

Investigation of ¹¹³In(α ,n) and ^{nat}In(α ,n) reactions to determine the α -optical potential for astrophysical p-process

Dipali Basak

Saha Institute of Nuclear Physics, HBNI, Kolkata, INDIA Email : dipali.basak@saha.ac.in

Joint ICTP-IAEA Workshop on Simulation of Nuclear Reaction Data with the TALYS Code (smr 3887), ICTP, Trieste, Italy 16-20 Oct 2023

Plan of Talk

- Alpha induced reaction with p-nuclei
- Alpha optical model potential
- Sensitivity study
- Different approach : (α,n) reaction
- 113 In(α , γ) reaction

What Are p-nuclei

Nuclei heavier than iron (Z>26) are produced in the stars by neutron capture and β-decay process as charged particle fusion reaction becomes more and more difficult due to the Coulomb barrier.

p-nuclei p-process

- Slow neutron capture (s-process)
- Rapid neutron capture (r- process).
- A number of naturally occurring isotopes (⁷⁴Se-¹⁹⁶Hg)
 - Can not be formed by s- or r- process

Ρ

- Natural abundances are 10-100 times smaller than the s- and r- nuclides.
- Situated in the neutron deficient side of the valley.

n capture
 β⁻ decay

 β^+ decay

-- proces

Production of p-nuclei

- p-nuclei are formed by a sequence of photodisintegration processes in a high γ-flux scenario.
 - Pre existing s or r- seed nuclei are created proton rich isotopes via a series of (γ, n) reactions.
 - When the neutron separation energy increases, (γ, p) and (γ, α) reactions are more rapid and produced stable element with lower atomic number.

Needs for measuring alpha optical model potential (AOMP)

- Calculation for the p-process requires a huge reaction network involving about 1000 nuclei and the reaction rates are necessary input to the network reaction calculation.
- Reaction rates are derived from the reaction cross-sections.
- The γ -induced reaction cross-sections can be obtained from the inverse reaction cross-section using the principle of detailed balance.
- In order to analyze measured $(\alpha, \gamma), (p, \gamma)$ reaction cross-sections, one has to calculate them using the statistical model for compound nuclear processes.
- One of the main Ingredient of Statistical model calculations is optical potential.

Alpha induced reaction on ¹¹³In

- Maximum p-process calculation have been performed with even Z nuclei $(J^{\pi} = 0^+)$. ¹¹³In has odd Z nuclei and non zero ground state spin(9/2⁺).
- High abundant p-nuclei (4.28%)
- ¹¹³In has a special importance for the study of the Cd-In-Sn region. ¹¹³In is under produced in nucleosynthesis calculations of the p or γ process. ¹¹³In has strong contributions from other processes.
- More accurate measured cross sections in the relevant energy range are required to find whether these discrepancies are caused by nuclear physics inputs or also problems with astrophysical models.

Limitation of elastic scattering

- α-optical potential parameters are obtained by fitting the existing alpha elastic scattering angular distribution (McFadden-Satchler).
- (α, γ) reaction cross-section are obtained at Gamow window energy region.
- Due to the dominance of Coulomb part, elastic scatterings are performed at much higher energies and extrapolated potential parameter for required energy.
- For low energy reaction, AOMP obtain form elastic scattering data are not properly explain the reaction.

Reaction cross-section : Statistical model

Alpha induced compound nucleus cross-section for a specific outgoing channel x (x= α,p,n,γ etc.):

 $\sigma(\alpha, x) = \sum_{J} \sigma(E_{c}, J) P(E_{c}, J; x)$

Compound nucleus Decay probability formation cross-section

- Decay probability : $P(E_c, J; x) = \frac{T_x}{\sum T_i}$
- Above neutron threshold (for low energy reaction) neutron decay dominates $P(E_c, J; x) \approx 1$ $\sigma(\alpha, n) \sim \sum_{I} \sigma(E_c, J) \approx \sum_{I} \pi \lambda_{\alpha}^2 T_{I}(\alpha)$

 $T_l(\alpha)$: Transmission coefficient for entrance channel.

 (α,n) cross-section is solely dependent on the α -optical potential.

- Fitting the (α,n) reaction cross-section data to modify the AOMP parameters for lower energies.
- The HF calculations are carried out using the statistical model code TALYS in version 1.96

Sensitivities of Cross-section

- In Hauser-Feshbach model calculation, reaction cross-sections are computed from the transmission coefficients that are correlated with the average width parameters
- Sensitivities of cross-section (σ) with variation of width (w):

$$S = \frac{\frac{d\sigma}{\sigma}}{\frac{dw}{w}}$$
 Ref : T. Rauscher, Ap. J. Suppl. 201, (2012) 26.

- S = 0 : No change in cross-section by changing the width.
- $S = \pm 1$: Cross-section is changed by same factor as the width changes.

Activation Measurement @ VECC:

- α -beam energy = 28 MeV
- Target :
 - Enrich ¹¹³In (93.1% ¹¹³In , 6.9% ¹¹⁵In) / Al Backing (Thickness In : 0.078 μm (56 μm/cm²) / Al : 2.71 μm)
 - ^{nat}In (4.3% ¹¹³In , 95.7% ¹¹⁵In) / Al Backing
 (Thickness In : 0.12 μm (85μm/cm²) / Al : 2.71 μm)
- Reaction : 113 In(α ,n), Energy : 9.9 17.8 MeV
- Monitor foil : ^{nat}Cu (Thickness 7 μm)

Modified McFadden-Satchler (McF) potential:

Modified McF potential parameter set :

Real Potential parameter	Imaginary potential parameter			
$V_0 = \frac{185}{1 + \exp(\frac{0.9E_{cu} - E_{cm}}{a_c})}$ MeV	$W_0 = \frac{25}{1 + \exp(\frac{0.9E_{cu} - E_{cm}}{a_c})} \text{ MeV}$			
$r_v = 1.4 \; { m fm}$	$r_w = 1.4 \text{ fm}$			
$a_v = 0.52 \text{ fm}$	$a_w = 0.52 \text{ fm}$			
$r_c = 1.3 \; { m fm}$				

Energy diffusivity : $a_c = 10 \text{ MeV}$ $E_{cu} = \text{Coulomb barrier}$

Ref: 1. Astron. Astrophys. 333, (1998) 1112
2. D. Basak, C. Basu, Eur. Phys. J. A 58 (2022) 150

¹¹³In(α ,n) Reaction

Potential	χ^2/N
McFadden- Satchler	94.46
Avrigeanu	83.21
Modified McF	4.58

smr 3887 17 Oct 2023

¹¹³In(α , γ) Reaction

smr 3887 17 Oct 2023

Conclusion

- (α,n) reactions for p-nuclei ¹¹³In is mainly dependent on the α -width, other width contributions are negligible.
 - McF potential with both real and imaginary depth modified adequately explains the results.
 - Modified potential defines α -width with significant accuracy.
- Neutron and gamma width also contribute to the ${}^{113}In(\alpha,\gamma)$ reaction cross-section
 - The modified potential provide a satisfactory representation of the (α,γ) reaction cross-section with suitable level density(Back-shifted Fermi gas Model) and γ-ray strength function (Brink-Axel Lorentzian).

α -optical potential

• α-optical Potential form for Present System :

$$U(r) = V_{C}(r) + V_{N}(r)$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$
Coulomb Nuclear
potential
$$V_{N}(r) = \frac{-V_{0}}{1 + exp\left(\frac{r - r_{v}A_{T}^{1/3}}{a_{v}}\right)} + i\frac{-W_{0}}{1 + exp\left(\frac{r - r_{w}A_{T}^{1/3}}{a_{w}}\right)}$$

- V_0, W_0 = Real and Imaginary potential strength
- $r_i, a_i = \text{Radii} \text{ and diffusivities.}$ (i=v,w)

Experimental Setup

- Performed at K-130 cyclotron (channel 1) in VECC, Kolkata
- Irradiation time ~3-12 Hr
- Current = 250-300 nA

• Distance between detector window and target is = 12.5 mm

Sensitivities of Cross-section

- In Hauser-Feshbach model calculation, reaction cross-sections are computed from the transmission coefficients that are correlated with the average width parameters
- Sensitivities of cross-section (σ) with variation of width (w):

$$S = \frac{\frac{d\sigma}{\sigma}}{\frac{dw}{w}}$$
 Ref : T. Rauscher, Ap. J. Suppl. 201, (2012) 26.

- S = 0 : No change in cross-section by changing the width.
- $S = \pm 1$: Cross-section is changed by same factor as the width changes.

Results

Reaction	Product	Half Life (Hr)	γ-energy (KeV)	Relative Intensity (%)
¹¹³ In(α ,n)	116 Sb ^m	1.01	407.35	38.8
			542.9	52
¹¹³ In(α,γ)	¹¹⁷ Sb	2.8	158.56	85.9

Ref: Nuclear Data Sheets 137, 1 (2016)

D

smr 3887 17 Oct 2023

Half Life Estimation

Half life : 117 Sb : 2.8 Hr 116 Sb^m : 1.01 Hr

smr 3887 17 Oct 2023

$\alpha-$ induced reaction cross-section

N_{Prod}

 $\sum_{k=1}^{N} \phi_{b,i} \frac{1 - e^{-\lambda \Delta t}}{\lambda} e^{-\lambda \Delta t (N-i)}$

$$N_{Prod} = \frac{A}{\epsilon \eta e^{-\lambda t_w} (1 - e^{-\lambda t_c})}$$

Cross-section of a given reaction is

N_A

 $\sigma_{reac} =$

A = Peak Area

 $\epsilon = Efficiency$ of the detector at given γ -energy

 η = Relative intensity of the transition

 $t_w = cooling time$, $t_c = counting time$

 $N_A = Surface density of the target(atoms/cm^2)$

 $\phi_{b,i}$ = Number of bombarded α -particle per sec in the ith time period.

 t_i = Irradiation time (divided into N short intervals Δt = 1 min)

smr 3887 17 Oct 2023

Stacked target

Principle of detailed balance

$$X + x \longrightarrow Y + y$$
$$\frac{\sigma_{YX}}{\sigma_{XY}} = \frac{P_x^2 (2I_x + 1)(2I_x + 1)}{p_y^2 (2I_y + 1)(2I_Y + 1)}$$

- Decay probability : $P(E_c, J; x) = \frac{R(E_c, J; x)dE}{R(E_c, J)dE}$
- Total decay rate : $R(E_c, J) = R_p(E_c, J) + R_{\gamma}(E_c, J)$
- Decay rates for particles : $R_p(E_c, J)dE = \sum_x \sum_{j,s} \int_{\varepsilon=0}^{E_c-S_x} R_x(E_c, J; U, j, s)d\varepsilon$

$$R_{\chi}(E_{c},J;U,j)dE = \frac{1}{h}\sum_{S=|j-s|}^{j+s}\sum_{l=J-S}^{J+S}T_{l}(\varepsilon)\left[\frac{\rho(U,j)}{\rho(E_{c},J)}\right]dE$$

 $\varepsilon = E_c - U - S_x$, S_x = Separation energy of particle x

• Decay rate of γ -channel : $R_{\gamma}(E_c, J)dE = \sum_{\lambda} \sum_j \int_{\varepsilon=0}^{E_c} R_{\lambda}(E_c, J; U, j)d\varepsilon$

 $R_{\gamma}(E_{c}, J; U, j)dE = [c_{\lambda}(\varepsilon)] [\varepsilon^{2\lambda+1}] \left[\frac{\rho(U, j)}{\rho(E_{c}, J)} \right] dE$ $\varepsilon = E_{c} - U, \vec{J} = \vec{\lambda} + \vec{j}, \lambda = \text{Multipolarity of } \gamma \text{-ray}$

Cont...

- Above neutron threshold (for low energy reaction) neutron decay dominates $P(E_c, J; x) \approx 1$ $\sigma(\alpha, n) \sim \sum_{I} \sigma(E_c, J) \approx \sum_{I} \pi \lambda_{\alpha}^2 T_l(\alpha)$
- $T_l(\alpha)$: Transmission coefficient for entrance channel.
- Cross-section is solely dependent on the α -optical potential.
- But (α, γ) reaction cross-section are depends on
 - Entrance channel optical potential
 - Level densities (ρ)
 - γ -ray strength function (C_{λ})
- Knowing about (α,γ) reaction rate from reaction cross-section is important for p-process study.
- Nuclear input parameters (AOMP, LD, γ SF) have to known experimentally or predicted by a model.