

Fission reactions

S. Hilaire CEA, DAM, DIF

ICTP-IAEA Workshop on Simulation of Nuclear Reaction Data with the TALYS Code - TRIESTE - October 2023

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model

- Model ingredients

- Level densities
- Gamma-ray strengths
- Fission transmission coefficients

- Fission reactions

- Generalities about fission
- Fission neutrons and gammas
- Fission yields
- Fission cross sections

- Prospects

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model

- Model ingredients

- Level densities
- Gamma-ray strengths
- Fission transmission coefficients

- Fission reactions

- Generalities about fission
- Fission neutrons and gammas
- Fission yields
- Fission cross sections

- Prospects

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model

- Model ingredients

- Level densities
- Gamma-ray strengths
- Fission transmission coefficients

- Fission reactions

- Generalities about fission
- Fission neutrons and gammas
- Fission yields
- Fission cross sections

- Prospects

ΓUESDAY

19/10/2023

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model

- Model ingredients

- Level densities
- Gamma-ray strengths
- Fission transmission coefficients

- Fission reactions

- Generalities about fission
- Fission neutrons and gammas
- Fission yields
- Fission cross sections
- Prospects

ΓΟDΑΥ

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model

- Model ingredients

- Level densities
- Gamma-ray strengths
- Fission transmission coefficients

- Fission reactions

- Generalities about fission
- Fission neutrons and gammas
- Fission yields
- Fission cross sections

- Prospects

FEW REMINDERS

19/10/2023

Models sequence and required ingredients

Models sequence and required ingredients

Time scales and associated models

Time scales and associated models

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

19/10/2023

GENERALITIES

19/10/2023

The fission process

..... Energy (200 MeV)

The fission process : sequence for induced fission

Cea Fission reactions

19/10/2023

The fission process : typical energy balance

Fragments kinetic energy	165 MeV
prompt γ	8 MeV
β decay	19 MeV
delayed γ	7 MeV
prompts neutrons	5 MeV
TOTAL :	204 MeV

$n + {}^{235}U \rightarrow {}^{94}Sr + {}^{140}Xe + 2n$	=> Q= 184.68 MeV
\rightarrow ⁹⁴ Kr + ¹³⁹ Ba + 2n	=> Q= 177.46 MeV
\rightarrow ¹¹⁸ Pd + ¹¹⁷ Pd + 1n	=> Q= 192.73 MeV

The fission process : fragments kinetic energies

The fission process : yields variations with energy

 \Rightarrow Well filled with increasing incident energy

19/10/2023

The fission process : yields variations with targets

 \Rightarrow FF distribution strongly modified with different targets

19/10/2023

The fission process : rapid yield variations

19/10/2023

The fission process : emitted neutrons spectrum

<u>Cea</u> Fission reactions

The fission process : mean energy of emitted neutrons

235U

Cea Fission reactions

19/10/2023

The fission process : neutron multiplicities

	$\overline{\nu}$		
²⁴⁰ Pu	2.257	+/-	.045
²³⁸ Pu	2.33	+/-	.08
²³⁵ U+n	2.47	+/-	.03
²⁴² Cm	2.65	+/-	.09
²⁴⁴ Cm	2.82	+/-	.05
²⁵² Cf	3.86	+/-	.07
²⁴² Pu	2.18	+/-	.09
²³³ U+n	2.585	+/-	.062

The fission process : neutron multiplicities and incident nrj

Figure 13: Prompt-neutron multiplicity as a function of the pre-neutron fragment mass for the system ${}^{237}Np(n,f)$ for $E_n = 0.8$ MeV and 5.55 MeV

The fission process : sequence for induced fission

19/10/2023

The fission process : fissile vs fertile

Cea Fission reactions

The fission process : fission chances

19/10/2023

Describing all previously mentioned data is a real challenge for theoretical models.

Several phenomenological approaches are usually adopted to describe each type of data because of the flexibility they offer for measured nuclei.

⇒ Many models and parameters : extrapolation at your own risks !

⇒ Clear lack of coherence or deep understanding of the underlying physics !

FISSION YIELDS

19/10/2023

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

Details in Nucl. Data Sheets 131 (2016) 107-221 Code at www.khs-erzhausen.de/home.html

Phenomenological approach not intended to compete with fundamental microscopic approach, but aiming at producing data with the accuracy required for industrial application

 \Rightarrow many empirical laws fitted to data

19/10/2023

Details in Nucl. Data Sheets 131 (2016) 107-221 Code at www.khs-erzhausen.de/home.html

Phenomenological approach not intended to compete with fundamental microscopic approach, but aiming at producing data with the accuracy required for industrial application

 \Rightarrow many empirical laws fitted to data

The available measured fission barriers were used to deduce the following empirical function, which describes the difference between the inner and the outer barrier height:

 $E_A - E_B = 5.40101 - 0.00666175 \cdot Z^3 / A + 1.52531 \cdot 10^{-6} \cdot (Z^3 / A)^2.$ (10)

Details in Nucl. Data Sheets 131 (2016) 107-221 Code at www.khs-erzhausen.de/home.html

Phenomenological approach not intended to compete with fundamental microscopic approach, but aiming at producing data with the accuracy required for industrial application

 \Rightarrow many empirical laws fitted to data

 \Rightarrow range of application restricted close to experimentally accessible regions

According to the concept of the GEF model, the range of validity is not Details it strictly defined. Technically, the code runs for any heavy nucleus. However, the results of the model are more reliable for nuclei which are not too far Code at v from the region where experimental data exist. It is recommended not to use the code outside the range depicted in figure 1 on the chart of the nuclides. Phenomena microscopi 23411 ²²⁹Th the accurac 226 Th ²¹⁸Th 208 Rn ²⁵⁶Fm many er \Rightarrow \Rightarrow range of <u>Th</u> r 227Ra Z=82 0 ²¹³At mass distributions + Z distributions 201 × Z distributions in N=126 inverse kinematics

> Figure 1: Validity range of the GEF model on a chart of the nuclides, marked in yellow. For a detailed description of the figure see figure 6.

19/10/2023
GEF model

Figure 1: Validity range of the GEF model on a chart of the nuclides, marked in yellow. For a detailed description of the figure see figure 6.

19/10/2023

The fission process : GEF results

19/10/2023 **27**

The fission process : GEF results

19/10/2023

Details in Phys. Rev. C92 (2015) 034617 & Phys. Rev. C99 (2019)

Approach based on absolute energy balance based on HFB potential energy surfaces as function of axial deformation ⇒ Available energy at scission

Available energy (AE) shared between fragments : x (AE) and (1-x) (AE)

$$\pi(Z_{1}, N_{1}, Z_{2}, N_{2}, \tilde{q}_{1}, \tilde{q}_{2}, x) = \rho_{1}(x |AE|) \rho_{2}((1-x) |AE|) \delta E^{2}$$

$$\Pi(Z_{1}, N_{1}, Z_{2}, N_{2}, \tilde{q}_{1}, \tilde{q}_{2}) = \int_{0}^{1} \pi(Z_{1}, N_{1}, Z_{2}, N_{2}, \tilde{q}_{1}, \tilde{q}_{2}, x) dx$$

$$P(Z_{1}, N_{1}, Z_{2}, N_{2}) = \iint \Pi(Z_{1}, N_{1}, Z_{2}, N_{2}, \beta_{1}, \beta_{2}) d \tilde{q}_{1} d \tilde{q}_{2}$$

SPY : available energy

$$\mathbf{AE} = \left| \mathbf{E}_{\text{ind1}} + \mathbf{E}_{\text{ind2}} + \mathbf{E}_{\text{coul}} + \mathbf{E}_{\text{nucl}} - \mathbf{E}_{\text{CN}} \right|$$

19/10/2023

1

The fission process : energy sharing & level densities

19/10/2023

SPY model : raw results

 \Rightarrow Less accurate than GEF (only one parameter fixed !)

19/10/2023

SPY model : raw results

 \Rightarrow Can be improved with smoothing methods (much more parameters)

Cea Fission reactions

19/10/2023

SPY model : systematic predictions rather easy

\Rightarrow Rather good qualitative description

SPY model : systematic predictions rather easy

1) PES calculation as function of elongation-asymmetry

19/10/2023

- 1) PES calculation as function of elongation-asymmetry
- 2) Quantum mechanical Wave packet propagation in the computed PES (FELIX code)

- 1) PES calculation as function of elongation-asymmetry
- 2) Quantum mechanical Wave packet propagation in the computed PES (FELIX code)

- 1) PES calculation as function of elongation-asymmetry
- 2) Quantum mechanical Wave packet propagation in the computed PES (FELIX code)
- 3) Extraction of the flux through a scission line (whose definition is not trivial)

- \Rightarrow Not accurate enough for applications
- \Rightarrow Time consuming (10000 h per nucleus on single CPU)
- \Rightarrow Extrapolations and systematics manageable with HPC
- \Rightarrow Limited to even-even

Neutrons and gammas from fission

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

Details in Nucl. Sci. Eng. 81 (1982) 213.

- Fission yields reduced to a light and a heavy fragment whose temperatures are distributed according to a triangular law
- For each temperature, each fragment neutron emission is modeled by the corresponding Weisskopf spectrum normalized by the fragment formation cross section by induced neutron reaction
- Multiple fission chances accounted for using fission cross sections -
- Final neutron spectrum defined by an average of light and heavy fragment spectra

 \Rightarrow model with parameters designed to fit data

Cea Fission reactions

19/10/2023

Electric Fission reactions

19/10/2023

mean gamma energy parameterized (several options)

 \Rightarrow model with parameters designed to fit data

mean gamma energy parameterized (several options)

$$\overline{\nu_{p\,i}} = \frac{\langle E_i^* \rangle - \langle E_\gamma^{tot} i \rangle}{\langle S_{n\,i} \rangle + \langle \epsilon_i \rangle}$$

 $\langle E_{\gamma}^{tot} \rangle$ mean prompt gamma energy $\langle S_n \rangle$ mean neutron binding energy

 $\langle \epsilon \rangle$ mean emitted neutron energy

 \Rightarrow model with parameters designed to fit data

mean gamma energy parameterized (several options)

- $\langle \epsilon \rangle$ mean emitted neutron energy

$$\sigma_{f\,i}$$
: ith fission chance cross section.

\Rightarrow model with parameters designed to fit data

 \Rightarrow model with parameters designed to fit data

Cea Fission reactions

19/10/2023

GEF model : neutron multiplicities

Details in Nucl. Data Sheets 131 (2016) 107-221 Code at www.khs-erzhausen.de/home.html

GEF model

Details in Nucl. Data Sheets 131 (2016) 107-221 Code at www.khs-erzhausen.de/home.html

48

Fission reactions

GEF model : neutron multiplicities distributions

Details in Nucl. Data Sheets 131 (2016) 107-221 Code at www.khs-erzhausen.de/home.html

GEF model : neutron and gamma spectra

 \Rightarrow GEF very efficient to fit data and fill the gaps for applications

FIFRELIN

Monte Carlo approach designed to deal with fission fragment decay

- \Rightarrow fragment's mass sampled from exp. or theory (GEF)
- \Rightarrow fragment's kinetic energy sampled from exp. or theory
- \Rightarrow fragment's charge sampled from Wahl model (Z=Z_{CN}/A_{CN} * A)
- \Rightarrow fragment's spin distribution sampled from level density law
- \Rightarrow excitation energy sharing following temperature ratio law adjusted on saw tooth

Fission reactions

51

19/10/2023

FIFRELIN : neutron multiplicities

cea

Fission reactions

Courtesy O. Litaize

19/10/2023

150

160

 $< \epsilon_v > (MeV)$

 0.85 ± 0.02

FIFRELIN : PFGS and spontaneous fission

cea

FIFRELIN : PFGS and neutron induced fission

cea

FIFRELIN : PFNS and neutron induced fission

cea

FIFRELIN : neutron multiplicities and incident energy

MICROSCOPIC APPROACH

Details in Phys. Rev. C 77 (2008) 014310.

FIG. 15. ²⁵⁶Fm. Neutron multiplicity versus fragment mass. Comparison between predictions (solid symbols) and data [47] (empty symbols).

 \Rightarrow Not yet at the level

19/10/2023

Fission cross sections

19/10/2023

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

Fission reactions

- Generalities about fission

Induced, spontaneous, energy balance, fission yields, PFNS, neutron multiplicities, cross sections, fission chances, Kinetic energies,

- Fission yields

- GEF model
- SPY model
- Microscopic approach

- Neutrons and gammas from fission

- Madland-Nix model
- GEF model
- FIFRELIN
- Microscopic approach

- Fission cross sections

- Phenomenological approaches
- Coherent fission cross sections
- Microscopic approaches
- Integral benchmark sensitivity

- Conclusions

cea

Fission barriers and fission paths

Fissile or fertile

cea

Fissile or fertile

Incident energy (MeV)

Incident neutron data / ENDF/B-VI.8 / U235 / MT=19 : (n,f) / Cross section

Cea Fission reactions

19/10/2023

cea

cea

cea

cea

cea

cea

Fission transmission coefficient :Hill-Wheeler penetrability

Fission transmission coefficient :Hill-Wheeler penetrability

Fission transmission coefficient :Hill-Wheeler penetrability

cea

Cea Fission reactions

19/10/2023

+ transition states on top of the barrier !

+ transition states on top of the barrier !

+ transition states on top of each barrier !

+ transition states on top of each barrier ! + class II states in the intermediate well !

+ transition states on top of each barrier !
+ class II states in the intermediate well !

Fission reactions

+ class II states in the intermediate well !

Two barriers A et B

$$T_{f} = \frac{T_{A} T_{B}}{T_{A} + T_{B}}$$

Electric Fission reactions

Two barriers A et B

$$\mathbf{T}_{\mathbf{f}} = \frac{\mathbf{T}_{\mathbf{A}} \mathbf{T}_{\mathbf{B}}}{\mathbf{T}_{\mathbf{A}} + \mathbf{T}_{\mathbf{B}}}$$

Three barriers A, B and C

$$T_{f} = \frac{\frac{T_{A} T_{B}}{T_{A} + T_{B}} \times T_{C}}{\frac{T_{A} T_{B}}{T_{A} + T_{B}} + T_{C}}$$

More exact expressions in Sin et al., PRC 74 (2006) 014608

Two barriers A et B

Three barriers A, B and C

$$T_{f} = \frac{\frac{T_{A} T_{B}}{T_{A} + T_{B}} \times T_{C}}{\frac{T_{A} T_{B}}{T_{A} + T_{B}} + T_{C}}$$

More exact expressions in Sin et al., PRC 74 (2006) 014608

19/10/2023

More exact expressions in Sin et al., PRC 74 (2006) 014608

19/10/2023

T_f =

Fission transmission coefficient : role of class II states

²³⁹Pu (n,f)

Fission transmission coefficient : role of class II states

²³⁹Pu (n,f)

19/10/2023

Bjornholm and Lynn, Rev. Mod. Phys. 52 (1980) 725.

Fission transmission coefficient : class II and class III states

Case of a fertile nucleus

Partially damped class II states. No class III states

Fission transmission coefficient : class II and class III states

Case of a fertile nucleus

Class II + III states. Partial damping.

19/10/2023

Cea Fission reactions

19/10/2023

Cea Fission reactions

19/10/2023

cea

cea

cea

cea

Coherent fission modeling : single target / several fissions $n + {}^{238}U$ $\sigma_{n,f}$ 1.8 Section efficace (barn) ⇒(n,3nf) **U6** 0.2 3n 0 $\frac{10}{20} \frac{20}{10} \frac{10}{10} \frac{10$ 50 **U7** >(n,2nf) **2n U8** ⇒(n,nf) \sqrt{n} **U9** ⇒ (n,f) ► MeV 12 24 **Fission reactions** 72 19/10/2023 cea 6

cea

cea

cea

cea

cea

cea

Ingredients of relevance to estimate fission properties

$$T(E, J, \pi) = \int_0^E P(E - \varepsilon)\rho(\varepsilon, J, \pi)d\varepsilon \begin{cases} P(E) = \frac{1}{1 + \exp(2K)} \\ K = \pm \int_a^b [2\mu(E - V(\beta))/\hbar^2]^{1/2}d\beta \end{cases}$$
Hill-Wheeler approximation: $P^{HW} = \frac{1}{1 + \exp[2\pi(V_0 - E)/\hbar\omega]}$

Fundamental ingredients:

- Fission barrier heightsFission barrier widths Fission path
- Nuclear Level Densities at saddle points

MAJOR CHALLENGE: COHERENT PREDICTIONS OF ALL INPUTS

Determination of the fission path performing HFB calculation as function of appropriate deformation (collective) variables using ideally an effective interaction also adjusted on experimental masses

Also use the same effective interaction to calculate level densities (GS and top of each barrier)

Microscopic approach : fission paths

 \Rightarrow For exotic nuclei : strong deviations from Hill-Wheeler.

Fission reactions

19/10/2023

_

Microscopic approach : Fission level densities

Nuclear level densities at the saddle points

HFB model provides at each deformation (including saddle points) all nuclear properties needed to estimate the NLD

Possibility to estimate NLD at the saddle point within the HFB+Combinatorial model

Microscopic approach : summary

Nuclear Level Density at Saddle Points

- Fission Barriers and saddle point deformations (Q,O,H) determined within HFB method
- Nuclear properties (spl, pairing) at the inner and outer saddle points with constrained HFB model
- NLD in the framework of the microscopic combinatorial model based on HFB single-particle level and pairing predictions at the HFB saddle points (plus collective rotational and vibrational enhancement)

All ingredients described on the basis of the

same Skyrme effective interaction (BSk14) at GS and Saddle Points

NLD in a table format at inner and outer saddle points (~2000 nuclei : 2/3 saddle points & 1/2 shape isomers)

For inner barrier, usually predicted to be triaxial: $\rho_{triax} = \sqrt{\frac{\pi}{2}} \sigma_{\perp} \times \rho_{Comb}$ Bjornholm & Lynn (1980) For outer barrier, usually predicted to be left-right asymmetric: $\rho_{asym} = 2 \times \rho_{Comb}$

Microscopic approach : results

 $\Rightarrow Default \ calculations \ not \ sufficient \ for \ applications.$

19/10/2023

Microscopic approach : results

Fission barriers adjusted for each target

Fission barriers adjusted for each type of target - odd-odd - odd-even - even-odd

- even-even

 $\Rightarrow Not ridiculous after few adjustments.$

19/10/2023

Coherent fission cross sections with phenomenological approach

Neutron induced fission on ²³⁸U

- several hundreds of parameters
- unique set for all fission chances or U targets

Can we do the same with microscopic ingredients ?

19/10/2023

HFB-14 predictions of fission barriers and NLD at saddle points,

including renormalization (max 5 parameters) of

- fission path height: $B_f'(\beta_2) = B_f(\beta_2) \ge v_{corr}$
- NLD at 1st and 2^d saddle points:

$$\rho'(U,J,P) = \rho(U - \delta,J,P) e^{\alpha \sqrt{U \cdot \delta}}$$

Additional nuclear inputs:

- Nuclear structure properties: HFB-14 (Goriely et al. 2007)
- Optical potential: Soukhovitskii et al. (2004)
- γ-ray strength: Hybrid model (Goriely, 1998)
- NLD: HFB-14 plus combinatorial model (Goriely et al., 2008) normalized on s-wave spacings and discrete excited levels

Note:

- 1 UNIQUE set of nuclear ingredients for all U isotopes
- no class 2 states included
- no discrete transition states included

Coherence = more constraints = slightly worse fit

19/10/2023

19/10/2023

²³⁹Pu (n,f)

-20 keV sur V_A ≈ 0.34% !!

19/10/2023

²³⁹Pu (n,f)

-20 keV sur V_A ≈ 0.34% !!

19/10/2023

Conclusions and Prospects

Conclusions

Nuclear reaction modeling : 2 complementary paths

Empirical / Analytical approaches

- Good (very) fitting power
- Weak (modest) computing time
- Weak predictive power
- Important human optimization
- ⇒ accurate evaluated files for applications (ENDF, JEFF, JENDL ...)

Microscopic (semi-) approaches

- Weak fitting power
- Important computing time
- Good predictive power
- Weak human optimization
- \Rightarrow astrophysical applications
- \Rightarrow fundamental research
- \Rightarrow guide for empical approaches

Phenomelogical approach : fitting loop

cea

