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The Poisson representation formula

Theorem
Given an integrable function f : S1 → R,

the function u : D→ R

u(reiθ) =
1

2π

∫ π

−π
Pr(θ − t)f(eit) dt

is harmonic on D, i.e. ∆u = 0. Here,

Pr(θ) :=
1− r2

1 + r2 − 2r cos θ

is the Poisson kernel.
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The Poisson representation formula - III

Recall PSL(2,R) = Isom+(H).

Given a = reiθ ∈ D, consider

ga(z) :=
z− a
1− az

so that ga(a) = 0, hence

g′a(z) :=
1− |a|2

(1− az)2

and setting z = eit we obtain

dgaλ
dλ

(t) =
∣∣∣g′a(eit)∣∣∣ =

1− r2

|1− rei(t−θ)|2
= Pr(θ − t)

RN derivative of boundary action = Poisson kernel
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for all g ∈ G.

Let B be a space on which G acts (measurably). A measure ν
on B is µ-stationary if

ν =
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G

gν dµ(g).
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Let µ be a prob. measure on G.

Consider the random walk

wn := g1g2 . . . gn

where (gi) are i.i.d. with distribution µ.

We denote Ω := (wn) the space of sample paths, and
T((wn)) := (wn+1) is the shift on Ω.

Definition
A space (B, ν) is a µ-boundary if there exists a measurable map

bnd : Ω→ B

such that bnd = bnd ◦ T.
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Boundary convergence
Suppose that G < Isom(X,d) a metric space, and that X has a
“bordification” X = X ∪ ∂X.

Let o ∈ X a base point.

o
w1o w2o

ξ

In most situations,
lim
n→∞

wno ∈ ∂X

exists a.s.
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Then we define the hitting measure

ν(A) := P( lim
n→∞

wno ∈ A)

which is µ-stationary.
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ξ

Moreover, (∂X, ν) is a µ-boundary, given by the map
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General Poisson representation - II (Furstenberg)

Let G be a (lcsc) group, µ a probability measure on G, let
(B, ν) be a µ-boundary.

The Poisson transform Φ : L∞(B, ν)→ H∞(G, µ) is

Φf(g) :=

∫
B

f dgν

Definition
A µ-boundary (B, ν) is the Poisson boundary if Φ is an
isomorphism

L∞(B, ν)→ H∞(G, µ)

Corollary
Poisson boundary is trivial (= 1 point) ⇔ bounded harmonic
functions are constant

Examples. Abelian groups; nilpotent groups
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Identification of the Poisson boundary

Let G < Isom(X,d) be a group, µ a measure on G, ν the hitting
measure on ∂X.

Question. Is (∂X, ν) the Poisson boundary for (G, µ)?

(Some) History.

I Furstenberg ’63: semisimple Lie groups
I Kaimanovich ’94: hyperbolic groups
I Karlsson-Margulis ’99: isometries of CAT(0) spaces
I Kaimanovich-Masur ’99: mapping class group
I Bader-Shalom ’06: isometries of affine buildings
I Gautero-Mathèus ’12: relatively hyperbolic groups
I Horbez ’16 : Out(Fn)
I Maher-T. ’18: Cremona group
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I Gautero-Mathèus ’12: relatively hyperbolic groups
I Horbez ’16 : Out(Fn)
I Maher-T. ’18: Cremona group



Identification of the Poisson boundary

Let G < Isom(X,d) be a group, µ a measure on G, ν the hitting
measure on ∂X.

Question. Is (∂X, ν) the Poisson boundary for (G, µ)?

(Some) History.

I Furstenberg ’63: semisimple Lie groups
I Kaimanovich ’94: hyperbolic groups
I Karlsson-Margulis ’99: isometries of CAT(0) spaces

I Kaimanovich-Masur ’99: mapping class group
I Bader-Shalom ’06: isometries of affine buildings
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Hyperbolic spaces
A metric space (X, d) is hyperbolic if there exists δ > 0 s.t.

[x, z] ⊆ Nδ([x, y]) ∪Nδ([y, z]) for any x, y, z ∈ X

A group is hyperbolic if a Cayley graph of G is. E.g.:
I free groups
I (non-elementary) Fuchsian groups
I fundamental groups of negatively curved manifolds
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The Gromov boundary
Let X be a hyperbolic, proper, metric space.

Fix a base point x0 ∈ X.
Two geodesic rays γ1, γ2 based at x0 are equivalent if

sup
t­0

d(γ1(t), γ2(t)) <∞.

Definition
We define the Gromov boundary of X as

∂X := {γ geodesic rays based at x0}/ ∼

Example
Examples of Gromov boundaries.

I X = R and ∂X = {−∞,+∞}.
I X = R× {−1,+1} and ∂X = {−∞,+∞}.
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Entropy and moment conditions
Let µ be a measure on a countable group G.

The (Avez) entropy is

H(µ) := −
∑
g
µ(g) logµ(g)

The asymptotic (Avez) entropy is

h(µ) := lim
n→∞

H(µn)

n

where µn(g) := P(wn = g).
We say µ has finite entropy if

H(µ) < +∞

We say µ has finite logarithmic moment if∑
g∈G

log+ |g| µ(g) < +∞.
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Poisson boundaries of hyperbolic groups

Theorem (Kaimanovich ’93)
Let µ be a generating measure on a hyperbolic group G, with
finite entropy and finite logarithmic moment.

Then the Poisson boundary of (G, µ) is the Gromov boundary
(∂G, ν).

Same techniques applied to many other “hyperbolic-like”
groups:

I relatively hyperbolic groups
I CAT(0) groups
I right-angled Artin groups
I mapping class groups
I ...
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Conditional entropy
Fix ξ ∈ ∂G. Consider

µn,ξ(g) := P(wn = g | w∞ = ξ)

Definition
The conditional entropy of the random walk with respect to ξ is

h(ξ) := lim
n→∞

H(µn,ξ)

n

Theorem (Entropy criterion, Kaimanovich)
Let (B, ν) be a µ-boundary. Then (B, ν) is the Poisson
boundary if and only if

h(ξ) = 0

for ν-almost every ξ ∈ B.
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Pin down approximation

Let An be the partition of sample path space given by fixing the
nth step of the random walk. Let (B, ν) be a µ-boundary.

Idea: let us add more information, but not too much.

Lemma
Let (Pn) be a sequence of partitions. If:

1. For a.e. ξ ∈ B,

lim
n→∞

H(An | Pn and ξ)

n
= 0

2.

lim
n→∞

H(Pn)
n

= 0

then (B, ν) is the Poisson boundary.
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Toy example: the free semigroup

Consider the free semigroup F+
2 = 〈a,b〉 in two generators.
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Consider the free semigroup F+

2 = 〈a,b〉 in two generators.
The geometric boundary is the space of infinite words in a, b.



Toy example: the free semigroup
Let Pn be the partition given by specifying the distance from
the origin: d : F+

2 → N

Pn =
⊔
k∈N
{ω : d(wn) = k}



Toy example: the free semigroup
1.

lim
n→∞

H(An | Pn and ξ)

n
= 0

Proof. Given a boundary point and the distance from the
origin, we pin down the location of wn exactly.
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Toy example: the free semigroup

1.

lim
n→∞

H(An | Pn and ξ)

n
= 0

Proof. Given a boundary point and the distance from the
origin, we pin down the location of wn exactly.

so H(An | Pn and ξ) = 0



Toy example: the free semigroup

Check the second condition:

2.

lim
n→∞

H(Pn)
n

= 0

Proof. The map
d : F+

2 → N

is a group homomorphism.
The random walk on F+

2 pushes forward to a random walk
on N.
Let θ := d∗µ on N.
Since the Poisson boundary of abelian (semi)-groups is
trivial,

H(Pn)
n

=
H(θ∗n)

n
= 0

⇒ End of proof for free semigroup
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The end

Tanti auguri caro Stefano!



General case
For general groups, the needed pin down partition Pn is more
involved.

1. The distance from the origin is NOT enough to pin down
the location. This is because the random walk can
backtrack.

2. However, by Gouëzel’s “pivot theory”, the walk lies close to
the limit geodesic quite often - good times.
Correct partition Pn = Dn ∨ Bn:

I Dn, distance along the good times
I Bn, all of the walk between good times

Key insight: since good times appear often, the entropy

H(An | Dn and Bn and ξ)

is still small!

⇒ Proof for all hyperbolic-like groups
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2. However, by Gouëzel’s “pivot theory”, the walk lies close to
the limit geodesic quite often - good times.
Correct partition Pn = Dn ∨ Bn:

I Dn, distance along the good times
I Bn, all of the walk between good times

Key insight: since good times appear often, the entropy

H(An | Dn and Bn and ξ)

is still small!

⇒ Proof for all hyperbolic-like groups



General case
For general groups, the needed pin down partition Pn is more
involved.

1. The distance from the origin is NOT enough to pin down
the location. This is because the random walk can
backtrack.
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