Applications of nuclear reaction theory in medical radionuclide production

47Sc production from enriched Titanium/nat Vanadium targets F. Barbaro L. Canton, Y. Lashko, L. Zangrando

155Tb production from enriched gadolinium targets F. Barbaro, L. Canton, N. Uzunov, L. De Nardo, L. Melendez-Alafort

52gMn production from natural Vanadium/Chromium targets A. Colombi, M. P. Carante, F. Barbaro, L. Canton, A. Fontana, L. De Nardo, L. Melendez-Alafort

Within the REMIX Project: Research on the Emerging Medical radionuclides from the X-sections Coordinated by **Gaia Pupillo** (INFN-LNL)

ICTP-IAEA, Trieste, October 2023

Which	production	n route is	adequate
f	or clinical	applicati	ons?

47Sc (155Tb) (52gMn) Which production route is adequate for clinical applications?					
			In collabor		
Radiolsotope	Half-life	Main Use	Additional Use	Context	
Radiolsotope ⁴⁷ Sc	Half-life 3.35 d	Main Use β ⁻ THERAPY	Additional Use	Context Theranostic ^{44,43} Sc	
Radiolsotope ⁴⁷ Sc ¹⁵⁵ Tb	Half-life 3.35 d 5.32 d	Main Use β ⁻ THERAPY SPECT	Additional Use SPECT AUGER THERAPY	Context Context Theranostic ^{44,43} Sc Theranostic ^{149,152,161} Tb	

(155**Tb**) (52g**Mn**)

$$\begin{array}{ll} \mbox{46Sc} & T_{1/2} = 83.79 \mbox{ d} \ ; \ {}^{48}\mbox{Sc} & T_{1/2} = 43.67 \ h \\ \mbox{156Tb} & T_{1/2} = 5.35 \ d \\ \mbox{54Mn} & T_{1/2} = 312.12 \ d \end{array}$$

Preequilibrium models - in TALYS

- PE 1 → Exciton model: Analytical transition rates with energydependent matrix element
- PE 2 → Exciton model: Numerical transition rates with energydependent matrix element.
- PE 3 → Exciton model: Numerical transition rates with optical model for collision probability
- PE 4 → Multi-step direct/compound model
- PE 5 → Geometry Dependent Hybrid (GDH) model

from TALYS-G implementation provided by KIT

Level density models - in TALYS

- LD 1 \rightarrow Constant temperature + Fermi gas model
- LD 2 \rightarrow Back-shifted Fermi gas model
- LD 3 \rightarrow Generalised superfluid model
- LD 4 → Microscopic level densities (Skyrme force) from Goriely's tables

phenomenological

- LD 5 → Microscopic level densities (Skyrme force) from Hilaire's combinatorial tables
- LD 6 → Microscopic level densities (temperature dependent HFB, Gogny force) from Hilaire's combinatorial tables

⁵⁰Ti(p,α)⁴⁷Sc

Representing the model variability of Talys calculations

 ${}^{50}\text{Ti}(p,x){}^{47}\text{Sc}$

Box-Whisker Plot

The new experimental data are very promising!

 ${}^{50}\text{Ti}(p,x){}^{47}\text{Sc}$

Box-Whisker Plot

Optimization of level density parameters to get curves guided by data

 $\rho(E) = \exp\left(c\sqrt{E-p}\right)\rho(E-p)$

Modified level density of ⁴⁷Sc compound

... and contaminants cross-sections

From Cross-Sections to Yields and RNP Purities

Significant Yield of ⁴⁷Sc

⁴⁹Ti(d,α)⁴⁷Sc

⁴⁹Ti(d,x)^{47/46/48}Sc

Model variability in TALYS

⁴⁹Ti(d,x)^{47/46/48}Sc

Optimization by genetic algorithms

50 ⁴⁶Sc GA TALYS ⁴⁶Sc Chen 1964 ⁴⁶Sc GA TALYS ⁴⁷Sc 47Sc Chen 1964 40 Cross section (mb) ⁴⁶Sc 30 20 10 0 10 15 20 25 0 5 Energy (MeV) PE 3 - LD 6 $4^{6}Sc$ c = 1.573 MeV^{-1/2}, p = 0.390 MeV $4^{7}Sc$ c = -0.029 MeV^{-1/2}, p = 1.327 MeV

 49 Ti(d,x) $^{46/47}$ Sc

Yield

1.418

2.14E-04

0.0

Conclusions

arxiv.org/abs/2310.02825

Both ⁵⁰Ti(p,α)⁴⁷Sc and ⁴⁹Ti(d,α)⁴⁷Sc are promising routes for hospital-cyclotron production

✓ High purity (RNP >99%)

✓ Yield 4.1 MBq/(µA⋅h) for 50 Ti(p,α) @ 18 MeV 1.4 MBq/(µA⋅h) for 49 Ti(d,α) @ 10 MeV

⁵⁰Ti(p,α) \rightarrow The new data by Dellepiane 2022 and the – still preliminary – confirmation 2023 by REMIX experiment (Pupillo, Mou, De Dominicis etc) changed dramatically the perspectives for this reaction, in positive!

⁴⁹Ti(d, α) \rightarrow Promising but the 1964 data by Cheng need to be confirmed!

Representing the model variability of TALYS calculations

Not always the model dispersion is large !

^{nat}Cr(p,x)^{52g}Mn