The Amazing Super-Maze

Iosif Bena IPhT, CEA Université Paris-Saclay

with Dimitrios Toulikas, Anthony Houppe, Yixuan Li, Nejc Čeplak, Shaun Hampton and Nick Warner

An amazing success of String Theory *Count Black Hole Microstates* (branes + strings) Correctly match B.H. entropy !!! Zero Gravity

One Particular Microstate at Finite Gravity:

Standard lore:

As gravity becomes stronger,

- brane configuration becomes smaller
- horizon develops and engulfs it
- recover standard black hole

Susskind Horowitz, Polchinski Chen, Maldacena, Witten An amazing success of String Theory *Count Black Hole Microstates* (branes + strings) Correctly match B.H. entropy !!! Zero Gravity

One Particular Microstate at Finite Gravity:

BIG QUESTION: Are **all** black hole microstates becoming geometries with no horizon ?

Black hole = ensemble of horizonless microstate configurations Mathur 2003

(Only?) *reasonable* way to solve the Information Paradox Mathur 2009, Almheiri, Marolf, Polchinski, Sully 2012

Other options:

- **ER=EPR**, **Islands** \Rightarrow wormholes + nonlocalities at scales M_{BH}^3
- (for solar-mass BH this is 10^{80} m = 10^{53} × size of observable universe)
- State-dependent operators (non-Copenhagen) Papadodimas, Raju

Structure@horizon in vogue these days (ECO)

- -Gravastars
- -Quark-stars
- -Boson-stars
- -Gas of wormholes (ER=EPR)
- -Quantum Black Boxes
- -BMS / Soft hair @ horizon
- -Mirrors floating on Pixie Dust
- -Modified gravity
- -Bose-Einstein condensate of gravitons
- -Infinite-density firewall hovering just above horizon

Here Be Microstructure

But ...

1. Growth with $G_N \leftrightarrow BH$ size for all masses

Horowitz

- Normal objects shrink; BH horizon grows
- microstate geometries have BH size for all masses
- D-branes = solitons, $m \sim 1/g_s$ lighter as $G_N = g_s^2$ increases

Quantum Coyote Principle

GRAVITY DOES NOT WORK TILL YOU LOOK DOWN

Such is the fate of *Firewalls, quantum black boxes, Mirrors & their brothers*

3. Avoid forming a horizon

- Collapsing shell forms horizon @ low curvature Oppenheimer and Snyder (1939)
- By the time shell becomes curved-enough for quantum effects to become important, horizon in causal past (180 hours for TON618 BH)

Backwards in time - illegal !

Only e^s horizon-sized microstates can do it !

Black hole entropy the structure must have

Rules out gravastars & almost everything else

Supersymmetric Microstate Geometries:

- Only construction with 3 properties 2.5 rather
- Largest family of solutions known to mankind Arbitrary fns. of 3 variables: ∞ X ∞ X ∞ parameters ! Cohomogeneity-5 !

$$\begin{split} b_{n}^{2} &= \frac{1}{\sqrt{n}} ds_{1}^{2} + \sqrt{\frac{N}{N_{0}}} ds_{2}^{2}, \\ b_{n}^{2} &= -\frac{2}{\sqrt{p}} (ds + \beta) \left[ds + \omega + \frac{2}{2} (ds + \beta) \right] = \sqrt{p} ds_{1}^{2}, \\ c_{2}^{2p} &= \frac{2}{p}^{2}, \\ b_{1}^{2p} &= -\frac{2}{\sqrt{p}} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2p} &= \frac{2}{p}^{2}, \\ b_{1}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{1}^{2} &= \frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{1}^{2} &= \frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= \frac{2}{p}^{2}, \\ c_{1}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{1}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{1}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= \frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{1}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{1}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_{2}^{2} &= -\frac{2}{p} (ds + \omega) \wedge (ds + \beta) + a_{2} \wedge (ds + \beta) + b_{2}, \\ c_$$

Habemus Superstratum !!!

Many features of typical microstates: mass gap = $\frac{1}{N_1N_5}$

Why not collapsing ?

- 5(+6)d : smooth solutions + quantized magnetic flux on topologically-nontrivial 2-cycles
 - cycles smaller \rightarrow increases energy
 - bubbling = only mechanism to avoid collapse Gibbons, Warner
- Works for nonextremal black holes as well Bah, Heidmann

First Schwarzschild microstates !!! Bah, Heidmann, Weck '22

20 years of microstate geometries

- Huge number of smooth horizonless solutions

 Bubbling geometries, superstrata
 - Largest known class of solutions to Einstein's equations
 - Many features of typical microstates (mass gap)
 - $-S \sim (Q_1 Q_5)^{\frac{1}{2}} (Q_p)^{\frac{1}{4}} < S_{BH} \sim (Q_1 Q_5 Q_p)^{\frac{1}{2}} \text{ Mayerson, Shigemori '20}$
- Link with D1-D5 states that count BH entropy ?
 - Only known for a few solutions
 - Needs Elvish Medicine (precision holography)
 - momentum modes giving D1-D5 BH entropy are quantized in units of $1/R_v N_1 N_5$ *fractionated*
 - Duals of states with fractionated momentum carriers are very hard to build in supergravity Bena, Martinec, Turton, Warner '16; Shigemori '21, '22

The Painful Reality

- We have not succeeded to track *typical* D1-D5 Strominger-Vafa microstates from the zero-gravity regime to the finite-gravity regime where BH exists
- *Fundamental* limitation or *technical* problem ? we can only build superstrata as fibrations on \mathbb{R}^4 base
- Bubbling solutions more general hyper-Kähler base
 - but no holographic dual
 - superstrata-building techniques fail
 - most generic base not even hyper-Kähler
 - fractionated modes missing magical ingredient ?

Do not pray to the saint who does not help you ! Romanian proverb

Instead of D1-D5 look at D2-D4 (or F1-NS5 in type IIA)

One F1 inside N_5 NS5 branes $\rightarrow N_5$ little strings.

- Dijkgraaf, Verlinde, Verlinde
- Visible as M2 brane strips in M-theory
- Total N_1N_5 independent momentum carriers
- each has 4 oscillation directions (T^4) + 4 fermionic partners

What about finite coupling?

- Reminder: *Callan-Maldacena spike* formed by D1 pulling on an orthogonal D3
- M2 branes also pull on the M5 branes

D1

D3

Except that the spike is a *furrow* carrying momentum waves along y

Some history

- \overline{y}_{0} Δ_{ij} Δ_{jk} \overline{y}_{0}
- First microstate geometries
 - Bubbling solutions with GH centers. Bena, Warner '06
 - Smooth in all duality frames. Horizonless
 - Multicenter fluxed D6 branes Balasubramanian & al '06
 - 16 susy at every center, 4 globally
 - Entropy much smaller than BH de Boer & friends
- Microstate geometries with supertubes
 - Functions of one variable Bena, Bobev, Giusto, Ruef, Warner '10
 - Smooth ⇔ 16 susy when zooming on supertube
- Superstrata. conjectured in Bena, de Boer, Shigemori, Warner '11
 - Fns. of 2 variables; 16 susy locally, 4 globally
 - HABEMUS: Smooth. Bena, Giusto, Russo, Shigemori, Warner '15
- Pattern: smooth horizonless sols configurations: 16 susy locally, 4 globally

Super-Maze entropy

spherically symmetric in \mathbb{R}^4 (x5,x6,x7,x8) same spacetime *SO*(4) symmetry as BH

SO(4) invariant solutions:

momentum carried by waves on fractionated strings (inside T⁴) = *bosonic* d.o.f. : $S_{bosonic} = 2\pi \sqrt{\frac{4}{6}N_1N_5N_p}$ + 2 *fermionic* d.o.f. preserving $SO(4) \Rightarrow S_{SO(4) \text{ invariant}} = 2\pi \sqrt{\frac{5}{6}N_1N_5N_p}$

Remaining 2 *fermionic* d.o.f. break $SO(4) \Rightarrow S_{SO(4) \text{ breaking}} = 2\pi \sqrt{\frac{1}{6}N_1N_5N_p}$

Confirms expectations from Bena, Shigemori, Warner 2014

How will the SO(4)-invariant solution look like ?

- Two-charge solutions:
- Monge-Ampère equation
- solution at least cohomog-3
- smeared on $T^3 \Rightarrow$ string web:

- Singular brane sources ⇒ solution exists (singular) Lunin 07
- Three-charge solutions with $D2_{y1}+D4_{y234}+P_y$

at least cohomogeneity-4 (X_1, X_2, r, y)

How will the SO(4)-invariant solution look like ?

- 16-susy locally \Rightarrow no horizon
- Branes wrapping compact contractible cycles ⇒
 Geometric transition ⇒ Bubbles wrapped by fluxes on internal dimensions.
- Smooth bubbling sources: can we construct it ?
- can we show in principle that the solution exists ?
- Expectation based on earlier work:
 - backreaction will make bubbles large
 - *irrespective* of T^4 size at infinity

Holography of SO(4)-invariant solutions

- Microstate geometry differs from BH by T^4 KK modes:
- Asympt. $\mathbb{R}^{4,1} \times S^1 \times T^4$: *exponentially-decay*
- Asympt. $AdS_3 \times S^3 \times T^4$: power-law decay
 - High-dimension operators: $\Delta^2 \sim Q_5 n_{\text{mode}}^2 / L_1^2$
 - Official '97 Dogma: not surviving in decoupling limit
 - $N \not{\epsilon} \alpha \theta \varepsilon \delta \delta \gamma \not{\epsilon} \alpha$: anything asymptotic to $AdS_3 \ge S^3 \ge T^4 \in CFT$ & can tunnel to anything else
 - Operator dimension depends on T^4 moduli. SUSY?
 - Is operator visible at free-orbifold point ?
 - Can CFT distinguish different supermaze solutions ?

How will the generic solution look like ?

- Generic microstates will contain
 SO(4) breaking modes + SO(4) invariant (T⁴ modes)
 2-charge systems revisited:
- when both T^4 and SO(4) breaking modes are present
- $S_{\text{total}} = 2\pi \sqrt{2N_1N_5}$
- Smearing on T^4 does not lose info. Can get $S_{\rm total}$ from T^4 -invariant solutions Kanitscheider, Taylor, Skenderis
- If only T^4 dependent modes present:
- $S_{SO(4) \text{ invariant}} = 2\pi \sqrt{N_1 N_5}$
- smearing on T^4 erases information \Rightarrow one obtains the naïve D1-D5 solution: singular, small horizon

How will the generic solution look like ? 3-charge story ?

- *SO*(4)-breaking strands: (+,+),(-,-),(+,-),(-,+)
- T^4 -dependent strands: $(\dot{a}b + \dot{b}a), \dot{a}a, \dot{b}b, (\dot{a}b \dot{b}a) = (00)$
- Superstrata = 6D supergravity solutions smeared on T^4
 - When SO(4)-breaking (++) strands are present, superstrata can capture T^4 strands: (00)
 - When no (++) strands are present, superstrata collapse into naïve solution with a horizon

We get horizons only when smearing too much

- Q1: Could the presence of SO(4)-breaking modes in generic supermaze allow T^4 smearing without info loss ?
- Q2: Would T^4 -dependent supermaze information be lost upon smearing, even when SO(4)-breaking modes exist?

How will the generic solution look like ? Big fat 3-charge generic beast ?

Combination of SO(4)-breaking modes and T^4 -dependent modes

Themelia:	Object	Coefficient		Object	Coefficient	
	F1(y)	α_1		$F1(\psi)$	α_5	
	NS5(y1234)	α_2	x_1	$NS5(\psi 1234)$	α_6	x_2
General Idea:	P(y)	α_3	y_1	$P(\psi)$	α_7	y_2
Global charges	$\mathrm{KKm}(\mathrm{y1234};\psi)$	α_4	z_1	$\mathrm{KKm}(\psi 1234;\mathbf{y})$	α_8	z_2
Glubal charges -	D2(y1)	α9	21.	$D2(\psi 1)$	α_{11}	210
dipole charges = Glue	→ D4(y234)	$\begin{array}{l} \alpha_{10} = \\ -\alpha_9 \end{array}$	<i>a</i> 1	$D4(\psi 234)$	$\begin{array}{c} \alpha_{12} = \\ -\alpha_{11} \end{array}$	<i>a</i> ₂
needed for 16 susv	D0	α_{13}	214	$D2(y\psi)$	α_{15}	210
	D4(1234)	$\begin{array}{l} \alpha_{14} = \\ -\alpha_{13} \end{array}$	01	$D6(y\psi 1234)$	$\begin{array}{c} \alpha_{16} = \\ -\alpha_{15} \end{array}$	02
$u_1 + i u_2 = s_1 s_2 e^{i \varphi_1} ,$	F1(1)	α ₁₇	$\begin{array}{c c} \alpha_{17} \\ \hline \alpha_{18} = \\ -\alpha_{17} \end{array} w_1$	$NS5(y\psi 234)$	α_{19}	- w ₂
$v_1 + iv_2 = s_2 c_2 e^{i(\varphi_1 - \varphi_2 - \varphi_3)} (e^{-2i\varphi_4} - c_1)$	P(1)	$\begin{array}{c} \alpha_{18} = \\ -\alpha_{17} \end{array}$		$\mathrm{KKm}(\mathrm{y}\psi 234;1)$	$\begin{array}{l} \alpha_{20} = \\ -\alpha_{19} \end{array}$	
$w_1 + iw_2 = s_1c_2 e^{i\varphi_2}, x_1 + ix_2 = c_1e^{i\varphi_2}$	43			·		
$y_1 + iy_2 = e^{i(2\varphi_2 + \varphi_3)} \left(c_1 c_2^2 + s_2^2 e^{-2i\varphi_4} \right),$	0					
$z_1 + iz_2 = e^{i(2\varphi_1 - \varphi_3)} \left(c_2^2 e^{2i\varphi_4} + c_1 s_2^2 \right),$						

Most generic beast with 16 supercharges locally

- Need to build supergravity solution !
- Precision holography for supermaze with T^4 -dependent modes ? $\langle \Psi_{supermaze} | \mathcal{O}_{T^4-dependent} | \Psi_{supermaze} \rangle \neq 0$
- Most generic beast: is 6D sugra enough? or one needs10D?
- Flat space: supermaze fields decay exponentially. Universal ?

How to black holes merge ?

- GR Dogma: horizons join, new horizon forms, irreversible
- Νέα θεολογία : microstates KK modes/internal directions

- Some of these modes shed off
- KK charge = $0 \Rightarrow$ gravity
- KK charge $\neq 0 \Rightarrow$ Stand. Model
- Electromagnetic counterpart ?
- Experimental constraints?
- Calculate for 2-charge

After 20 years ANEWHOPE The Supermaze

Stay tuned for the supergravity solution and the new holographic insights