The Poisson boundary of hyperbolic groups without moment conditions

Giulio Tiozzo
University of Toronto

From KAM to ETF: in honor of Stefano Marmi October 12, 2023

Summary

1. The Poisson representation formula - classical case

Summary

1. The Poisson representation formula - classical case
2. Poisson representation for groups

Summary

1. The Poisson representation formula - classical case
2. Poisson representation for groups
3. The old technique: entropy and log moment

Summary

1. The Poisson representation formula - classical case
2. Poisson representation for groups
3. The old technique: entropy and log moment
4. The new technique: "pin down" approximation

Summary

1. The Poisson representation formula - classical case
2. Poisson representation for groups
3. The old technique: entropy and log moment
4. The new technique: "pin down" approximation
joint with K. Chawla, B. Forghani, and J. Frisch.

The Poisson representation formula

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded }: \Delta \mathrm{u}=0\}
$$

The Poisson representation formula

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded }: \Delta \mathrm{u}=0\}
$$

The Poisson representation formula

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded : } \Delta \mathrm{u}=0\}
$$

Theorem (Poisson representation)
There is a bijection

$$
\mathrm{h}^{\infty}(\mathbb{D}) \quad \leftrightarrow \quad \mathrm{L}^{\infty}\left(\mathrm{S}^{1}, \lambda\right)
$$

The Poisson representation formula

Theorem
Given an integrable function $\mathrm{f}: \mathrm{S}^{1} \rightarrow \mathbb{R}$,

The Poisson representation formula

Theorem
Given an integrable function $f: S^{1} \rightarrow \mathbb{R}$, the function $u: \mathbb{D} \rightarrow \mathbb{R}$

The Poisson representation formula

Theorem
Given an integrable function $f: S^{1} \rightarrow \mathbb{R}$, the function $u: \mathbb{D} \rightarrow \mathbb{R}$

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{dt}
$$

is harmonic on \mathbb{D}, i.e. $\Delta u=0$.

The Poisson representation formula

Theorem
Given an integrable function $\mathrm{f}: \mathrm{S}^{1} \rightarrow \mathbb{R}$, the function $u: \mathbb{D} \rightarrow \mathbb{R}$

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{dt}
$$

is harmonic on \mathbb{D}, i.e. $\Delta u=0$. Here,

$$
\mathrm{P}_{\mathrm{r}}(\theta):=\frac{1-\mathrm{r}^{2}}{1+\mathrm{r}^{2}-2 \mathrm{r} \cos \theta}
$$

is the Poisson kernel.

The Poisson representation formula - II

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded }: \Delta \mathrm{u}=0\}
$$

The Poisson representation formula - II

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded }: \Delta \mathrm{u}=0\}
$$

Theorem (Poisson)
There is a bijection

$$
\mathrm{h}^{\infty}(\mathbb{D}) \quad \leftrightarrow \quad \mathrm{L}^{\infty}(\partial \mathbb{D}, \lambda)
$$

The Poisson representation formula - II

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded : } \Delta \mathrm{u}=0\}
$$

Theorem (Poisson)
There is a bijection

$$
\mathrm{h}^{\infty}(\mathbb{D}) \quad \leftrightarrow \quad \mathrm{L}^{\infty}(\partial \mathbb{D}, \lambda)
$$

- \rightarrow boundary values

$$
\mathrm{f}(\xi):=\lim _{\mathrm{z} \rightarrow \xi} \mathrm{u}(\mathrm{z})
$$

The Poisson representation formula - II

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded : } \Delta \mathrm{u}=0\}
$$

Theorem (Poisson)
There is a bijection

$$
\mathrm{h}^{\infty}(\mathbb{D}) \quad \leftrightarrow \quad \mathrm{L}^{\infty}(\partial \mathbb{D}, \lambda)
$$

- \rightarrow boundary values

$$
\mathrm{f}(\xi):=\lim _{\mathrm{z} \rightarrow \xi} \mathrm{u}(\mathrm{z})
$$

$-\leftarrow$ Poisson integral

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{dt}
$$

The Poisson representation formula - II

$$
\mathrm{h}^{\infty}(\mathbb{D}):=\{\mathrm{u}: \mathbb{D} \rightarrow \mathbb{R} \text { bounded : } \Delta \mathrm{u}=0\}
$$

Theorem (Poisson)
There is a bijection

$$
\mathrm{h}^{\infty}(\mathbb{D}) \quad \leftrightarrow \quad \mathrm{L}^{\infty}(\partial \mathbb{D}, \lambda)
$$

- \rightarrow boundary values (probabilistic interpretation)

$$
\mathrm{f}(\xi):=\mathbb{E}\left(\lim _{\mathrm{z}_{\mathrm{t}} \rightarrow \xi} \mathrm{u}\left(\mathrm{z}_{\mathrm{t}}\right)\right)
$$

where z_{t} is Brownian motion
$-\leftarrow$ Poisson integral

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{dt}
$$

The Poisson representation formula - II

Theorem (Poisson)
There is a bijection

$$
\mathrm{h}^{\infty}(\mathbb{D}) \quad \leftrightarrow \quad \mathrm{L}^{\infty}(\partial \mathbb{D}, \lambda)
$$

- \rightarrow boundary values (probabilistic interpretation)

$$
\mathrm{f}(\xi):=\mathbb{E}\left(\lim _{\mathrm{z}_{\mathrm{t}} \rightarrow \xi} \mathrm{u}\left(\mathrm{z}_{\mathrm{t}}\right)\right)
$$

where z_{t} is Brownian motion

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$.

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$,

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$,

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

and setting $\mathrm{z}=\mathrm{e}^{\mathrm{it}}$

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

and setting $z=e^{i t}$ we obtain

$$
\frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t})
$$

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

and setting $z=e^{i t}$ we obtain

$$
\frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t})=\left|\mathrm{g}_{\mathrm{a}}^{\prime}\left(\mathrm{e}^{\mathrm{it}}\right)\right|
$$

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

and setting $z=e^{i t}$ we obtain

$$
\frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t})=\left|\mathrm{g}_{\mathrm{a}}^{\prime}\left(\mathrm{e}^{\mathrm{it}}\right)\right|=\frac{1-\mathrm{r}^{2}}{\mid 1-\mathrm{re}^{\left.\mathrm{i}(\mathrm{t}-\theta)\right|^{2}}}
$$

The Poisson representation formula - III

Recall PSL $(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

and setting $z=e^{i t}$ we obtain

$$
\frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t})=\left|\mathrm{g}_{\mathrm{a}}^{\prime}\left(\mathrm{e}^{\mathrm{it}}\right)\right|=\frac{1-\mathrm{r}^{2}}{\mid 1-\mathrm{re}^{\left.\mathrm{i}(\mathrm{t}-\theta)\right|^{2}}=\mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}), ~\left(\frac{1}{2}\right)}
$$

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

and setting $\mathrm{z}=\mathrm{e}^{\mathrm{it}}$ we obtain

$$
\frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t})=\left|\mathrm{g}_{\mathrm{a}}^{\prime}\left(\mathrm{e}^{\mathrm{it}}\right)\right|=\frac{1-\mathrm{r}^{2}}{\mid 1-\mathrm{re}^{\left.\mathrm{i}(\mathrm{t}-\theta)\right|^{2}}=\mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}), ~\left(\frac{1}{2}\right)}
$$

RN derivative of boundary action

The Poisson representation formula - III

Recall $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}(\mathbb{H})$. Given $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta} \in \mathbb{D}$, consider

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{z}):=\frac{\mathrm{z}-\mathrm{a}}{1-\overline{\mathrm{a}} \mathrm{z}}
$$

so that $\mathrm{g}_{\mathrm{a}}(\mathrm{a})=0$, hence

$$
\mathrm{g}_{\mathrm{a}}^{\prime}(\mathrm{z}):=\frac{1-|\mathrm{a}|^{2}}{(1-\overline{\mathrm{a}} \mathrm{z})^{2}}
$$

and setting $\mathrm{z}=\mathrm{e}^{\mathrm{it}}$ we obtain

$$
\frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t})=\left|\mathrm{g}_{\mathrm{a}}^{\prime}\left(\mathrm{e}^{\mathrm{it}}\right)\right|=\frac{1-\mathrm{r}^{2}}{\mid 1-\mathrm{re}^{\left.\mathrm{i}(\mathrm{t}-\theta)\right|^{2}}=\mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}), ~\left(\frac{1}{2}\right)}
$$

RN derivative of boundary action $=$ Poisson kernel

The Poisson representation formula - IV

Recall the Poisson formula

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{dt}
$$

The Poisson representation formula - IV

Recall the Poisson formula

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{dt}
$$

Setting $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta}, \mathrm{d} \lambda=\frac{\mathrm{dt}}{2 \pi}$

The Poisson representation formula - IV

Recall the Poisson formula

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{dt}
$$

Setting $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta}, \mathrm{d} \lambda=\frac{\mathrm{dt}}{2 \pi}$

$$
\mathrm{u}(\mathrm{a})=\int_{\partial \mathbb{D}} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t}) \mathrm{d} \lambda(\mathrm{t})
$$

The Poisson representation formula - IV

Recall the Poisson formula

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{dt}
$$

Setting $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta}, \mathrm{d} \lambda=\frac{\mathrm{dt}}{2 \pi}$

$$
\mathrm{u}(\mathrm{a})=\int_{\partial \mathbb{D}} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t}) \mathrm{d} \lambda(\mathrm{t})
$$

Finally if $\xi=\mathrm{e}^{\mathrm{it}}$

The Poisson representation formula - IV

Recall the Poisson formula

$$
\mathrm{u}\left(\mathrm{re}^{\mathrm{i} \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \mathrm{P}_{\mathrm{r}}(\theta-\mathrm{t}) \mathrm{dt}
$$

Setting $\mathrm{a}=\mathrm{re}^{\mathrm{i} \theta}, \mathrm{d} \lambda=\frac{\mathrm{dt}}{2 \pi}$

$$
\mathrm{u}(\mathrm{a})=\int_{\partial \mathbb{D}} \mathrm{f}\left(\mathrm{e}^{\mathrm{it}}\right) \frac{\mathrm{dg}_{\mathrm{a}} \lambda}{\mathrm{~d} \lambda}(\mathrm{t}) \mathrm{d} \lambda(\mathrm{t})
$$

Finally if $\xi=\mathrm{e}^{\mathrm{it}}$

$$
u(a)=\int_{\partial \mathbb{D}} f(\xi) \operatorname{dg}_{\mathrm{a}} \lambda(\xi)
$$

The Poisson representation formula - IV

Theorem (Poisson representation)
If $\mathrm{f}: \mathrm{L}^{\infty}(\partial \mathbb{D}, \lambda) \rightarrow \mathbb{R}$, then

$$
\mathrm{u}(\mathrm{a})=\int_{\partial \mathbb{D}} \mathrm{f}(\xi) \operatorname{dg}_{\mathrm{a}} \lambda(\xi)
$$

is harmonic on \mathbb{D}.

The Poisson representation formula - IV

Theorem (Poisson representation)
If $\mathrm{f}: \mathrm{L}^{\infty}(\partial \mathbb{D}, \lambda) \rightarrow \mathbb{R}$, then

$$
\mathrm{u}(\mathrm{a})=\int_{\partial \mathbb{D}} \mathrm{f}(\xi) \operatorname{dg}_{\mathrm{a}} \lambda(\xi)
$$

is harmonic on \mathbb{D}.
Question. Can we generalize this to other groups $\mathrm{G} \neq \mathrm{PSL}_{2}(\mathbb{R})$?

General Poisson representation (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G .

General Poisson representation (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G .
Definition
A function $\mathrm{u}: \mathrm{G} \rightarrow \mathbb{R}$ is μ-harmonic if

General Poisson representation (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G .
Definition
A function $\mathrm{u}: \mathrm{G} \rightarrow \mathbb{R}$ is μ-harmonic if

$$
\mathrm{u}(\mathrm{~g})=\int_{\mathrm{G}} \mathrm{u}(\mathrm{gh}) \mathrm{d} \mu(\mathrm{~h})
$$

for all $\mathrm{g} \in \mathrm{G}$.

General Poisson representation (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G .
Definition
A function $\mathrm{u}: \mathrm{G} \rightarrow \mathbb{R}$ is μ-harmonic if

$$
\mathrm{u}(\mathrm{~g})=\int_{\mathrm{G}} \mathrm{u}(\mathrm{gh}) \mathrm{d} \mu(\mathrm{~h})
$$

for all $\mathrm{g} \in \mathrm{G}$.
Let B be a space on which G acts (measurably).

General Poisson representation (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G .
Definition
A function $\mathrm{u}: \mathrm{G} \rightarrow \mathbb{R}$ is μ-harmonic if

$$
\mathrm{u}(\mathrm{~g})=\int_{\mathrm{G}} \mathrm{u}(\mathrm{gh}) \mathrm{d} \mu(\mathrm{~h})
$$

for all $g \in G$.
Let B be a space on which G acts (measurably). A measure ν on \mathbf{B} is μ-stationary if

$$
\nu=\int_{\mathrm{G}} \mathrm{~g} \nu \mathrm{~d} \mu(\mathrm{~g}) .
$$

Random walks and μ-boundaries

Let μ be a prob. measure on G.

Random walks and μ-boundaries

Let μ be a prob. measure on G.
Consider the random walk

Random walks and μ-boundaries

Let μ be a prob. measure on G.
Consider the random walk

$$
\mathrm{w}_{\mathrm{n}}:=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{n}}
$$

Random walks and μ-boundaries

Let μ be a prob. measure on G.
Consider the random walk

$$
\mathrm{w}_{\mathrm{n}}:=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{n}}
$$

where $\left(\mathrm{g}_{\mathrm{i}}\right)$ are i.i.d. with distribution μ.

Random walks and μ-boundaries

Let μ be a prob. measure on G.
Consider the random walk

$$
\mathrm{w}_{\mathrm{n}}:=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{n}}
$$

where $\left(g_{i}\right)$ are i.i.d. with distribution μ.
We denote $\Omega:=\left(\mathrm{w}_{\mathrm{n}}\right)$ the space of sample paths, and $\mathrm{T}\left(\left(\mathrm{w}_{\mathrm{n}}\right)\right):=\left(\mathrm{w}_{\mathrm{n}+1}\right)$ is the shift on Ω.

Random walks and μ-boundaries

Let μ be a prob. measure on G.
Consider the random walk

$$
\mathrm{w}_{\mathrm{n}}:=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{n}}
$$

where $\left(g_{i}\right)$ are i.i.d. with distribution μ.
We denote $\Omega:=\left(\mathrm{w}_{\mathrm{n}}\right)$ the space of sample paths, and $\mathrm{T}\left(\left(\mathrm{w}_{\mathrm{n}}\right)\right):=\left(\mathrm{w}_{\mathrm{n}+1}\right)$ is the shift on Ω.

Definition
A space (B, ν) is a μ-boundary if there exists a measurable map

$$
\text { bnd : } \Omega \rightarrow \mathrm{B}
$$

such that bnd $=$ bnd $\circ \mathrm{T}$.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial \mathrm{X}
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial \mathrm{X}
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial X
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial X
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial X
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial X
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial X
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial X
$$

exists a.s.

Boundary convergence

Suppose that $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ a metric space, and that X has a "bordification" $\overline{\mathrm{X}}=\mathrm{X} \cup \partial \mathrm{X}$. Let $\mathrm{o} \in \mathrm{X}$ a base point.

In most situations,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \partial X
$$

exists a.s.

Boundary convergence

Then we define the hitting measure

$$
\nu(\mathrm{A}):=\mathbb{P}\left(\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} \mathrm{o} \in \mathrm{~A}\right)
$$

Boundary convergence

Then we define the hitting measure

$$
\nu(A):=\mathbb{P}\left(\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} 0 \in \mathrm{~A}\right)
$$

which is μ-stationary.

Boundary convergence

Then we define the hitting measure

$$
\nu(\mathrm{A}):=\mathbb{P}\left(\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} \mathrm{o} \in \mathrm{~A}\right)
$$

which is μ-stationary.

Boundary convergence

Then we define the hitting measure

$$
\nu(\mathrm{A}):=\mathbb{P}\left(\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} \mathrm{o} \in \mathrm{~A}\right)
$$

which is μ-stationary.

Moreover, $(\partial \mathrm{X}, \nu)$ is a μ-boundary, given by the map

$$
\Omega \ni \operatorname{bnd}(\omega):=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{w}_{\mathrm{n}} \mathrm{o} \in \partial \mathrm{X}
$$

General Poisson representation - II (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G , let (B, ν) be a μ-boundary.

General Poisson representation - II (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G , let (B, ν) be a μ-boundary.

The Poisson transform $\Phi: \mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)$ is

General Poisson representation - II (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G , let (B, ν) be a μ-boundary.

The Poisson transform $\Phi: \mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)$ is

$$
\Phi_{\mathrm{f}}(\mathrm{~g}):=\int_{\mathrm{B}} \mathrm{f} \operatorname{dg} \nu
$$

General Poisson representation - II (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G , let (B, ν) be a μ-boundary.

The Poisson transform $\Phi: \mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)$ is

$$
\Phi_{\mathrm{f}}(\mathrm{~g}):=\int_{\mathrm{B}} \mathrm{f} \operatorname{dg} \nu
$$

Definition
A μ-boundary (B, ν) is the Poisson boundary if Φ is an isomorphism

$$
\mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)
$$

General Poisson representation - II (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G , let (B, ν) be a μ-boundary.

The Poisson transform $\Phi: \mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)$ is

$$
\Phi_{\mathrm{f}}(\mathrm{~g}):=\int_{\mathrm{B}} \mathrm{f} \operatorname{dg} \nu
$$

Definition

A μ-boundary (B, ν) is the Poisson boundary if Φ is an isomorphism

$$
\mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)
$$

Corollary

Poisson boundary is trivial (= 1 point) \Leftrightarrow bounded harmonic functions are constant

General Poisson representation - II (Furstenberg)

Let G be a (lcsc) group, μ a probability measure on G , let (B, ν) be a μ-boundary.

The Poisson transform $\Phi: \mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)$ is

$$
\Phi_{\mathrm{f}}(\mathrm{~g}):=\int_{\mathrm{B}} \mathrm{f} \operatorname{dg} \nu
$$

Definition

A μ-boundary (B, ν) is the Poisson boundary if Φ is an isomorphism

$$
\mathrm{L}^{\infty}(\mathrm{B}, \nu) \rightarrow \mathrm{H}^{\infty}(\mathrm{G}, \mu)
$$

Corollary

Poisson boundary is trivial (= $=1$ point) \Leftrightarrow bounded harmonic functions are constant
Examples. Abelian groups; nilpotent groups

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups
- Kaimanovich '94: hyperbolic groups

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups
- Kaimanovich '94: hyperbolic groups
- Karlsson-Margulis '99: isometries of CAT(0) spaces

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups
- Kaimanovich '94: hyperbolic groups
- Karlsson-Margulis '99: isometries of CAT(0) spaces
- Kaimanovich-Masur '99: mapping class group

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups
- Kaimanovich '94: hyperbolic groups
- Karlsson-Margulis '99: isometries of CAT(0) spaces
- Kaimanovich-Masur '99: mapping class group
- Bader-Shalom '06: isometries of affine buildings

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups
- Kaimanovich '94: hyperbolic groups
- Karlsson-Margulis '99: isometries of CAT(0) spaces
- Kaimanovich-Masur '99: mapping class group
- Bader-Shalom '06: isometries of affine buildings
- Gautero-Mathèus '12: relatively hyperbolic groups

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups
- Kaimanovich '94: hyperbolic groups
- Karlsson-Margulis '99: isometries of CAT(0) spaces
- Kaimanovich-Masur '99: mapping class group
- Bader-Shalom '06: isometries of affine buildings
- Gautero-Mathèus '12: relatively hyperbolic groups
- Horbez '16: $\operatorname{Out}\left(\mathrm{F}_{\mathrm{n}}\right)$

Identification of the Poisson boundary

Let $\mathrm{G}<\operatorname{Isom}(\mathrm{X}, \mathrm{d})$ be a group, μ a measure on G, ν the hitting measure on $\partial \mathrm{X}$.

Question. Is $(\partial \mathrm{X}, \nu)$ the Poisson boundary for (G, μ) ?
(Some) History.

- Furstenberg '63: semisimple Lie groups
- Kaimanovich '94: hyperbolic groups
- Karlsson-Margulis '99: isometries of CAT(0) spaces
- Kaimanovich-Masur '99: mapping class group
- Bader-Shalom '06: isometries of affine buildings
- Gautero-Mathèus '12: relatively hyperbolic groups
- Horbez '16: Out(F_{n})
- Maher-T. '18: Cremona group

Hyperbolic spaces

A metric space (X, d) is hyperbolic if there exists $\delta>0$ s.t.

$$
[\mathrm{x}, \mathrm{z}] \subseteq \mathrm{N}_{\delta}([\mathrm{x}, \mathrm{y}]) \cup \mathrm{N}_{\delta}([\mathrm{y}, \mathrm{z}]) \quad \text { for any } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}
$$

Hyperbolic spaces

A metric space (X, d) is hyperbolic if there exists $\delta>0$ s.t.

$$
[\mathrm{x}, \mathrm{z}] \subseteq \mathrm{N}_{\delta}([\mathrm{x}, \mathrm{y}]) \cup \mathrm{N}_{\delta}([\mathrm{y}, \mathrm{z}]) \quad \text { for any } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}
$$

A group is hyperbolic if a Cayley graph of G is. E.g.:

- free groups
- (non-elementary) Fuchsian groups
- fundamental groups of negatively curved manifolds

The Gromov boundary

Let X be a hyperbolic, proper, metric space.

The Gromov boundary

Let X be a hyperbolic, proper, metric space. Fix a base point $\mathrm{x}_{0} \in \mathrm{X}$.

The Gromov boundary

Let X be a hyperbolic, proper, metric space.
Fix a base point $x_{0} \in X$.
Two geodesic rays γ_{1}, γ_{2} based at x_{0} are equivalent if

$$
\sup _{t \geqslant 0} d\left(\gamma_{1}(t), \gamma_{2}(t)\right)<\infty .
$$

The Gromov boundary

Let X be a hyperbolic, proper, metric space.
Fix a base point $\mathrm{x}_{0} \in \mathrm{X}$.
Two geodesic rays γ_{1}, γ_{2} based at x_{0} are equivalent if

$$
\sup _{t \geqslant 0} d\left(\gamma_{1}(t), \gamma_{2}(t)\right)<\infty .
$$

Definition
We define the Gromov boundary of X as

$$
\partial \mathrm{X}:=\left\{\gamma \text { geodesic rays based at } \mathrm{x}_{0}\right\} / \sim
$$

The Gromov boundary

Let X be a hyperbolic, proper, metric space.
Fix a base point $\mathrm{x}_{0} \in \mathrm{X}$.
Two geodesic rays γ_{1}, γ_{2} based at x_{0} are equivalent if

$$
\sup _{t \geqslant 0} d\left(\gamma_{1}(t), \gamma_{2}(t)\right)<\infty
$$

Definition
We define the Gromov boundary of X as

$$
\partial \mathrm{X}:=\left\{\gamma \text { geodesic rays based at } \mathrm{x}_{0}\right\} / \sim
$$

Example
Examples of Gromov boundaries.

The Gromov boundary

Let X be a hyperbolic, proper, metric space.
Fix a base point $\mathrm{x}_{0} \in \mathrm{X}$.
Two geodesic rays γ_{1}, γ_{2} based at x_{0} are equivalent if

$$
\sup _{t \geqslant 0} d\left(\gamma_{1}(t), \gamma_{2}(t)\right)<\infty .
$$

Definition
We define the Gromov boundary of X as

$$
\partial \mathrm{X}:=\left\{\gamma \text { geodesic rays based at } \mathrm{x}_{0}\right\} / \sim
$$

Example
Examples of Gromov boundaries.

- $\mathrm{X}=\mathbb{R}$ and $\partial \mathrm{X}=\{-\infty,+\infty\}$.

The Gromov boundary

Let X be a hyperbolic, proper, metric space.
Fix a base point $\mathrm{x}_{0} \in \mathrm{X}$.
Two geodesic rays γ_{1}, γ_{2} based at x_{0} are equivalent if

$$
\sup _{t \geqslant 0} d\left(\gamma_{1}(t), \gamma_{2}(t)\right)<\infty .
$$

Definition
We define the Gromov boundary of X as

$$
\partial \mathrm{X}:=\left\{\gamma \text { geodesic rays based at } \mathrm{x}_{0}\right\} / \sim
$$

Example
Examples of Gromov boundaries.

- $\mathrm{X}=\mathbb{R}$ and $\partial \mathrm{X}=\{-\infty,+\infty\}$.
- $\mathrm{X}=\mathbb{R} \times\{-1,+1\}$ and $\partial \mathrm{X}=\{-\infty,+\infty\}$.

Entropy and moment conditions

Let μ be a measure on a countable group G .

Entropy and moment conditions

Let μ be a measure on a countable group G . The (Avez) entropy is

$$
\mathrm{H}(\mu):=-\sum_{\mathrm{g}} \mu(\mathrm{~g}) \log \mu(\mathrm{g})
$$

Entropy and moment conditions

Let μ be a measure on a countable group G . The (Avez) entropy is

$$
\mathrm{H}(\mu):=-\sum_{\mathrm{g}} \mu(\mathrm{~g}) \log \mu(\mathrm{g})
$$

The asymptotic (Avez) entropy is

$$
\mathrm{h}(\mu):=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mu_{\mathrm{n}}\right)}{\mathrm{n}}
$$

Entropy and moment conditions

Let μ be a measure on a countable group G . The (Avez) entropy is

$$
\mathrm{H}(\mu):=-\sum_{\mathrm{g}} \mu(\mathrm{~g}) \log \mu(\mathrm{g})
$$

The asymptotic (Avez) entropy is

$$
\mathrm{h}(\mu):=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mu_{\mathrm{n}}\right)}{\mathrm{n}}
$$

where $\mu_{\mathrm{n}}(\mathrm{g}):=\mathbb{P}\left(\mathrm{w}_{\mathrm{n}}=\mathrm{g}\right)$.

Entropy and moment conditions

Let μ be a measure on a countable group G . The (Avez) entropy is

$$
\mathrm{H}(\mu):=-\sum_{\mathrm{g}} \mu(\mathrm{~g}) \log \mu(\mathrm{g})
$$

The asymptotic (Avez) entropy is

$$
\mathrm{h}(\mu):=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mu_{\mathrm{n}}\right)}{\mathrm{n}}
$$

where $\mu_{\mathrm{n}}(\mathrm{g}):=\mathbb{P}\left(\mathrm{w}_{\mathrm{n}}=\mathrm{g}\right)$.
We say μ has finite entropy if

$$
\mathrm{H}(\mu)<+\infty
$$

Entropy and moment conditions

Let μ be a measure on a countable group G . The (Avez) entropy is

$$
\mathrm{H}(\mu):=-\sum_{\mathrm{g}} \mu(\mathrm{~g}) \log \mu(\mathrm{g})
$$

The asymptotic (Avez) entropy is

$$
\mathrm{h}(\mu):=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mu_{\mathrm{n}}\right)}{\mathrm{n}}
$$

where $\mu_{\mathrm{n}}(\mathrm{g}):=\mathbb{P}\left(\mathrm{w}_{\mathrm{n}}=\mathrm{g}\right)$.
We say μ has finite entropy if

$$
\mathrm{H}(\mu)<+\infty
$$

We say μ has finite logarithmic moment if

$$
\sum_{\mathrm{g} \in \mathrm{G}} \log ^{+}|\mathrm{g}| \mu(\mathrm{g})<+\infty
$$

Poisson boundaries of hyperbolic groups

Theorem (Kaimanovich '93)
Let μ be a generating measure on a hyperbolic group G, with finite entropy and finite logarithmic moment.

Poisson boundaries of hyperbolic groups

Theorem (Kaimanovich '93)

Let μ be a generating measure on a hyperbolic group G, with finite entropy and finite logarithmic moment. Then the Poisson boundary of (G, μ) is the Gromov boundary ($\partial \mathrm{G}, \nu$).

Poisson boundaries of hyperbolic groups

Theorem (Kaimanovich '93)

Let μ be a generating measure on a hyperbolic group G, with finite entropy and finite logarithmic moment. Then the Poisson boundary of (G, μ) is the Gromov boundary ($\partial \mathrm{G}, \nu$).

Same techniques applied to many other "hyperbolic-like" groups:

- relatively hyperbolic groups
- CAT(0) groups
- right-angled Artin groups
- mapping class groups

Poisson boundaries of hyperbolic groups

Theorem (Chawla, Forghani, Frisch, T '22)
Let μ be a generating measure on a hyperbolic group G, with finite entropy and finite logarithmic moment.

Poisson boundaries of hyperbolic groups

Theorem (Chawla, Forghani, Frisch, T '22)
Let μ be a generating measure on a hyperbolic group G, with finite entropy and finite logarithmic moment. Then the Poisson boundary of (G, μ) is the Gromov boundary ($\partial \mathrm{G}, \nu$).

Poisson boundaries of hyperbolic groups

Theorem (Chawla, Forghani, Frisch, T '22)
Let μ be a generating measure on a hyperbolic group G , with finite entropy and finite logarithmic moment. Then the Poisson boundary of (G, μ) is the Gromov boundary ($\partial \mathrm{G}, \nu$).

Same techniques applied to many other "hyperbolic-like" groups:

- relatively hyperbolic groups
- CAT(0) groups
- right-angled Artin groups
- mapping class groups
- ...

Conditional entropy

Fix $\xi \in \partial \mathrm{G}$. Consider

$$
\mu_{\mathrm{n}, \xi}(\mathrm{~g}):=\mathbb{P}\left(\mathrm{w}_{\mathrm{n}}=\mathrm{g} \mid \mathrm{w}_{\infty}=\xi\right)
$$

Conditional entropy

Fix $\xi \in \partial \mathrm{G}$. Consider

$$
\mu_{\mathrm{n}, \xi}(\mathrm{~g}):=\mathbb{P}\left(\mathrm{w}_{\mathrm{n}}=\mathrm{g} \mid \mathrm{w}_{\infty}=\xi\right)
$$

Definition
The conditional entropy of the random walk with respect to ξ is

$$
\mathrm{h}(\xi):=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mu_{\mathrm{n}, \xi}\right)}{\mathrm{n}}
$$

Conditional entropy

Fix $\xi \in \partial \mathrm{G}$. Consider

$$
\mu_{\mathrm{n}, \xi}(\mathrm{~g}):=\mathbb{P}\left(\mathrm{w}_{\mathrm{n}}=\mathrm{g} \mid \mathrm{w}_{\infty}=\xi\right)
$$

Definition
The conditional entropy of the random walk with respect to ξ is

$$
\mathrm{h}(\xi):=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mu_{\mathrm{n}, \xi}\right)}{\mathrm{n}}
$$

Theorem (Entropy criterion, Kaimanovich)
Let (B, ν) be a μ-boundary. Then (B, ν) is the Poisson boundary if and only if

$$
h(\xi)=0
$$

for ν-almost every $\xi \in \mathrm{B}$.

Pin down approximation

Let A_{n} be the partition of sample path space given by fixing the nth step of the random walk. Let (B, ν) be a μ-boundary.

Pin down approximation

Let A_{n} be the partition of sample path space given by fixing the nth step of the random walk. Let (B, ν) be a μ-boundary.
Idea: let us add more information, but not too much.

Pin down approximation

Let A_{n} be the partition of sample path space given by fixing the nth step of the random walk. Let (B, ν) be a μ-boundary.
Idea: let us add more information, but not too much.
Lemma
Let $\left(\mathrm{P}_{\mathrm{n}}\right)$ be a sequence of partitions.

Pin down approximation

Let A_{n} be the partition of sample path space given by fixing the nth step of the random walk. Let (B, ν) be a μ-boundary.
Idea: let us add more information, but not too much.
Lemma
Let $\left(\mathrm{P}_{\mathrm{n}}\right)$ be a sequence of partitions. If:

1. For a.e. $\xi \in \mathrm{B}$,

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{P}_{\mathrm{n}} \text { and } \xi\right)}{\mathrm{n}}=0
$$

Pin down approximation

Let A_{n} be the partition of sample path space given by fixing the nth step of the random walk. Let (B, ν) be a μ-boundary.
Idea: let us add more information, but not too much.
Lemma
Let $\left(\mathrm{P}_{\mathrm{n}}\right)$ be a sequence of partitions. If:

1. For a.e. $\xi \in B$,

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{P}_{\mathrm{n}} \text { and } \xi\right)}{\mathrm{n}}=0
$$

2.

$$
\lim _{n \rightarrow \infty} \frac{H\left(P_{n}\right)}{n}=0
$$

Pin down approximation

Let A_{n} be the partition of sample path space given by fixing the nth step of the random walk. Let (B, ν) be a μ-boundary.
Idea: let us add more information, but not too much.
Lemma
Let $\left(\mathrm{P}_{\mathrm{n}}\right)$ be a sequence of partitions. If:

1. For a.e. $\xi \in B$,

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{P}_{\mathrm{n}} \text { and } \xi\right)}{\mathrm{n}}=0
$$

2.

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{H\left(\mathrm{P}_{\mathrm{n}}\right)}{\mathrm{n}}=0
$$

then (B, ν) is the Poisson boundary.

Toy example: the free semigroup

Consider the free semigroup $\mathrm{F}_{2}^{+}=\langle\mathrm{a}, \mathrm{b}\rangle$ in two generators.

Toy example: the free semigroup

Consider the free semigroup $\mathrm{F}_{2}^{+}=\langle\mathrm{a}, \mathrm{b}\rangle$ in two generators. The geometric boundary is the space of infinite words in a, b.

Toy example: the free semigroup

Let P_{n} be the partition given by specifying the distance from the origin: $\mathrm{d}: \mathrm{F}_{2}^{+} \rightarrow \mathbb{N}$

$$
\mathrm{P}_{\mathrm{n}}=\bigsqcup_{\mathrm{k} \in \mathbb{N}}\left\{\omega: \mathrm{d}\left(\mathrm{w}_{\mathrm{n}}\right)=\mathrm{k}\right\}
$$

Toy example: the free semigroup

1.

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{P}_{\mathrm{n}} \text { and } \xi\right)}{\mathrm{n}}=0
$$

Toy example: the free semigroup

1.

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{P}_{\mathrm{n}} \text { and } \xi\right)}{\mathrm{n}}=0
$$

Proof.

Toy example: the free semigroup

1.

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{H\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{P}_{\mathrm{n}} \text { and } \xi\right)}{\mathrm{n}}=0
$$

Proof. Given a boundary point and the distance from the origin, we pin down the location of w_{n} exactly.

Toy example: the free semigroup

1.

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{P}_{\mathrm{n}} \text { and } \xi\right)}{\mathrm{n}}=0
$$

Proof. Given a boundary point and the distance from the origin, we pin down the location of w_{n} exactly.

so $H\left(A_{n} \mid P_{n}\right.$ and $\left.\xi\right)=0$

Toy example: the free semigroup

Check the second condition:
2.

$$
\lim _{n \rightarrow \infty} \frac{H\left(P_{n}\right)}{n}=0
$$

Toy example: the free semigroup

Check the second condition:
2.

$$
\lim _{n \rightarrow \infty} \frac{H\left(P_{n}\right)}{n}=0
$$

Proof. The map

$$
\mathrm{d}: \mathrm{F}_{2}^{+} \rightarrow \mathbb{N}
$$

is a group homomorphism.

Toy example: the free semigroup

Check the second condition:
2.

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{P}_{\mathrm{n}}\right)}{\mathrm{n}}=0
$$

Proof. The map

$$
\mathrm{d}: \mathrm{F}_{2}^{+} \rightarrow \mathbb{N}
$$

is a group homomorphism.
The random walk on F_{2}^{+}pushes forward to a random walk on \mathbb{N}.

Toy example: the free semigroup

Check the second condition:
2.

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{H}\left(\mathrm{P}_{\mathrm{n}}\right)}{\mathrm{n}}=0
$$

Proof. The map

$$
\mathrm{d}: \mathrm{F}_{2}^{+} \rightarrow \mathbb{N}
$$

is a group homomorphism.
The random walk on F_{2}^{+}pushes forward to a random walk on \mathbb{N}.
Let $\theta:=\mathrm{d}_{*} \mu$ on \mathbb{N}.

Toy example: the free semigroup

Check the second condition:
2.

$$
\lim _{n \rightarrow \infty} \frac{H\left(P_{n}\right)}{n}=0
$$

Proof. The map

$$
\mathrm{d}: \mathrm{F}_{2}^{+} \rightarrow \mathbb{N}
$$

is a group homomorphism.
The random walk on F_{2}^{+}pushes forward to a random walk on \mathbb{N}.
Let $\theta:=\mathrm{d}_{*} \mu$ on \mathbb{N}.
Since the Poisson boundary of abelian (semi)-groups is trivial,

$$
\frac{\mathrm{H}\left(\mathrm{P}_{\mathrm{n}}\right)}{\mathrm{n}}=\frac{\mathrm{H}\left(\theta^{* n}\right)}{\mathrm{n}}=0
$$

\Rightarrow End of proof for free semigroup

The end

Tanti auguri caro Stefano!

General case

For general groups, the needed pin down partition P_{n} is more involved.

General case

For general groups, the needed pin down partition P_{n} is more involved.

1. The distance from the origin is NOT enough to pin down the location. This is because the random walk can backtrack.

General case

For general groups, the needed pin down partition P_{n} is more involved.

1. The distance from the origin is NOT enough to pin down the location. This is because the random walk can backtrack.
2. However, by Gouëzel's "pivot theory", the walk lies close to the limit geodesic quite often - good times.

General case

For general groups, the needed pin down partition P_{n} is more involved.

1. The distance from the origin is NOT enough to pin down the location. This is because the random walk can backtrack.
2. However, by Gouëzel's "pivot theory", the walk lies close to the limit geodesic quite often - good times.
Correct partition $P_{n}=D_{n} \vee B_{n}$:

- D_{n}, distance along the good times
- B_{n}, all of the walk between good times

General case

For general groups, the needed pin down partition P_{n} is more involved.

1. The distance from the origin is NOT enough to pin down the location. This is because the random walk can backtrack.
2. However, by Gouëzel's "pivot theory", the walk lies close to the limit geodesic quite often - good times.
Correct partition $\mathrm{P}_{\mathrm{n}}=\mathrm{D}_{\mathrm{n}} \vee \mathrm{B}_{\mathrm{n}}$:

- D_{n}, distance along the good times
- B_{n}, all of the walk between good times

Key insight: since good times appear often, the entropy

$$
\mathrm{H}\left(\mathrm{~A}_{\mathrm{n}} \mid \mathrm{D}_{\mathrm{n}} \text { and } \mathrm{B}_{\mathrm{n}} \text { and } \xi\right)
$$

is still small!
\Rightarrow Proof for all hyperbolic-like groups

