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Forecasting =  assessing  the probability of an earthquake with 
magnitude exceeding some chosen value,  in a particular area,  
over  a particular time window.

Physics-based = consistent with current knowledge of 
earthquake physics and phenomenology.
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Earthquake Forecasting
“Earthquake forecasting and prediction involve 

statements about the location, time, and magnitude of  
future fault ruptures.”

Earthquake Forecasting Model
“An earthquake forecasting model is a systematic method 

for calculating the probabilities of  target events within 
future space-time domains.”

International Commission on Earthquake Forecasting for Civil Protection (2011)



Seismotectonics-Basic notions
• Strain, Stress, Morh Circle
• Coulomb Failure criterion, Δ𝐶𝐹𝐹
• Rate&State friction
• Anderson theory of faulting
• ‘Elastic Dislocation’
• Moment, Magnitude, STF, Moment tensor, stress drop
• Pulse and crack rupture
• Rupture velocity, slip velocity
• Gutenberg-Richter Law
• Mainshocks, aftershocks, Foreshocks, Swarms
• Omori Law, inverse Omori Law
• Creep, interseismic coupling (locking)
• GNSS, SAR,



Background reading

• Scholz, C. H. (2002), The Mechanics of Earthquakes and 
Faulting, Cambridge Univ. Press., 2nd edition.

• Segall, P. (2010), Earthquake and Volcano Deformation, 
Princeton University Press.

• Avouac, J.-P. (2015), From Geodetic Imaging of Seismic 
and Aseismic Fault Slip to Dynamic Modeling of the 
Seismic Cycle, Annu. Rev. Earth Planet. Sci. 2015. 43:233–
71, 43, 233-271.

• Avouac, J.-P. (2015), Mountain Building: From 
Earthquakes to Geological Deformation, in Treatise on 
Geophysics, edited by A. B. Watts, pp. 377-439, Elsevier.



• Estimate of earthquake shaking hazard: Quantified as a probability of strength of 
shaking in a certain number of years 

• Primary purpose is to set the seismic design provisions of building codes

US Seismic Hazard Map



What is hazard?
How does it differ from risk?

Risk  = Hazard         x Exposure      x Vulnerabiliy

Risk   =   Chance of loss

Structural fragility
Non-structural vulnerability

Extent & density of 
built environment

Faulting, shaking 
landsliding
liquifaction
innundation

Hazard   =   Chance of an damaging ground motion

(Bill Ellsworth, USGS)



Probabilistic Seismic Hazard Analysis
1. Where will earthquakes occur in 

the future?

2. How often will they happen and 
how large can they get?

3. How hard will they shake the 
ground?

4. When answers are available for 
Steps 1-3: Add up all of the sources 
to find the probability of exceeding 
damaging shaking. (Bill Ellsworth, USGS)



-> Earthquakes do exhibit ‘‘memory”, earthquake probability is not uniform in space

Earthquake catalogs show clustering in time and space 

Seismicity of Italy

(Mulargia et al., 2017)



The Poisson process is memory less 
-> Probabilities are independent of  earthquake history, 

P(𝑡 ≤ 𝑇) = 1 − 𝑒!"# P(𝑡 > 𝑇) = 𝑒!"#P(𝑡) = 𝜆𝑒!"#

Poisson process: Assume earthquakes are independent events that happen randomly in time at 
the rate 𝜆. 

Earthquake Renewal Process



The effect of clustering is well represented by 
the gamma distribution (Corral, 2004; Hainzl, 
2006) to using the QTM catalog of California 
(Ross et al., 2019)

(Erin Hightower)

Catalog of California (Ross et al., 2019)
M>0.3 events

Declustered Catalog is Poisson, consistent 
with Gardner and Knopoff (1974)

Interevent time distribution 

P(𝑡 > 𝑇) = 𝑒!"#

Earthquake Renewal Process
P(𝑡 > 𝑇)



(Weldon et al. 2004)

The San Andreas Fault Example

Is recurrence of large earthquakes
(’system size’) Poissonian or quasi-periodic?



σ- STD of interevent time
μ- mean interevent time
τ- interevent time

(Griffin et al., 2020)

Is recurrence of large earthquakes
(’system size’) Poissonian or quasi-periodic?

80 long terms records worldwide were 
collected



Coefficient Of Variation = σ/μ

τ- interevent time
μ- mean interevent time
σ- STD of interevent time

COV = 0-1   quasi periodic
COV ~  1      random (poisson)
COV >  1      clustering

Burstiness= (σ-μ)/(σ+μ) B =    (-1)   - (-0.33)   strongly periodic
B = (-0.33) - 0       weakly periodic
B >             0               clustering (bursty)

Memory=
1

𝑁 − 1%
!"#

$%#
(𝜏!−𝜇&)(𝜏!'# − 𝜇&)

𝜎#𝜎&
M <  0   alternate occurrence (short-long-short)
M ~  0   no memory effect
M >  0   successive correlation (short-short long-long)

μ1 and σ1 are the mean and standard deviation of the sequence of interevent times 𝝉 i (i = 1, 2, …, N − 1)
μ2 and σ2 are the mean and standard deviation of the sequence of interevent times 𝝉 i (i = 2, 3, …, N)

(Griffin et al., 2020)

Is recurrence of large earthquakes
(’system size’) Poissonian or quasi-periodic?



Majority of studied faults show weakly periodic 
and uncorrelated large earthquake recurrence

many low activity-rate (annual occurrence rates < 
2 × 10−4) faults show random or clustered 
earthquake recurrence

80 long terms records worldwide:

(Griffin et al., 2020)

Burstiness= (σ-μ)/(σ+μ)

Memory=
1

𝑁 − 1
'
!"#

$%#
(𝜏!−𝜇&)(𝜏!'# − 𝜇&)

𝜎#𝜎&

Is recurrence of large earthquakes
(’system size’) Poissonian or quasi-periodic?



USGS report,
2000

The North Anatolian Fault Example

Is recurrence of large earthquakes
(’system size’) Poissonian or quasi-periodic?



(Stein et al., 1997)

1939, Mw 7.8

1942, Mw 7.0

1943, Mw7.2

1944, Mw 7.2

1957, Mw 7.1

1992, Mw 7.6

1999, Mw 7.6

1999, Mw 7.2

• 8 Mw>7.0 events in ~60 years

• The return period of each single event 
should be ~100-200yr on average

The North Anatolian Fault Example

Is recurrence of large earthquakes
(’system size’) Poissonian or quasi-periodic?



UCERF3-TI

Field et al., (2014), Uniform California Earthquake Rupture Forecast, 
Version 3 (UCERF3) -The Time-Independent Model, Bulletin of the 
Seismological Society of America, 104(3), 1122-1180.



UCERF3 – Time Dependent

By adding:
• Renewal models 

(elastic-rebound) using 
the timing of  past 
seismicity
• Spatiotemporal 

clustering to model 
aftershocks and 
triggered events 
(ETAS)

Field et al. (2015)

19



How to bring more physics into seismic 
hazard assessment methods?

• Seismicity responds to stress variations which 
can vary in space and time. Earthquake 
themselves are a source of stress variations 
(co and post). Can we account for these 
variations?  

• Is the PSHA framework still adequate?
• Can we move to using numerical model the 

‘seismic cycle’?



Dynamic Modeling the Parkfield EQs 
Sequence on the San AF

[Barbot et al, Science, 2012]
How to calibrate and validate such models?
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Quantification of EQs sources

• Hypocenter (epicentral location, depth) and 
origin time

• Moment (function of time)
• Moment tensor 

• Total cumulated moment release and duration
• Source spectrum ->Fault area, Stress drop

  
M0(t) = µA s ⋅ t n+ n ⋅ t s( ) = M0(t) u ⋅ t n+ n ⋅ t u( )

μ: shear modulus
A: fault area
u; unit vector // slip
n: unit vector      fault

Point source approximation
in seismology

  M0 = µAs

T



Moment- Magnitude

where M0 is expressed in N.m

  
M

w
= 2

3
logM

0
− 6

(Hanks and Kanamori, BSSA, 1979)



Double-Couple
• Earthquake sources in the point source 

approximation can generally be represented by a 
double-couple (~shear dislocation)

Nuclei of pure shear with (P, T, B) being the principal directions of 
the  deviatoric stress  tensor (P: compressional, T: tensional, B 
intermediary)



EW

‘Beach ball’ representation of 
earthquake focal 
mechanisms
(= fault plane solutions)



Earthquake Focal Mechanisms



Earthquake Focal Mechanisms



• Fault geometry and 
Rupture area (A) 

• Slip distribution.
• Moment:   M0

• Moment rate function
• Source Duration: T
• Rupture velocity, Slip Time 

function

Static  
quantities

Kinematic  
quantities

Quantification of EQs sources

Finite fault source model

  
M0(t)



Slip Potency (in m3):

Seismic Moment tensor
( N.m) 

where s is slip, n is unit vetor nomal to fault
And μ is elastic shear modulus (30 to 50 GPa) 

Scalar seismic Moment 
(N.m)
where Smean is average slip, A is surface area 

and ‘µu’ is elastic shear modulus (30 to 50 GPa) 

Moment Magnitude:
(where M0 in N.m)

  
M0 = µ(s ⋅ t n+ n ⋅ t s)dx dy

Fault _ area
∫∫

  
M0 = µSmean A = µ S(x, y)dx dy

Fault _ area
∫∫

  
P = SA = s(x, y)dx dy

Fault _ area
∫∫

  
M

w
= 2

3
logM

0
− 6

Quantification of EQs sources



Earthquake Phenomenology

• The 2013 Balochistan EQ
• The 2015, Gorkha EQ
• The 1992, Landers EQ

Reference: Avouac, J. P., F. Ayoub, S. J. Wei, J. P. Ampuero, L. S. Meng, 
S. Leprince, R. Jolivet, Z. Duputel, and D. Helmberger (2014), The 
2013, Mw 7.7 Balochistan earthquake, energetic strike-slip 
reactivation of a thrust fault, Earth and Planetary Science Letters, 
391, 128-134.



Mww moment tensor

T

P

The Sept, 24, 2013,  Mw7.7
Balochistan Earthquake



Landsat-8 images:
- USGS website
- GSD: 15 meters
- Pre-earthquake images 

September, 10, 2013 
(14 days before) 

- Post-earthquake 
images September, 26, 
2013 (2 days after)



(Leprince et al, 2007)

Image Processing (COSI-Corr)





- Window size : 64x64 pixels (960x960 m)
- Step (GSD of displacement maps): 16 pixels 

(240 m)
- 1-sigµa uncertainly: 30 cm

Measured Surface Displacement Field

- Amplitude of NS component
- Horizontal displacement vector field



Strike-parallel

Strike-perpendicular



(Zinke, Hollingsworth and Dolan, 2015) 

The Sept, 24, 2013,  Mw7.7
Balochistan Earthquake



The rupture falls on the 
Hosbah fault along  the 
front of the Kech Band, a 
preexisting thrust fault 
within the Makran
accretionnary prism

(Lawrence, Kahn,Dejong, Farah and Yeats, 1981)

Kech Band



Rupture kinematics from backprojection of 
Teleseismic waveforms

- Data: Japanese Hi-net seismic 
network

- Multitaper-MUSIC array
processing technique (Meng et 
al, 2011)

- Frequency band:  0.5-2Hz
- HF source duration: 50s



Backprojection of teleseismic waveforms (Hi-NET), 0.5-2Hz

Rupture kinematics from backprojection of 
Teleseismic waveforms



   
u(t) = Djk[cos(λ jk )Yjk

1 (v jk ,t)+ sin(λ jk )Yjk
2 (v jk ,t)] !S jk (t)

k=1

m

∑
j=1

n

∑

(Ji, C., D. J. Wald and D. V. Helmberger, 2002a.b, BSSA)

A simulated annealing algorithm is used to simultaneously invert for 
the slip, rise time and rupture velocity

1 : 'jkY Green s Functions along strike
2 : 'jkY Green s Functions along dip

:jk Rakel

  
S jk (t) : Source time function

Forward modeling of ground velocity: (assuming a pulse-like source)

NB: Green’s functions are calculated with a crustal 
layered structure in the source region, then use ray 
theory to propagate to the receiver

Finite Source Model

Inversion:

  
Djk : Final slip at ( j,k)



Finite Source Model



(Ellouz-Zimmermann et al, 2007)



Crack

Pulse

Slip continues at the center

X

Cumulative slip

X

Cumulative slip

Slip stops at the center



– Seismic ruptures “pulse like” (e.g, Heaton, 1990)  for large 
earthquakes (Mw>7)  with rise times of the order of 3-10s 
typically

– the rupture velocity is variable during the rupture but 
generally 0.7 to 0.9 the shear wave velocity. (2.5-3.5 kms). 
It is occasionnally ‘supershear’ (>3.5-4km/s).

– Seismic sliding rate is generally of the order of 1m/s
– Large earthquakes typically ruptures faults down to 15km 

within continent and down to 30-40km along subduction
Zones.

– Seismic ruptures are affected by fault geometries. They 
often stop at geometric complexities  but can jump across 
significant stepovers

– Slip variability measured at the small scale is probably due 
to off-fault anelastic defomation

Phenomenology of earthquake ruptures
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High rate GPS records, KKN4
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The Mw7.8 Gorkha earthquake

(Avouac et al., 2015; Galetzka et al., 2015 )



Expected Maximum Magnitude over 1 year: ~5

Let N (≥ M) be  number of EQs per year with magnitude ≥ M

The Gutenberg-Richter law

log10 N(≥ Mw) = a – b Mw

Mmax?

P(M>7, 1yr) ~ 10-2



(Mulargia et al., PEPI, 2017) 

Earthquakes clustering in time and space

Italy, 1981-2015
M >2.5 events



Spatio-temporal Interevent distribution (Zaliapin and 
Ben-Zion, 2013)  Southern California (Ross et al., 2019).

Background
Poisson process

  N (t) ≈ N0 ln(1+ t / τ )

Aftershocks,
Omori Law

  
n(t) = n(0)

(1+ t / τ ) p

where p ~ 1

Earthquakes clustering in time and space



The Omori law (aftershocks)
The decay of aftershock activity follows a power law.
Many different mechanisms have been proposed to explain such decay:  post-seismic creep, fluid diffusion, 
rate- and state-dependent friction, stress corrosion, etc… but in fact, we don’t know…

Aftershock decay since the 1891, M=8 Nobi EQ: the 
Omori law holds over a very long time! Same for 1995 Kobe EQ

1 100 10000
Time (days)

0.001

0.01

10

1000
n (t)

Time (days)

n (t)

(0)( )
(1 / ) p
nn t
t t

=
+ where p ~ 1



Aftershocks
(0)( )

(1 / ) p
nn t
t t

=
+

p ~ 1

Mignan (2017)

K (M) = K0exp[α (M − m0)]

‘Utsu’ (1970)  Productivity ‘Omori’ (1895)  decay

Mignan (2016)

(Helmstetter et al.,  2006)

ETAS (e.g., Kagan and 
Knopff, 1981; Ogata, 1988) 

The Great Nobi 
Earthquake (M~8)
1891



Majority of studied faults show weakly periodic 
and uncorrelated large earthquake recurrence

many low activity-rate (annual occurrence rates < 
2 × 10−4) faults show random or clustered 
earthquake recurrence

80 long terms records worldwide:

(Griffin et al., 2020)

Burstiness= (σ-μ)/(σ+μ)

Memory=
1

𝑁 − 1
'
!"#

$%#
(𝜏!−𝜇&)(𝜏!'# − 𝜇&)

𝜎#𝜎&

Is recurrence of large earthquakes
(’system size’) Poissonian or quasi-periodic?



Modified from Kanamori & Brodsky (2004)

Moment-Area and Moment-Duration Scaling
A,

 k
m

2

𝑀- = 𝐺/
./01# /23/

𝑠(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 G : Shear modulus
s(x,y): slip at point (x,y)

M0: Moment
A: Rupture area
T: Earthquake Duration

𝑀- ∝ 𝑇4𝑀- ∝ 𝐴4/6

Du
ra

tio
n,

 T
 (s

)

Potency
Mw Mw6 7 8 9



(e.g., Scholz, 1990)

Circular crack of radius a with uniform stress drop, Ds, in a 
perfectly elastic body (Eshelby, 1957)

Slip

Stress

  
s = 4

π
(1−ν )
(2−ν )

Δσ
µ

a2 − x2

  
Smean =

8
3π

(1−ν )
(2−ν )

Δσ
µ

a-->

   
Δσ ! 7π

8
µ

Smean

A
-->

G:  Shear modulus
n : Poisson coefficient

+a-a Ds

The Static Circular Crack Model

  Δσ ≈ C ⋅ M0 ⋅ A−3/2

G G

G

𝑀! = 𝑆"#$% $ 𝐴



3MpasD »

  Δσ ≈ 30Mpa

  Δσ ≈ 0.3Mpa

Modified from Kanamori & Brodsky (2004)

  Δσ ≈ C ⋅ M0 ⋅ A−3/2

  
2
3

log A ≈ − logΔσ + log M0 + logC

Moment-Area Scaling
A,

 k
m

2

Ø Seismic stress drop  Ds looks 
relatively uniform, typically 
between 0.1MPa and 10MPa

Linear Fracture Mechanics:

𝑀- = µ/
./01# /23/

𝑠(𝑥, 𝑦) 𝑑𝑥𝑑𝑦

G:  Shear modulus
S(x,y): slip at point (x,y) on fault
A: Rupture area

G



From Kanamori & Brodsky, 2004

Rupture velocity, 𝑉+ ,during seismic
ruptures doesn’t vary much.
Consistent with circular crack 
dynamics (Madariaga, 1977):

𝑉! = 𝛼𝑉" , with 𝛼~50 − 70%

  a = vrT ⇒ A∝T 2

Moment-Duration Scaling

𝑀- ∝ 𝑇4

, 𝑆 ∝ 𝑇
⇒𝑀! = 𝐺𝑆𝐴 ∝ 𝑇#



! "#$"%&'$ "$'"( $%)*%$+
,-.%&/ 0.&&.1 ' "%2#"
3.3+4*5/%$'*#.4 ,"'&#46
$+&'*#.4

Kanamori and Anderson, 1975

7-+ ,"'&#46 ,-.%&/ ,1#*"- *. &#4+'$
1-+4 ,&#) +8+4*, ,'*%$'*+ *-+ 1#/*-
.0 *-+ ,+#,3.6+4#" 9.4+

Romanowicz and Rundle, 1993

Moment-Duration Scaling
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‘Elastic Dislocation’ and ‘crack’ models

• Theory
• Relation to crack models
• Application to relate slip on faults to 

deformation
• Inversion



Some elasticity 
solutions of use in tectonics

• ‘Elastic dislocations’ in an elastic half-space (Steketee 1958; Cohen, 
Advances of geophysics, 1999)
– The infinitely long strike-slip fault (Segall, 2010)
– The infinitely long dip-slip fault (Manshina and Smylie, 1971, Rani and Singh, 

1992; Singh and Rani, 1993, Cohen, 1996).
– Rectangular (Okada, 1985; 1992) and triangular (Meade, 2007) fault patch in 3-D

• Elastic dislocation in an spherical PREM Earth model (Sun et al., 2009)
• Point source of pressure ( the ‘Mogi source’)
• Uniaxial poroelastic compaction (Geertsma, 1973)
• The Boussinesq pb (normal point load at the surface of an elastic half-

space); (Jaeger, Rock mechanics and Enegineering) 
• The Cerruti  pb (shear point load at the surface of an elastic half-space); 

(Jaeger, Rock mechanics and Enegineering) 
• ….



‘Elastic Dislocation’

• Refers to the theory describing strain induced 
by slip on a surface embedded in an elastic 
medium. 

• The theory allows to determine deformation 
of an elastic medium due to slip localized on  a 
fault.

• The theory is widely used to model geodetic 
strain due to co-seismic or interseismic 
deformation.



In crack mechanics, 3 modes are distinguished

Mode I= Tensile or opening mode: displacement is normal to the crack walls
Mode II= Longitudinal shear mode: displacement is in the plane of the crack 
and normal to the crack edge (~ edge dislocation)
Mode III= Transverse shear mode: displacement is in the plane of the crack and 
parallel to the crack edge (~ screw dislocation)

I II III



Let’s consider a fault parallel to Oy,  
with infinite length, and  surface 
deformation due to uniform slip, equal 
to Sy, extending from the surface to a 
depth h. 
(Slip vector is (0,Sy,0) // Oy)

h

Infinite  Strike-Slip fault

(e.g., Segall, 2010)
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Infinite Thrust fault
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Surface displacements due to slip S on a fault 
dipping by θ of to depth D

(e.g., Manshina and Smylie, 1971; Cohen, 1996)
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Infinite Thrust fault
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Infinite Thrust fault

(see Cohen, 1996)

Note that xD coincides with 
the ‘hinge line’ (zero uplift)



Dislocation Elements in 3-D

• Slip is assumed uniform on some idealized planar 
fault patch

• Half-space with isotropic homogeneous elastic 
properties (2 parameters: shear modulus, Poisson 
coefficient)

• Rectangular elements: Okada (1985, 1992)

• Triangular Elements: Meade (2007)

https://summit.fas.harvard.edu/software/triangular-dislocations

e.g.: https://depts.washington.edu/clawpack/users-4.6/okada.html



Okada (1985, 1992)
Function [ux,uy,uz] = 
calc_okada(U,x,y,nu,delta,d,len,W,fault_type,strike)

This function computes the 
displacement field [ux,uy,uz] on the 
grid [x,y] assuming uniform slip, on a 
rectangular fault with
U: slip on the fault
nu: Poisson Coefficient 
delta: dip angle
d: depth of bottom edge
len=2L: fault length
W: fault width
fault_type: 
1=strike,2=dip,3=tensile,4=inflation

NB:C is the middle point of bottom edge 



The anti-plane crack model

See Pollard et Segall, 1987 or Segall, 2010 for more details

A rectangular fault extending from the surface to a depth h, with 
uniform stress drop (‘infinite Strike-Slip fault)

2 22u a zs
µ
D

D = -

i. The predicted slip distribution is elliptical 
with depth

ii. Maximum slip should occur at the surface 



The circular crack model

See Pollard et Segall, 1987 or Scholz, 1990 for more details

A planar circular crack of radius a with uniform stress drop, Δσ, in a 
perfectly elastic body (Eshelbee, 1957)

NB: This model produces infinite stress at crack tips, which is not realistic

Slip on the crack

Stress on the crack

2 24 (1 )
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u a xn s
p n µ

- D
D = -

-



The circular crack model

See Pollard et Segall, 1987 or Scholz, 1990 for more details

A planar circular crack of radius a with uniform stress drop, Ds, in a 
perfectly elastic body (Eshelby, 1957)

NB: This model produces infinite stress at crack tips, which is not realistic

i. The predicted slip distribution is elliptical
ii. Dmean and Dmax increase linearly with 

fault length (if stress drop is constant).

Slip on the crack

Stress on the crack
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Co-seismic displacement field due to 
the 1992, Landers EQ

G. Peltzer

Here the measured SAR interferogram is compared with a theoretical 
interferogram computed based on the field measurements of co-seismic slip 
using the elastic dislocation theory

This is a validation that coseismic 
deformation can be predicted 
acurately based on the elastic 
dislocation theory 

(based on Massonnet et al, Nature, 1993)



The theory of elastic dislocations 
can be used to model surface 
deformation predicted for any slip 
distribution at depth,



Inverting for slip distribution
• Build a mesh describing the faults geometry (with rectangular, or 

triangular fault patches), 
• Represent fault slip with a matrix listing strike-slip and dip-slip 

components
à

• Assemble your data (measurements with associated uncertainties). You 
might need resampling the data. 
à

• Calculate the Green functions relating unit slip along strike, or along dip 
for each slip patch at each data point.
à

• Solve: 

  
d ,Cd

 m

 G

 d = Gm



Over-determined problem (n>m)

• Least-squares inversion with account for data 
uncertainties à

• Chi-squares minimisation:

• Solution: 

 d = Gm

  
χ2 =

di
obs − di

pred

σ i
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i
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Pseudo-inverse

Resolution Matrix
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• The pb is ill-posed (more variables to solve for 
than data available)

• Additional ‘regularization’ constraints are 
generally added (linear operator)

• Tikhonov Regularisation constraints: 
– Moment, slip potency. 
– Gradient  
– Laplacian (smoothness)

 Λm = c

Λ = ∇

 Λ = Δ = ∇2

 Λ = 1

--> Minimize: 
  
d −Gm

2

2
+ λ i Λ i m− ci 2

2

i
∑

Under-determined problem (m>n)



• This is equivalent to solving a new set of linear 
equations now (over-determied):

 

d = Gm
Λ i m = ci

  
m = GT Cd

−1G + λ i
2Λ i

T Λ i
i
∑⎛

⎝⎜
⎞
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−1

GT Cd
−1d

• How to choose the weight (λi) on the 
regularization criteria?
– L-curve corner (Hansen, 1992)
– Reduced Chi- squares~1

à
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