

TALYS for medical isotope production

Arjan Koning, IAEA

Joint ICTP-IAEA Workshop on Simulation of Nuclear Reaction Data with the TALYS Code, October 16 - 20 2023, Trieste

Introduction

- Medical isotopes from nuclear data point of view
- Global assessment of experimental data and outlier assignment
- Consistent and automated parameter fitting
- Some challenges for medical isotopes and its impurities
- Special case: Th232(p,x)Ac225
- Conclusions

Currently declared as IAEA medical isotope 60 Years evaluations

- 21 (p,n) reactions
- 15 (p,2n) reactions
- 7 (p,3n) reactions, etc.
- 4 (d,n) reactions
- 7 (d,2n) reactions
- 5 (d,3n) reactions etc.
- + residual products further away from the target
- Total: about 140 reaction channels

IAEA Medical portal

Medical isotope browser:

• Effective target thickness : 0.045 cm • # incident particles: 6.24151E+14 [s^-1] • Produced heat in target : 0.700 kW • Activities less than 1.0E-6 MBq are not displayed

nds.iaea.org/mib

https://nds.iaea.org/talys/

TALYS-Related Software and Databases

TALYS and the TALYS-related packages are open source software and datasets (GPL License) for the simulation of nuclear reactions.

Arjan Koning

EXFOR.

Experimental nuclear reaction database based on

EXFORTABLES

Read Tutorial

Lownload EXFORTABLES-1.0

RESONANCETABLES

Arjan Koning, Dimitri Rochman

Database for thermal cross sections, MACS and average resonance parameters.

Lownload RESONANCETABLES-1.0

Created at (4) IAEA

Zero-ing in on the truth

- Run TALYS for all projectiles, nuclides and energies with global settings
- Compare with the **entire** EXFOR database
 - Computational access to EXFORtables: directory-structured database with E-dE-xs-dxs data per measurement (from XC5 file, Viktor Zerkin)
 - Automatic normalisation to new monitor and decay data
 - Assign outliers in EXFOR (Exforcism)
 - · comparison with nuclear data libraries,
 - comparison with TALYS
 - comparison with other experimental data sets
 - quantify historical evaluator's opinion in consistent metadata
- Assess predictive power of TALYS as a function of energy, reaction channel and mass range
- Zoom in on specific reaction channel with automated optimisation, varying a restricted set of TALYS parameters

Weighting data sets in EXFOR

- Weights for ~28000 EXFOR subentries
 - Natalia Dzysiuk for activation c.s. + (all c.s.) Ni: 2336 subentries
 - Erwin Alhassan for proton induced reactions: 166 subentries
 - Natalie Gaughan for proton induced reactions: 103 subentries
 - Arjan Koning for neutron activation cross sections: NEA/DB/ DOC(2017)1: 25850 subentries, based on automated chi²
 - Arjan Koning (2022) for neutron up to alpha-induced cross sections - visual outlier assignment: 8000 subentries
 - Available in JSON files, including all comments etc.

8400 JSON outlier/inlier files, one per EXFOR subentry

٤

So far: 1 user

```
"Subentry"
                  : "A0001004",
                  : "Skakun",
    "Author"
    "Year "
                  : 1975,
                 : "p",
    "Projectile"
    "Target Z"
                  : 48,
    "Target A"
                  : 111,
   "Target state": "0",
   "X4 Reaction" : "48-CD-111(P,N)49-IN-111,,SIG",
    "Evaluations" :
    [
        {
        "Evaluator"
                      : "Arjan Koning",
                      : "2022-06-05",
        "Date"
        "Weight"
                      :
                           0,
        "Comment"
                      : [
                        " Excluded from evaluation: graphical outlier"
                        1
       },
        {
                      : "Erwin Alhassan",
        "Evaluator"
                      : "2019-11-08",
        "Date"
        "Weight"
                      :
                           0,
        "Comment"
                      : [
                        " Erwin Alhassan (PSI, 2018) 0",
                        " (1 -> accept and 0 -> reject)",
                        " Reasons for inclusion/exclusion",
                        " 1) Experimental data set not consistent with other experiments such as Takacs (2005) between about 10 - 15
MeV (The cross sections are systematically lower)"
                        1
        },
        {
        "Evaluator"
                      : "Natalie Gaughan",
        "Date"
                      : "2019-03-15",
        "Weight"
                           1,
                      :
        "Comment"
                      : [
                        " IAEA-TECDOC-1211 - Data selected"
                        1
       }
   ]
}
```

EXFOR outlier assignment

Summed over all (n,g), (n,f), (n,n'), (n,2n), (n,p), (n,a), (p,n), (g,n), (a,n), (d,n) reactions we could mine from EXFOR. 6500 accepts, 1000 rejects

EXFOR outlier assignment: a learning curve?

Inclusion ratio: 7500 experimental data sets (7 year average)

Other analyses possible:

- per reaction channel
- per author, co-author, lab, etc (probably should not publish THAT)
- per incident energy (e.g. 14 MeV)
- re-insert this as prior in the next Bayesian update

Global predictive power for (p,n): ~30% around the peak

(p,2n): ~40% (alpha,n): ~45% (d,n): ~60%

Common trend for all threshold reactions. Relative deviation is

- Large near threshold (> 2)
- Small near peak
- Larger in the tail

Global predictive power is energy dependent

Systematic approach for TALYS 60 Years

- 1. Compare every (e.g.) (p,n) for which exp. data exists (140 nuclides) with the available nuclear data libraries.
 - Always TENDL, but also JENDL-5, ENDF/B-VIII and IAEA evaluation
 - Flag outliers, or discarded data sets, in EXFOR with a weight of 0
- 2. Write a script which uses TASMAN: statistical code for TALYS for covariance generation and automatic optimisation of nuclear model parameters to exp data
 - Loop over all 140 nuclides
 - Use the same 5 most sensitive parameters for (p,n) reactions
 - Use Nelder-Mead optimisation to all EXFOR data sets and pseudo data, this requires about 80 TALYS runs
 - Plot the results
 - If needed declare more, or less, outliers
- 3. Do this for every reaction channel

(p,n): several nuclides with JENDL-5 evaluation

Reaction	Nuclides in EXFOR	Parameter	Parameter	Parameter	Parameter	Parameter	Parameter
(n, γ)	278	wtable					
(n,f)	34	vfiscor	betafiscor	ctable(1)	ptable(1)	ctable(2)	ptable(2)
(n,n'), (n,2n), (n,p)	210	rv(p)	g _{ph} (0)	g _{ph} (n)	ctable(n)	ctable(p)	
(Ν,α)	157	rv(α)	Cstrip(α)	g _{ph} (0)	$ctable(\alpha)$		
(p,n)	142	rv(p)	rwd(p)	rv(n)	g _{ph} (0)	g _{ph} (n)	ctable(n)
(γ,n)	77	wtable	ftable	etable			
(α,n)	93	rv(α)	rwd(α)	rv(n)	g _{ph} (0)	ctable(α)	
(d,n)	40	rv(p)	rwd(p)	rv(n)	g _{ph} (0)	g _{ph} (n)	ctable(n)

TASMAN code (AK): Nelder-Mead optimisation. Number of TALYS trials: N(parameters) x 20 **Essential 1: Optical model potential (OMP)** for proton reaction cross sections

Predictive power for KD03 global proton OMP up to 200 MeV ~ 8%

Essential 2: Nuclear level densities

Different level density models may give differences of 10-15% in peak values of excitation functions

Essential 3: **Pre-equilibrium nuclear models** (and multiple pre-equilibrium models above 30-40 MeV)

TALYS exciton model parameterisation has been established from single- and double-diff emission spectra, not from production cross sections

(See M.B. Fox et al, Investigating High-Energy Proton-Induced Reactions on Spherical Nuclei: Implications for the Pre-Equilibrium Exciton Model, Phys Rev C, tbp 2021)

Typical example #1: direct good fit!

Plots for all particles, all nuclides, all reactions: nds.iaea.org/talys

Typical example #2: further TALYS adjustment needed

Radionuclide Demand

Internal runs of ¹⁸F, ¹¹C, and ¹³N by radionuclide as an aggregated annual total vs UW fiscal year. A "Run" is defined as a single production, or uninterrupted period of irradiation, whose product is delivered to a single user.

Nuclear Data Needs for Medical Radionuclide Producers

Breakdown of individual radionuclides ^{52g}Mn, ⁸⁶Y, and ^{76/77}Br. The top plot shows activity produced in millicuries and the bottom shows individual shipments made against UW fiscal years from 2016 – 2022.

Need 1/2: Evaluations of Near-Threshold XS Data and of Produced Impurities

Many available accelerators operate at energies close to thresholds of relevant production reactions, e.g., (p,α) , (p,pn), (d,n), (p,2n), (d,2n), (d,α) .

Automated fit (excluding outliers)

142 nuclides

rvadjust	р	0.924	64	
rwdadjust	р	0.990	70	
rvadjust	n	1.008	42	
gadjust	40	90	1.11250	
gadjust	40	89	1.10842	
ctableadjust	40	89	0.65147	0

Sometimes significant differences

ctableadjust 70 169 0.31802 0

TENDL-2023 will have optimised fits


```
#
  p-Mo100-medical
#
#
 General
#
#
projectile p
element
           Мо
           100
mass
           8. 30. 0.5
energy
#
 Spherical OMP and adjusted parameters
#
spherical y
rvadjust
                   1.00676
              р
rwdadjust
                   1.11091
              р
rvadjust
                   1.04395
              n
gadjust
               43 101
                          1.22030
gadjust
               43 100
                          1.04828
ctableadjust
               43
                          1.34123 0
                   99
               43
s2adjust
                   99
                          0.14784 0
#
# Medical isotope production
#
production y
Ibeam 0.15
Ebeam 24.
Eback 10.
```

Actinides: uncertainty due to fission

TALYS-2: one parameter 'Cbarrier' to reduce/increase all fission barriers

Th232(p,f) could be higher compared to TENDL-2021

Consistency with neighbouring channels^{60 Years}

Other projectiles?

- Automated optimisation to many reaction channels with a relatively small number of TALYS parameters
 - Requires computational access to entire EXFOR database at once
 - Requires extensive outlier database
- TENDL-2023 will contain optimised excitation functions

Thank you!

