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Locally Hamiltonian flows

Let (M, ω) be a compact connected orientable surface with a fixed
smooth area form ω. A locally Hamiltonian flow ψR = (ψt)t∈R on
M is a smooth flow on M which preserves the area form ω. These
flows are also called multi-valued Hamiltonian flows. The interest in
the study of multi-valued Hamiltonians and the associated flows in
higher genus (g ⩾ 1) was highlighted by Novikov in connection
with problems arising in solid-state physics as well as in
pseudo-periodic topology.
To see the Hamiltonian nature of such the flow let us consider the
corresponding vector field X : M → TM, d

dtφt(x) = X (φt(x)) and
a real-valued differential 1-form η given by the contraction operator
η = iXω = ω(X , ·) (η = −X2dx + X1dy). As ψR preserves the area
form ω, η is closed d(η) = 0. So η is locally exact, this is
η = ω(X , ·) = dH, where H is defined locally. Moreover, if
ω = dx ∧ dy (in local coordinates), then X = (∂H∂y ,−

∂H
∂x ), so the

flow ψR is really “locally Hamiltonian”.
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Fixed points

A point σ ∈ M is a fixed point if X (σ) = 0 or equivalently
∇H(σ) = 0. We deal only with flows having isolated fixed points.
Denote by Fix(ψR) the set of fixed points (also called singularities)
of the flow ψR. Then Fix(ψR) is a finite set and when g ⩾ 2,
Fix(ψR) is always not empty. Since ψR is area-preserving,
singularities in Fix(ψR), can be either centers, simple saddles or
multi-saddles (i.e. saddles with 2k pronges, k ⩾ 2).
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Fixed points

We distinguish so called non-degenerate fixed points, such that the
Hessian of H at σ is non-zero. By Morse lemma, there exists a local
chart (x , y) in a neighborhood of σ such that H(x , y) = x2 + y2 or
H(x , y) = 2xy(or = x2 − y2). It corresponds to a center or a
simple saddle. Non-degenerate fixed points are topologically
typical, this is there exists an open and dense subset of locally
Hamiltonian flows such that all fixed points are non-degenerate.
We permit the appearance of some degenerate fixed points σ, i.e.
perfect saddles of multiplicity mσ > 2 such that the corresponding
Hamiltonian function is of the form H(x , y) = ℑ(x + iy)mσ . Each
such saddle has mσ incoming and mσ outgoing separatrices.
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Minimality vs. decomposition into minimal and periodic
components

Recall that a saddle connection is an orbit (separatrix) of ψR
running from a saddle to a saddle. A saddle loop is a saddle
connection joining the same saddle. For example, each center is
surrounded by a saddle loop.
If there are no saddle connections then the flow ψR on M minimal
(every orbit, except of fixed points, is dense in M).
In general, M splits into a finite number of ψR-invariant surfaces
(with boundary) so that every such surface is a minimal component
of ψR or is a periodic component (is filled by periodic orbits, fixed
points and saddle connections).
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(Zero) measure class

Denote by F the set of smooth locally Hamiltonian flows on M
with isolated fixed points. F has a natural stratification into
subsets Fm,c . For any vector m = (m1,m2, . . . ,ms) of natural
numbers ⩾ 2 and any c ⩽

∑s
i=1(mi − 1), denote by Fm,c the set

of smooth locally Hamiltonian flows with c centers and s saddles of
multiplicity m1,m2, . . . ,ms . By the Poincaré-Hopf Theorem,
c −

∑s
i=1(mi − 1) = 2 − 2g . A measure-theoretical notion of

typicality on F (on each Fm,c separately) is defined by the
cohomology class of the 1-form η, so called Katok fundamental
class. Let γ1, . . . , γn be a base of H1(M,Fix(ψR),Z), where
n = 2g + s + c − 1. Let us consider the period map

Θ(ψR) =
(∫

γ1

η, . . . ,

∫
γn

η
)
∈ Rn,

which is well-defined in a neighbourhood of ψR ∈ Fm,c .
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(Zero) measure class

The Θ-pullback of the Lebesgue measure class (i.e. class of sets
with zero measure) gives the desired measure class on Fm,c . When
we use the expression a.e. locally Hamiltonian flow below we mean
full measure in each Fm,c with respect to the corresponding
measure class. We distinguish a subset Fmin =

⋃
m Fm,0 ⊂ F and

the corresponding measure class.

Theorem (Masur, Veech)

Almost every flow ψR in Fmin is ergodic (with respect to the area
measure ω). Moreover, every ergodic measure is either ω or the
delta Dirac measure at a fixed point.
For almost every ψR ∈ F \ Fmin, the flow ψR restricted to any is
minimal component is ergodic and ect.
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Special representation
Locally Hamiltonian flows are represented as special flows. Let us
consider a restriction of a locally Hamiltonian flow ψR on M to its
minimal component M ′ ⊂ M. Let I ⊂ M ′ be any transversal
smooth curve. By minimality, I is a global transversal and the first
return map T : I → I is an interval exchange transformation (IET)
(in so called standard coordinates on I ). Moreover, ψR restricted to
M ′ is isomorphic to the special flow T g

R , where
g : I → R>0 ∪ {+∞} is the first return time map. The roof
function has logarithmic (polynomial) singularities derived from
non-degenerate (degenerate) saddles.
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Special representation
Recall that every IET T : I → I exchanging d intervals is
determined by a pair (π, λ), where λ = (λα)α∈A ∈ Rd

>0 (#A = d
and elements of A label the exchanged intervals) collects the length
of exchanged intervals Iα = [lα, rα), α ∈ A which are rearranged
according to the permutation π. Then we write T = T(π,λ). This
gives a natural Lebesgue measure on the space of all IETs.
We say that a function φ : I → R (|I | = 1) for an IET T(π,λ) has
logarithmic singularities if there exist constants C+

α ,C
−
α ∈ R,

α ∈ A, and a function gφ absolutely continuous on the interior of
each interval Iα, α ∈ A such that

φ(x) = −
∑
α∈A

C+
α log{x − lα} −

∑
α∈A

C−
α log{rα − x}+ gφ(x).

The space of such functions is denoted by LOG (⊔α∈AIα). This is a
Banach space equipped with the norm

∥φ∥LV =
∑
α∈A

(|C+
α |+ |C−

α |) +
∑
α∈A

VarIα(gφ) + ∥gφ∥sup.
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Special representation

For every 0 < a < 1 denote by Pa(⊔α∈AIα) the space of functions
with polynomial singularities of degree at most a, i.e. the space of
piecewise C 1 maps such that

pa(φ) := max
α∈A

min
{
sup
x∈Iα

|φ′(x)(x−lα)
1+a|, sup

x∈Iα
|φ′(x)(rα−x)1+a|

}
< +∞.

and for every α ∈ A the limits

C+
α := − lim

x↘lα
φ′(x)(x − lα)

1+a and C−
α := lim

x↗rα
φ′(x)(rα − x)1+a

exist. Pa(⊔α∈AIα) equipped with the norm

∥φ∥a = pa(φ) + ∥φ∥L1(I )

is also a Banach space.
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Proposition

Let ψR be a locally Hamiltonian flow, M ′ ⊂ M its minimal
component and I ⊂ M ′ a transversal curve.
If all its saddles are non-degenerate then g ∈ LOG (⊔α∈AIα).
If ψR has degenerate perfect saddles in M ′, then g ∈ Pa(⊔α∈AIα),
where a = m−2

m with m := max{mσ : σ ∈ Fix(ψR) ∩M ′}.
Moreover, if ψR is minimal on M then the singularities of g are of
symmetric type, this is ∑

α

C+
α =

∑
α

C−
α .

General approach to further results: To prove that a dynamical
property is satisfied for a.e. locally Hamiltionian flow in Fc,m̄ it is
enough to show this property for special flows T g for almost all
IETs T and for all roof functions g from the appropriate function
class. This reduces many of the problems regarding flows on
surfaces to roof functions analysis.
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Mixing

Theorem (Kochergin, Khanin-Sinai, Ulcigrai)

Non-degrenerated case. Almost every flow ψR ∈ F0,2̄ (minimal
and non-degenerate case) is weakly mixing but not strongly mixing.
Almost every flow ψR ∈ Fc,2̄ with c > 0 (non-minimal and
non-degenerate case) restricted to any its minimal component is
strongly mixing.
Degrenerated perfect case. Almost every flow ψR ∈ Fc,m̄ with
at least one mi > 2 (degenerate perfect saddle) restricted to any its
minimal component is strongly mixing.
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Deviation spectrum - the beginning of the story
The phenomenon of deviation spectrum and its relation with so
called Lyapunov exponents of the Kontsevich-Zorich cocycle were
first observed by Zorich in the context of studying deviations of
Birkhoff (ergodic) sums for piecewise constant observables for
almost all interval exchange translations:

φ(n)(x) =
∑

0⩽k<n φ(T
kx) ∼ nν for some 0 ⩽ ν ⩽ 1.

Inspired by this result and numerical experiments, Kontsevich and
Zorich in 1997 formulated the following conjecture: there exist
Lyapunov exponents 0 < νi ⩽ 1, 1 ⩽ i ⩽ g so that for almost every
locally Hamiltonian flow ψR with non-degenerate fixed points and
for every smooth map f : M → R there exists 1 ⩽ i ⩽ g + 1 such
that

lim sup
T→+∞

log
∣∣∣∫ T

0 f (ψt(x)) dt
∣∣∣

logT
= νi for almost every x ∈ M.

(νg+1 = 0) The exponents 0 < νg < . . . < ν1 = 1 are the positive
Lyapunov exponents of the Kotsevich-Zorich cocycle.
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Deviation spectrum - the beginning of the story
This conjecture was essentially positively verified by Forni in his
seminal paper (2002). More precisely, for almost every locally
Hamiltonian flow ψR ∈ Fmin (here we do not demand that all
saddles are non-degenerate) and a class of function vanishing at
Fix(ψR) Forni constructed g (genus of M) invariant distributions
D1, . . . ,Dg such that if D1(f ) = . . . = Di (f ) = 0 and Di+1(f ) ̸= 0
then

lim sup
T→+∞

log
∣∣∣∫ T

0 f (ψt(x)) dt
∣∣∣

logT
= νi+1 for almost every x ∈ M,

where νg+1 = 0. The first distribution is obvious D1(f ) =
∫
M fdω,

but the others are not so directly defined.
Forni used the fact that the flow ψR ∈ Fmin after a smooth change
of speed on M \ Fix is a translation flow hR. Suppose that
W : M \ Fix → R>0 describes that change of speed. As the
translation flow has constant speed and ψR slows down quickly
around fixed points, W has singularities at Fix .
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Deviation spectrum - the beginning of the story
Next, Forni developed a huge and powerful machinery using so
called Teichmüller flow on the moduli space to prove deviation
spectrum for a.e. translation flow hR and smooth (Sobolev)
observables f : M → R. By passing through the inverse change of
velocity, one can obtain deviation spectrum for ψR and observables
of the form f /W . They must vanish at Fix .
The next step was taken by Bufetov (2014), who proved the
deviation spectrum in an improved form. He proved the existence
of g cocycles ui : R×M → R (ui (t + s, x) = ui (t, x) + ui (s, ψtx)
for all t, s ∈ R) such that for every observable f : M → R such
that Wf is smooth (weakly Lipschitz) we have∫ T

0
f (ψt(x))dt =

g∑
i=1

Di (f )ui (T , x) + err(f ,T , x),

where for a.e. x ∈ M we have

lim sup
T→+∞

log
∣∣ui (T , x)∣∣
logT

= νi , lim
T→+∞

log |err(f ,T , x)|
logT

⩽ 0.
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Further problems with deviation spectrum

Problems:
1. The tools developed by Forni and Bufetov work only for locally
Hamiltonian flows which are the minimal strata, i.e. there are no
centers. But the existence of a non-degenerate center is an open
condition (it is stable under a small perturbation). Therefore the
set of flows with centers is topologically big.
2. The tools developed by Forni and Bufetov work only for
observables which vanish at saddle points. In fact, also, some
higher-order derivatives must also vanish when we deal with
multiple saddles.
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Marmi-Mousa-Yoccoz approach

The first problem one can solve by passing to the special
representation of ψR and applying a Marmi-Mousa-Yoccoz (2005)
approach. Let us consider a restriction of the locally Hamiltonian
flow ψR on M to its minimal component M ′ ⊂ M. Let I ⊂ M ′ be
any transversal smooth curve. Then ψR restricted to M ′ is
isomorphic to the special flow T g

R , where T : I → T is and IET and
g : I → R>0 ∪ {+∞} is the first return time map. Moreover, to
any smooth observable f : M → R we assign the map φf : I → R
given by

φf (x) :=

∫ g(x)

0
f (ψtx)dt for every x ∈ I .

Heuristic observation: the problem of studying the asymptotic of
the growth of ergodic integrals for the flow ψR boils down to
studying the asymptotic of the growth of ergodic sums
φ
(n)
f =

∑
0⩽k<n φf (T

kx), since φ(n)
f (x) :=

∫ g (n)(x)
0 f (ψtx)dt.
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Properties of φf

1. If f : M → R is zero on a neighborhood of any saddle point then
φf ∈ ACBV (⊔α∈AIα), i.e. φf is absolutely continuous on each Iα
and its derivative is of bounded variation on Iα. This is the case
considered by Marmi-Mousa-Yoccoz.
2. For general observables f if all saddles of ψR are non-degenerate,
then φf ∈ LOG (⊔α∈AIα), i.e.

φf (x) = −
∑
α∈A

C+
α log{x − lα} −

∑
α∈A

C−
α log{rα − x}+ gφ(x).

3. If ψR has degenerate saddles, then φf ∈ Pa(⊔α∈AIα), where
a = m−2

m with m := max{mσ : σ ∈ Fix(ψR) ∩M ′}.
Moreover, ACBV ⊂ LOG ⊂ Pa and in each case the linear operator

f 7→ φf

is bounded.
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Renormalization procedure
Let T = T(π,λ) : I → I is a minimal and ergodic IET exchanging
intervals Iα, α ∈ A. Suppose that there exists a nested sequence
(I (k))k⩾0, (I (0) = I ) such that the induced map T (k) : I (k) → I (k)

on I (k) is an IET exchanging d-intervals and T (k) = T(π(k),λ(k)).
Moreover, assume that there is a subset A ⊂ Sd × Rd

>0 and a map
R : A → A such that

(π(k), λ(k)) = Rk(π, λ)

and the projectivization of R is ergodic. Such sequences of intervals
are usually obtained by accelerations of so called Rauzy-Veech
induction.
By the definition of the induced map, T (k)x = T τ (k)(x)x , where
τ (k) : I (k) → N is the first return time map to I (k). In fact, τ (k) is
piecewise constant and denote by τ (k)α the common first return time
on I

(k)
α . Finally, we can define the renormalization operator

S(k) : L1(I ) → L1(I (k)), S(k)φ(x) = φ(τ
(k)
α )(x) for x ∈ I (k)α .
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Renormalization operator

S(k)(ACBV (⊔α∈AIα)) ⊂ ACBV (⊔α∈AI (k)α )

S(k)(LOG (⊔α∈AIα)) ⊂ LOG (⊔α∈AI (k)α )

S(k)(Pa(⊔α∈AIα)) ⊂ Pa(⊔α∈AI (k)α ).

If Γ(k) denotes the space of functions constant on intervals I
(k)
α ,

α ∈ A, then S(k)Γ(0) = Γ(k).
As Γ(k) can be identified with Rd , the restricted operator can be
identified with a matrix Q(k) ∈ SL(d ,Z). Moreover, Q(k) can be
treated as an SL(d ,Z)-valued cocycle over the transformation
R : P(A) → P(A) called a renormalization. This is an acceleration
of so called Kontsevich-Zorich cocycle. By the ergodic Oseledets
theorem, sympecticity of the cocycle and Avila-Viana (2007) about
the simplicity of the spectrum, it has Lyapunov exponents of the
form

−λ1 < . . . < −λg < 0 = . . . = 0 < λg < . . . < λ1.
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Accelerated KZ-cocycle
Using an invertible version of the renormalization map
R : P(A) → P(A) we can construct a spliting

Γ =
⊕

1⩽i⩽g

Γ−i ⊕ Γ0 ⊕
⊕

1⩽i⩽g

Γi (=: Γu)

such that dimΓ±i = 1 for 1 ⩽ i ⩽ g and

lim
k→+∞

log ∥Q(k)h∥
k

= λi if h ∈ Γi for some − g ⩽ i ⩽ g (λ0 = 0).

Let h1, . . . , hg be a basis of the unstable subspace such that

lim
k→+∞

log ∥S(k)hi∥sup
k

= λi .

In 1997, Zorich observed that for a.e. IET T we also have

lim sup
n→+∞

log ∥h(n)i ∥sup
log n

= νi :=
λi
λ1
.
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Deviation for some special observables
On the other hand, for every hi ∈ Γu there exists a C∞ map
ξi : M → R vanishing on a neighborhood of any fixed point such
that φξi = hi . Then

lim sup
T→+∞

log
∣∣ ∫ T

0 ξi (ψtx)dt
∣∣

logT
⩽ νi for every regular orbit starting form x

lim sup
T→+∞

log
∣∣ ∫ T

0 ξi (ψtx)dt
∣∣

logT
= νi for a.e. x

lim sup
T→+∞

log ∥
∫ T
0 ξi ◦ ψtdt∥L1

logT
= νi .

So
∫ T
0 ξi (ψtx)dt is a good candidate to play the role of ui (T , x) in

the decomposition∫ T

0
f (ψt(x))dt =

g∑
i=1

Di (f )ui (T , x) + err(f ,T , x).
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Correction operator
Marmi-Mousa-Yoccoz constructed the following (correction)
operator (their original construction is different from what I
present) h : ACBV (⊔α∈AIα)) → Γu given by

h(φ) = lim
k→∞

PrΓu ◦ Q(k)−1 ◦M(k) ◦ S(k)(φ),

where M(k) : ACBV (⊔α∈AI (k)α ) → Γ(k) is the mean-value operator
given by

M(k)(φ)(x) =
1

|I (k)α |

∫
I
(k)
α

φ(y)dy if x ∈ I (k)α .

One of the important challenges here is to show that this operator
is well defined as well as bounded. Moreover,

lim
k→+∞

log ∥S(k)(φ− h(φ))∥sup
k

⩽ 0.
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Correction operator

Note that if φ = h ∈ Γu then we can take h(h) = h.
As h1, . . . hg is a basis of Γu, we can define g functionals
di : AC

BV (⊔α∈AIα) → R, i = 1, . . . g such that

h(φ) :=

g∑
i=1

di (φ)hi .

Finally, we define Di as Di (f ) := di (φf ).
Moreover, for every smooth observable f : M → R vanishing on a
neighborhood of saddles we use the following decomposition

f (x) =

g∑
i=1

Di (f )ξi (x) + fe(x).
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Decomposition
By passing to ergodic integrals, this gives∫ T

0
f (ψtx)dt =

g∑
i=1

Di (f )

∫ T

0
ξi (ψtx)dt +

∫ T

0
fe(ψtx)dt

=

g∑
i=1

Di (f )ui (T , x) + err(f ,T , x).

On the other hand, applying the operator f 7→ φf , we have

φf =

g∑
i=1

di (φf )hi + φfe .

Next, we apply the operator h to obtain

h(φf ) =

g∑
i=1

di (φf )h(hi )+h(φfe ) =

g∑
i=1

di (φf )hi+h(φfe ) = h(φf )+h(φfe ),

so h(φfe ) = 0.
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Error term

As h(φfe ) = 0, we have

lim
k→+∞

log ∥S(k)(φfe )∥sup
k

⩽ 0.

This gives

lim sup
n→+∞

log ∥φ(n)
fe

∥sup
log n

⩽ 0

and finally

lim sup
T→+∞

log ∥err(f ,T , · )∥sup
logT

= lim sup
T→+∞

log ∥
∫ T
0 fe ◦ ψt dt∥sup
logT

⩽ 0.

This completes the proof of deviation formula (deviation spectrum)
for smooth observables f vanishing around fixed points.
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General observables - non-degenerate case

Suppose that ψR has only non-degenerate fixed points and let us
consider smooth observables f : M → R which can be non-zero at
some saddles in Fix(ψR) ∩M ′. Then φf ∈ LOG \ ACBV .

Theorem (A) (Ulcigrai-F)

The correction operator h can be extended to
h : LOG (⊔α∈AIα) → Γu so that for every φ ∈ LOG (⊔α∈AIα) we
have

lim
k→+∞

log 1
|I (k)|∥S(k)(φ− h(φ))∥L1(I (k))

k
⩽ 0.

Moreover, if φ has logarithmic singularities of symmetric type∑
C+
α =

∑
C−
α , then

1
|I (k)|

∥S(k)(φ− h(φ))∥L1(I (k)) is bounded along a subsequence.
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General observables - non-degenerate case
Using the overall strategy outlined earlier, based on the first part of
Theorem (A), we have confirmed completely the Konstevich-Zorich
conjecture.

Theorem (Ulcigrai-F)

For a.e. locally Hamiltonian flow ψR with non-degenerate fixed
points restricted to its minimal component M ′ ⊂ M there are g
invariant distribution Di : C

2(M) → R and cocycles ui (t, x) for
i = 1, . . . , g such that for every f ∈ C 2 we have∫ T

0
f (ψt(x))dt =

g∑
i=1

Di (f )ui (T , x) + err(f ,T , x),

where for a.e. x ∈ M we have

lim sup
T→+∞

log
∣∣ui (T , x)∣∣
logT

= νi , lim
T→+∞

log |err(f ,T , x)|
logT

= 0.
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General observables - non-degenerate minimal case

If ψR is additionally minimal, based on the second part of Theorem
(A), we provide much more accurate information on the behavior of
the error term. We have the following dichotomy:

Theorem (Ulcigrai-F)

Suppose additionally that the locally Hamiltonian flow ψR is
minimal on M. If f ∈ C 2 and f (σ) = 0 for every σ ∈ Fix then the
error term is uniformly bounded, i.e. there exists C > 0 such that

|err(f , t, x)| ⩽ C for every x ∈ M and t ∈ R.

If f ∈ C 2 and f (σ) ̸= 0 for some σ ∈ Fix then the error term is
equidistributed on R for a.e. x ∈ M, i.e. for a.e. x ∈ M, for any
pair of finite intervals I , J ⊂ R we have

lim
T→∞

|{t ∈ [0,T ] : err(f , t, x) ∈ I}|
|{t ∈ [0,T ] : err(f , t, x) ∈ J}|

=
|I |
|J|
.
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General observables - degenerate case

Suppose that the locally Hamiltonian flow ψR has multiple saddles
and f is non-trivial around them. Then φf ∈ Pa \ LOG for some
0 < a < 1. Unfortunately (or fortunately), the correction operator
h : LOG (⊔α∈AIα) → Γu cannot be extended to Pa(⊔α∈AIα).
However, by modifying the previous construction we can construct
another operator

hj : Pa(⊔α∈AIα) →
⊕

1⩽i⩽j

Γi ⊂ Γu,

whenever λj+1 ⩽ aλ1 < λj . In fact, we construct (with Minsung
Kim) a one-parameter family of such correction operators. They
help us for prove deviation spectrum in much more complicated
form than in the non-degenerate case. In the general case, there are
new exponents that are not derived from Lyapunov exponents for
the KZ-cocycles.
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Theorem (Kim-F)

For a.e. ψR for every f ∈ Cm (m = maxσ mσ) we have∫ T

0
f (ψt(x))dt =

∑
σ∈Fix(ψR)∩M′

∑
α∈Z2

⩾0
|α|<mσ−2

∂ασ (f )cσ,α(T , x)

+

g∑
i=1

Di (f )ui (T , x) + err(f ,T , x)

with

lim sup
T→∞

log |cσ,α(T , x)|
logT

=
mσ − 2 − |α|

mσ
for a.e. x ∈ M ′;

lim sup
T→∞

log |ui (T , x)|
logT

= νi for a.e. x ∈ M ′;

lim sup
T→∞

log |err(f ,T , x)|
logT

⩽ 0 for a.e. x ∈ M ′.
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