⁴⁷Sc production for medical applications: cross-section optimization based on genetic algorithms

- Yuliia Lashko Francesca Barbaro Luciano Canton Lisa Zangrando
- **Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine**
- INFN, Padova, Italy
- The university of Pavia , Pavia, Italy

⁴⁷Sc holds potential for dual-purpose radiopharmaceuticals therapy and diagnostics (theranostics)

2

Image is taken from H.Y. Tan et al., Nuclear Medicine and Biology, 90–91, p. 55 (2020)

For the evaluation of the cross sections we used TALYS code

Hartree-Fock level densities from numerical tables

Geometry-dependent hybrid model for the pre-equilibrium process

Level densities are adjusted to experimental data via a scaling function:

$$\rho(E) = \exp\left(c\sqrt{E - p}\right)\rho_{\rm HFM}(E - p)$$

We optimized 6 pairs of c & p parameters with genetic algorithm to fit a large set of measured cross sections relevant for ⁴⁷Sc production from ⁴⁹Ti target

The genetic algorithm is a random-based evolutionary algorithm inspired by Darwin's theory of natural selection

In the initialization phase, it is important to consider how this initial population might vary

Maintaining population diversity is essential for preventing premature convergence to suboptimal solutions

Increasing the diversity of the initial population often results in a faster convergence of the fitness function

Convergence of fitness function in p-49Ti cross section optimization vs. initial population diversity

Genetic algorithm optimization yields a superior cross-section fit compared to the default TALYS model

7

Fit of the ⁴⁹Ti(p,n2p)⁴⁷Sc cross section using GA optimization for level-density parameters compared to default LD model 4 values

With the genetic algorithm, we successfully fit the crosssection data for the production of 9 radionuclei

Fit of the ⁴⁹Ti(p,n2p)^{46,48}Sc cross section using GA optimization for level-density parameters compared to default LD model 4 values

TALYS default model better describes the low-energy nuclear level density of ⁴⁷Sc as it was tailored to fit the cumulatives

Cumulative nuclear levels for ⁴⁷Sc compound nucleus: GA-optimized vs. LD model 4 defaults

The combination of genetic algorithm and TALYS is a powerful optimization tool for enhanced cross-section accuracy

