of the set containing the generic points of the system with interesting

values of its Hausdor↵ dimension. As such, this talk should interest a

broad readership, including those interested in Smooth Ergodic Theory,

the Existence of Invariant measure, the Anosov Katok Method, Generic

measures of the smooth category and the Hausdor↵ Dimension of the set

containing only generic points.

Keywords: Ergodic theory, Invariant measure, Generic and non-generic points,

Hausdor↵ dimension, Anosov Katok method
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Exponential mixing for reparametrizations of the geodesic flow
in negative curvature

Matheus Manso1 and Khadim War1

1Instituto de Matemática Pura e Aplicada (IMPA)

We prove that smooth reparametrizations of the geodesic flow on a compact manifold
with pinched negative curvature are almost-contact Anosov flows, i.e. not only they are
not jointly integrable but they also satisfy Uniform non-integrability. As a consequence,
we show that this implies exponential decay of correlations with respect to the SRB
measure for every smooth reparametrization, giving a new class of Anosov flows that
mixes exponentially with the SRB measure.
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Searching for computability in chaotic systems
Siniša Miličić1

1Faculty of Informatics, Juraj Dobrila University of Pula

Chaotic Hamiltonian systems have garnered significant attention for their rich, unpre-
dictable behavior. While chaos inherently lacks order and predictability, we delve into
the intriguing possibility that certain subsets and orbits of these systems could be Turing-
complete.

Our poster presents preliminary findings, showcasing specific examples that exhibit
promising behavior and the methodologies we employ to identify Turing-completeness.
While Turing-completeness can simulate chaotics systems, having chaotic systems (or
subests-of) Turing-complete makes them open to results on inherent undecidability of
certain questions, while also giving a geometry to questions of computability.
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Chaos in a Financial System with Fractional Order and Its Control via 
Sliding Mode
P. Y. Dousseh1 ,  C. H. Miwadinou1,2,3 , A. V. Monwanou1

1 Laboratoire de Mécaniques des fluides, de la Dynamique Non-linéaire et de la Modélisation
des Systèmes Biologiques (LMFDNMSB), Institut de Mathématiques et de Sciences Physiques
(IMSP), Porto-Novo, Benin
2 Département de Physique, ENS-Natitingou, Université des Sciences, Technologies, 
Ingénierie et Mathématiques (UNSTIM), Abomey, Benin

In this paper, the dynamical behaviors and chaos control of a fractional-order financial system
are discussed. The lowest fractional order found from which the system generates chaos is
2.49 for the commensurate order case and 2.13 for the incommensurate order case. Also,
period-doubling  route  to  chaos was found in  this  system.  The results  of  this  study were
validated by the existence of a  positive Lyapunov exponent.  Besides,  in order to  control
chaos  in  this  fractional-order  financial  system  with  uncertain  dynamics,  a  sliding  mode
controller  is  derived.  The  proposed  controller  stabilizes  the  commensurate  and
incommensurate fractional-order systems. Numerical simulations are carried out to verify the
analytical results.

[1] P. Y. Dousseh, C. Ainamon, C. H. Miwadinou , A. V. Monwanou,  J. B. Chabi Orou, Complexity 
2021, 4636658 (2021).
[2] P. Y. Dousseh, A. V. Monwanou, A. A. Koukpémèdji, C. H. Miwadinou ,  J. B. Chabi Orou, I. J. 
Dyn. Control 11,  862 (2023).
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Dynamics analysis, adaptive control, synchronization and anti-
synchronization of a novel modified chaotic financial system

Vincent A. MONWANOU 1 

1(Presenting author underlined) Institut de Mathématiques et de Sciences Physiques,
Dangbo, Bénin

Since  many  systems  exhibit  chaotic  behavior  such  as  Lü  system,  Chen  system,  Rössler
system, Liu system; many others have been proposed and extensively studied in the literature.
Chaotic  systems have found applications  in  different  scientific disciplines,  namely  secure
communications,  finance [1–3],  biology,  physics,  medicine,  chemistry  to  name a few.  In
recent years, researchers from several fields including economics have developed models to
better  understand nonlinear  phenomena such as  chaos.  To this  direction,  a  novel  chaotic
financial system is presented in this paper. The nonlinear dynamics analysis of the proposed
system has revealed some interesting phenomena such as chaos and period-doubling by using
tools such as phase diagrams, time histories, largest Lyapunov exponent, parameters space
and bifurcation diagrams. In addition, using bifurcation diagrams, the influence of varying
certain parameters of the system on its dynamics has been also studied in detail.  Then, to
perform the control, complete synchronization and anti-synchronization of the novel chaotic
financial system when its constant parameter values are unknown, adaptive control laws were
derived  using  Lyapunov’s  stability  theory.  Finally,  to  show  the  efficiency  of  theoretical
results, numerical simulations were carried out. 

[1]  Liao Y, Zhou Y, Xu F, Shu XB (2020). Complexity.
[2]  Ma J. H, Chen YS (2001). Appl Math Mech 22(11).
[3]  Ma J. H, Chen YS (2001)  Appl Math Mech 22(12).
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Historical behavior and Takens’ problem for Lotka-Volterra
stochastic operators

Farrukh Mukhamedov1

1United Arab Emirates University, Al Ain, Abu Dhabi, UAR

It is known that there is a problem related to the existence of persistent classes of
smooth dynamical systems such that the set of initial states which give rise to orbits with
historic behavior (i.e. the time averages of the topological dynamical system diverges)
has a positive Lebesgue measure? The first example of historic behavior was given by
Ruelle, where it is shown that the logistic family contains elements for which almost all
orbits have historic behavior. In this talks we are going to discuss the mentioned problem
within stochastic Lotka-Volterra operators defined on a finite-dimensional simplex. Note
that stochastic Lotka-Volterra operators are generalizations of Volterra operators which
appear to model the time evolution of conflicting species in biology.
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Local limit theorems, geodesic flows and regular covers by
hyperbolic groups

Manuel Stadlbauer

Universidade Federal do Rio de Janeiro, Brazil

In the late 80ies, Ancona discovered that there is close relation between the geometry
of a hyperbolic group and the probabilistic behaviour of a simple random walk on this
group. That is, he showed that the visual boundary of the group coincides with the
Martin boundary, and that this link is established through the set of minimal harmonic
functions. By a refinement of Ancona’s method, Gouezel and Lalley in 2012 were able to
deduce a local limit theorem for symmetric and simple random walks.

These results were the motivation to study dynamical systems with strong mixing
properties and cocycles with values in a countable, word hyperbolic group. In particular,
if the dynamical system in the base is a subshift of finite type, the reference measure is an
equilibrium state of a Hölder potential and the cocycle is generated by a locally constant
map, then it is possible to extend the above results to this setting through a kind of
geometric operator theorem, which also not was known before in the context of random
walks.

From a probabilistic point of view, this means that the results for symmetric and simple
random walks also hold for a class of random walks with non-independent increments.
On the other hand, the generalisation also has the following application to hyperbolic
geometry: LetM = H2/G be a convex-cocompact, hyperbolic surface andG its associated
Fuchsian group. Then the Poincaré series is defined by

PG(s) =
∑
g∈G

exp(−sd(o, g(o))),

where o refers to some point in the hyperbolic plane and d to the hyperbolic metric. It is
known that PG(s) ≍ 1/(s− δG), where δG refers to the critical exponent of G. However,
if N is a normal subgroup of G, that is, H2/N is a regular (or Galois) cover of H2/G,
then the situation is different.

If G/N is word hyperbolic, then G/N autoamtically is non-amenable, which implies
that PN(δN) < ∞ (Zimmer 1978) and δG > δN (Stadlbauer 2013). Moreover, the above
results for cocycles with values in G/N translate to the following: the visual boundary of
the group coincides with the ergodic conformal measures and P ′

N(s) ≍ (s−δN)
−1/2. Here,

it is worth noting that these asymptotics are a consequence of a local limit theorem for
the cocycle dynamics.

[1] S. Bispo, M. Stadlbauer: The Martin boundary of an extension by a hyperbolic group. Israel
J. Math. (2023). doi.org/10.1007/s11856-023-2468-x
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Localization of polynomial long-range hopping lattice operator
with uniform electric fields

Yingte Sun1, Chen Wang1

1 School of Mathematical Sciences, Yangzhou University, yangzhou, P.R.China

Motivation:
There are numerous simulations show that dynamic localization (DL) holds true as

soon as electric fields are included. Some rigorous proof of DL for Schrödinger operator
can be seen in [1, 2]. We are interested in whether a similar result holds for nonlocal
operators.

The model:
We consider the polynomial long-range hopping lattice operator with uniform electric

fields in one dimension
HV : `2(Z)→ `2(Z), (1)

which is

(HVu)(n) = (Tau)(n) + nu(n) + Vnu(n), u := {u(n)}n∈Z ∈ `2(Z). (2)

The long-range hopping Ta satisfies

(Tau)(n) =
∑
m∈Z

an−mu(m) (3)

and
a0 = 0, am = ā−m, |a|r =

∑
n∈Z
|an||n|r <∞. (4)

The method:
Via the Fourier transformation and the KAM-like iteration, we can construct a unitary

operator U, such that
UHVU∗ = D̂, (5)

where D̂ is a diagonal operator. Besides, we know that Um
n = 〈δn,Uδm〉 satisfies

|Um
n | ≤ Ls〈n−m〉−s. (6)

The power-law localization:
Fix r > 1, Let 1

2
< s < r − 1

2
. There exists ε0 := ε0(s, r, |α|r) > 0 such that the

following hold true. If |V |∞ < ε0, the linear operatorHV has discrete pure point spectrum.
Moreover, there exists a complete system of orthogonal eigenfunctions {ψn}n∈Z obeying

|ψn(m)| ≤ Ls〈n−m〉−s.

The dynamic localizaiton:
Fix r > 1. Let 0 ≤ q < s− 1

2
< r − 1. There exists ε0 := ε0(s, r, |α|r, q) > 0 such that

the following hold true. If |V |∞ ≤ ε0, for any ϕ ∈ `2q(Z), we have

sup
t∈R
‖e−iHVϕ‖q <∞.

[1] H.N, Nazareno. C.A.A, da Silva. P.E, de Brito. Superlattices Microstruct. 18, 297-307 (1995).
[2] C.R.de Oliveira. M, Pigossi. Math. Z. 291, 1525-1541 (2019).
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Statistical instability and non-statistical dynamics

Amin Talebi

Institute for research in fundamental sciences (IPM), Tehran, Iran

Non-statistical dynamics are those for which a set of points with positive measure (w.r.t.
a reference probability measure which is in most examples the Lebesgue on a manifold)
do not have a convergent sequence of empirical measures. In this paper, we show that
behind the existence of non-statistical dynamics, there is some other dynamical property:
statistical instability. To this aim, we present a general formalization of the notions
of statistical stability and instability and introduce sufficient conditions on a subset of
dynamical systems to contain non-statistical maps in terms of statistical instability. We
follow this idea and introduce a new class of non-statistical maps in the space of Anasov-
Katok diffeomorphisms of the annulus. This presentation is mainly based on the paper
[1].

[1] Amin Talebi. Statistical instability and non-statistical dynamics, arxiv, 2012.14462 (2023).
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