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Chaos meets black holes and
holography

* Chaos + high-energy physics: until ~ 10 years ago
an unlikely marriage, now a mainstream topic

* Holography connects chaos, black hole information
problem and stringy corrections to black holes

Susskind: Black holes are the fastest
scramblers - the information on anything
falling in quickly gets mixed up with all
the degrees of freedom inside
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Quantum chaos

* Chaos bound, black holes and holography

° Away from black holes I: chaos in the string S-matrix
[Savic & Cubrovi€¢ 2311.xxxxx]

° Away from black holes II: chaos in matrix models
[Cubrovi¢ 2203.10697, Markovic & Cubrovic 2202.09443
+ some fresh results]
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What is chaos?

Everybody knows: nonintegrability, exponential sensitivity
to initial conditions

* Integrability = one integral of motion per degree of
freedom = N independent 1D oscillators

* Non-integrability = insufficient symmetry, aperiodic
motion, higher-dimensional phase space

Positive (classical) Lyapunov exponent [:
A.=lim,,, limg ), logf)X( )



What is quantum chaos?

* Evolution operator is linear = no direct
analogue of classical chaos, no Lyapunov exponent

Anyone who uses words "quantum”
and "chaos" in the same sentence
should be hung on a tree in the park
behind the Niels Bohr institute!

b & Boris A Chirikov, Usp. Fiz.
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M Quantum chaos and level statistics

W8 ° Evolution operator is linear = no direct

- analogue of classical chaos, no Lyapunov exponent
# * N independent 1D oscillators vs. coupled dynamics -
independent vs. correlated energy levels

Integrable quantum system:
iIndependent levels, Poisson
distribution of energy level

spacings

Nonintegrable quantum
system: level repulsion,
Wigner-Dyson distribution




Quantum chaos and OTOC

* Loschmidt echo: evolve the system for time | with the
Hamiltonian [El, perturb the Hamiltonian as [EEIY:d, then
evolve backward in time (i.e. for time |B) and calculate
the overlap of initial and final state

A variation: act by operator at , observe the
evolution of operator B until time E&24, then evolve

backwards and compute the overlap
§ ° This is captured by out-of-time ordered correlator (OTOC)
C(t)=(|[4(z), B(0)|[)=2(A"(£) A(¢)B"(0) B(0))—2(4"(¢)B'(0) 4(z) B(0))=2(TOC —OTOC |

Y
* Putting we get the closest possible meaningful
guantum generalization of the Lyapunov exponent




Quantum chaos and OTOC

8 ° Thisis captured by out-of-time ordered correlator (OTOC) F
(1)=(A4(t), B(O)|)=2(A"(¢) A(£)B"(0) B(0))—2(A" () B'(0) 4(¢) B(0))=2(TOC —OTOC]

* Putting we get the closest possible meaningful
guantum generalization of the Lyapunov exponent

Lyapunov Ruelle
exponent resonance
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= The confusig terminology of
gquantum chaos
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Level statistics

Random matrix
theory in the
large system
limit - Gaussian ensembles

Fully determined solely by the
Hamiltonian

Very hard for many-body
systems

Hard to relate to holography

Perturbation growth:
(A"(0)B'(t) A(0)B(t))~exp(At)

Out-of-time-ordered correlators

Related (?) to classical Lyapunov

Y QoI NpllaldRlel A=P, B=X

Similar to Loschmidt echo but
there are subtleties with order of
limits etc

Non-equilibrium property,
depends on the choice of
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Quantum chaos

* Chaos bound, black holes and holography

° Away from black holes I: chaos in the string S-matrix
[Savic & Cubrovi€¢ 2311.xxxxx]

° Away from black holes II: chaos in matrix models
[Cubrovi¢ 2203.10697, Markovic & Cubrovic 2202.09443
+ some fresh results]
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Scrambling and chaos

* Scrambling - a new (~10 years ago) concept of
chaos, dressed in quantum information: even in a
pure state detailed information about the system is
effectively hidden

* Rigorously: a system of size is scrambled if the
entanglement entropy of any subsystem of size
is maximal

* Interpretation: we need to study at least half of the
system to retrieve info on even a small part of it

*-Scrambling time: time needed for a small
perturbation (adding a few qubits) to distribute over
the system
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Scrambling and chaos

* Dimensional analysis for scrambling time at inverse
temperature [4:

D(P) - diffusion coefficient, d - space dimension

t* NMZ/dD (B)—Z/d

* At infinite dimension < mean-field limit < large
limit (number of colors, IER):

t,~log Mxlim,, D(p) *?~log N xlim,, D(p)**

 The large-N limit of is nontrivial
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Black holes are fast scramblers

* Celebrated derivation of the scrambling time in
large-N field theories from the analytic continuation
of OTOC: Maldacena-Shenker-Stanford (MSS) bound
[1503.01409]

1 2
> <
t*_ZnT log N“=>A<2nT

* Maximum quantum Lyapunov exponent is reached in
large-N QFTs at strong coupling & QFTs dual to
classical AdS black holes

Juan Maldacena Steve Shenker

lh
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Black holes are fast scramblers

The same large-N limit and the chaos bound can
easily be found from semiclassical black hole
horizons (Susskind 0808.2096)

Consider the near-horizon Rindler space:
ds’=—dt*+dx.dx'+dz°=—p°d o’ +dx,dx'+d p°

Wave equation for a scalar perturbation (or charge
density) on the horizon yields:

d ~exp (—U))(X2+1)_(d_1)/2:>t* ~(d—1)r,

1 1

d—1
logr, "~

t, logS=>A=2nT

N23‘ET 2T
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3 Stanford-Shenker protocol

t N wave OUT wave

@('BAdS ‘. AdS ®8H

|(IN|OUT ) = OTOC(t)
* Maximally extended AdS- Schwarzschlld black hole

7
’ é
(

* Four-wave scattering ~ out-of-time-ordered correlator (OTOC) _'

* Left and right AdS with left and right dual CFT — thermofield
double (a formal way of doing QFT at finite temperature)

!
a

» Fast scrambling at BH horizon = MSS bound
. | F J h
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Near-horizon

sym metri;/

Classical gravity +
a black hole horizon

BH information
problems

%4 Fast scrambling, black holes and all that

"Maximum chaos":
universal exponential

/ growth of small
perturbations

AdS/CFT

v

A web of connections
between QFT correlation
functions (pole skipping...)
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; Fast scrambling, black holes and all that
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"Maximum chaos":

universal exponential
Near-horizon growth of small
stmetri;// perturbations

Classical aravity +
a blazk noleizerizon AdS/CFT

BH information A web of connections
problems between QFT correlation
functions (pole skipping...)
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; Fast scrambling, black holes and all that

| f

“Maximum chaos'":
universal exeronential
growth-or srinall

_pciturbations m

Classical aravity +
a blazk noleizerizon AdS/CFT

BH information A web of connections
problems between QFT correlation
functions (pole skipping...)
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; Fast scrambling, black holes and all that

| J

"“Maximum chaos'":
universal exeronential
growth-or srinall

_pciturbations m

Classical aravity +
a blazk noleizerizon AdS/CFT

A weu-af connectiors
between OF:"Carrelation
functions (pole skipping...
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* Quantum chaos
* Chaos bound, black holes and holography

~ Away from black holes I: chaos in the string S-matrix
[Savic & Cubrovi€¢ 2311.xxxxx]

° Away from black holes II: chaos in matrix models
[Cubrovi¢ 2203.10697, Markovic & Cubrovic 2202.09443
+ some fresh results]
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Highly excite

7

$ = d strings and black !

holes
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Highly excited string (HES): occupation humber
Horowitz&Polchinski 1990s: BH/string complementarity

* Newton's constant:

Altogether at the transition we get.:
Ng4N(a’>D_3 — NCNI/g4
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Highly excite

d strings andblck
holes

Altogether at the transition we get:
Ng4N<a1)D—3 — NCNI/g4

The bottom line: the transition to black hole can be
observed at the tree level (small E) at the cost of going
to large occupation numbers

Can we see how the string approaches the fast scrambling
regime? N

Sensitive dependence of amplitudes on-initial conditions

found by Gross&Rosenhaus 2103.15301, Bianchi, Firrotta,
Sonnenschein & Weissman 2303.17233 - does that mean |
chaos? 2
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¥ Highly excited string scattering
4
* The idea: look at the S-matrix structure of the
string-string scattering amplitude, when the

l'...
é
. strings are highly excited

* It is known how to build a highly excited string
(HES) in an analytically controled way: DDF
formalism (Di Vecchia, Del Guidice & Fubini)

* Start from the tachyon (JE state) and add to it
photons (IS states) to get a HES with NESN:

IHES)ocE"“PloX,0°X...0" X|

Nikola Savic

* Analytically doable within the DDF formalsim with the
usual stock of tricks (OPE expansions etc)
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} Highly excited open tring |
amplitudes

o Ka[=RI=10[o Ml HES +tachyon > HES'+tachyon'

* Scattering amplitude at tree-level is found analytically:
A:Ast+Atu+Aus+Ats+Asu+Aut

1

_ J J'
s:mf DX e S”J‘ Hi aw,V (w;,, p,-)fl_[a:1 dz, Vp(za,—Naq,C)f Hbzl dz,’ Vp(zb "'—N,'q,C)



Highly excited open string
amplitudes

o Ka[=RI=10[o Ml HES +tachyon > HES'+tachyon'

* Scattering amplitude at tree-level is found analytically:

A :Ast+Atu+Aus+Ats+Asu+ Aut

1

ASZ:WIDXe IHde (w., pi) fH dz,V ,(z,,—N,q,C IH[ dz,'V ,(z,",—N,'q,C)

* Worldsheet integrals yield expressions of the form:
A=, 2., 2 2 11, k)], D(1,)B(=1=s/2+k,—1—1/2+1)

* The indices go over all the permutations of the
photon insertions = the number of terms grows
superexponentially (roughly with )
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05 1.0 1.5 20 05 1.0 1.5 2.0 2.5 005 1.0 15 20 25 —Bfit
p=17.6 p=18.1 p=241 —B=1

0 0
05 10 15 2.0 2.5 05 10 15 20 2.5 05 1.0 1.5 2.0 2.5

* Textbook test of quantum chaotic scattering: differences
between the phases of the S-matrix eigenvalues vs.
Random matrix theory (Gaussian orthogonal ensemble)

* Decent fit but there are clear deviations, in particular the
excess of near-zero spacings (islands of regular
dynamics)



‘ Crossover from short to long
partitions

p=12.1

A
) 4

= 0
20 0 10 20 30

partitions (states of the string
. 0.8

\ s
V=

20
partitions (states of the string)

Eigenvectors of the S-matrix ordered from the largest
eigenvalue (n=1, blue) toward smaller eigenvalues (here
n=10, red and n=30, green)

The leading eigenvector (blue) contributes most to the
scattering



‘ Crossover from short to long
partitions

p=12.1

A
) 4

= 0
20 0 10 20 30

partitions (states of the string
. 0.8

\ s
V=

20
partitions (states of the string)

Small momenta: the leading eigenvector consists mainly
of short partitions, like (0, 0, 0.... N, O, ... 0)

Large momenta: the leading eigenvector consists mainly
of long partitions, like (1,1, 1, ... 1)
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Persistent states

Phases of the S-matrix in the permutation basis (color
code): random structure predicted by Wigner-Dyson but in
£ the channel we see nearly-invariant states

“ * Persists for large — into the black hole regime!
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0 10 20 30 40

* Origin of the crossover: competition between the
chaotic states (majority) and a few states that
almost do not change upon scattering
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Same happens in the tu channel for closed strings.
Amplitudes computed either through KLT relations
or directly (brute-force numerics)
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- .Some analytical insight comes from the
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.

probabilistic analysis of the S-matrix elements:

San=2. 2. 2, .. _ 11 ~+(all other channels)

n,n,

* For the model there are always states with
eigenvalues i.e. states that remain
almost unchanged
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ToDo's and conclusions (so far)

1v. Unlike individual amplitudes in 2103.15301 and

& 2303.17233 the S-matrix has strong and persistent
( (with growing N) deviations from RMT statistics and
strong chaos = important to study the whole S-matrix

- By definition we look at the asymptotic states at

just-like in the Shenker-Stanford protocol but the
individual string fluctuations have much richer dynamics
than the MSS scaling
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ToDo's and conclusions (so far)

¢ Immediate task: understand the physical meaning of
persistent states, relate to the well-known random walk
models of highly-excited strings (Kazakov&Migdal 1985,
Sagerstam 1989)

* Redo for curved background - is that the missing link to
chaos? From the S-matrix formula it seems not but one
should check...

* Relation to quantum scars?



Outline

* Quantum chaos
* Chaos bound, black holes and holography

° Away from black holes I: chaos in the string S-matrix
[Savic & Cubrovi€¢ 2311.xxxxx]

*Away from black holes II: chaos in matrix models
[Cubrovi¢ 2203.10697, Markovic & Cubrovic 2202.09443
+ some fresh results]
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Type lIB matrix model (IKKT model)

* The matrix formulation of type IIB string theory -
’ Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) model
| ° Perfect testing ground for string dynamics:
- rich dynamics, including brane configurations (full
nonpertrubative string theory?)

- 0-dimensional = no derivatives = simple path integrals

hh P
AW
v

N. Ishibashi

e \ N\
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Path integral of the IKKT model

* Discretization of the Schild action for type IIB string theory

r_..- in O dlmenS|ons

fo
:

M—l...lo, oc—l...16
- bosonic coordinates - NxN Hermitian matrices

— Majorana-Weyl spinors — NxN Hermitian matrices

* Lorentzian signature: always real but not positive definite
because of the time component — sign problem
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Dp-brane solutions

* Remember: IIB string theory has Dp brane excitations with
odd: - D-instantons, =88~ strings, etc.

* D-instantons - points in spacetime as elementary degrees
of freedom; any configuration is a collection of N
instantons

* Single Dp brane solution of the matrix model (IKKT 1997,
Aoki, IKK, Tada & Tsuchiya 1999):

- Hermitian random matrices with compactification
radius and eigenvalues bounded as

j=1...N
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Dynamics in type |IB string regime

- Consider the matrix as the "time operator" and its
eigenvalues as discrete time increments:

0<7t,<7T,<...Ty

* Off-diagonal terms are exponentially small (Tsuchiya et al,
1108.1540, 1311.5579)

* Therefore one might identify the eigenvalues with time
Instants...

» But that leaves strong fluctuations. Easier to work with
"coarse-grained" time — suming over neighboring
eigenvalues:
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Dynamics in type |IB string regime

- Consider the matrix as the "time operator" and its
eigenvalues as discrete time increments:
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Dynamics in type |IB string regime

- Consider the matrix as the "time operator" and its
eigenvalues as discrete time increments:
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Dynamics in type |IB string regime

- Consider the matrix as the "time operator" and its
eigenvalues as discrete time increments:
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Dynamics in type |IB string regime

- Consider the matrix as the "time operator" and its
eigenvalues as discrete time increments:
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Dynamics in type |IB string regime

- Consider the matrix as the "time operator" and its
eigenvalues as discrete time increments:
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Dynamics in type |IB string regime

- Consider the matrix as the "time operator" and its
eigenvalues as discrete time increments:

v,
’ &

* Off-diagonal elements decay exponentially fast
(~eigenstate thermalization)
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3) Time-disordered correlators in tp ‘
)~ lIB matrix model

4
8 ° Time-ordered correlator (TOC): [ dOEABPAIPIMN

o

’ » _Out-of-time ordered correlator (OTOC): [FHOBEAOEIOEAN)
(

* The usual definition of TOC and OTOC applied to matrices
(coordinates EEEREEA

g
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(O)TOC intype IIB regime

* Crucial analytical trick: separation into diagonal elements
=941 and off-diagonal elements EffpZ

* Schematically:
TOC :Zl:l |QI+i|2|pi|2+Z

OTOC=2, _ lgq,.L|p.l+

+Z, ,j=1 (Q}k+ip]+j_C'C°)(r)\é'?)1+i,i+

g, Pl P+

V2T

i,j=1 i,j=1
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(O)TOC intype IIB regime

* Crucial analytical trick: separation into diagonal elements
=941 and off-diagonal elements EffpZ

* Schematically:
TOC :Zl:l |QI+i|2|pi|2+Z

OTOC=2, _ g, |p.l+

+,

g, Pl P+

V2T

i,j=1 i,j=1

(q;z'puj_C-C-)(rf'y)]ﬂ',i"'Z-, =

i,j=1

From numerics and statistical

arguments <|QI+1'|2>: <|pl+i|2> NeXp(Vt1>
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(O)TOC intype IIB regime

* Crucial analytical trick: separation into diagonal elements

Irrelevant for chaos - overall ;
change of scale RIS IVAIZT) Qa
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No equilibrium state and no maximal

¥ chaos

From numerics and statistical

CIEe TN (| ,..|°), (| p,..I") ~exp(rt,)

* Tempting to claim g as the Lyapunov exponent but...

*This is completely wrong! The exponentially growing term
comes from TOC, not OTOC!

* Non-stationary TOC: no equilibrium solution, the
geometry is non-stationary

)




*- Non-maximal chaos from Monte
| Carlo numerics

-1.5 -1 —05 0 05 : -15-1-05 0 05 1 1.5
t t
Regular exponential growth of Zoom-in onto the slow
TOC ([H@l, blue), absence of (sub-exponential) growth
exponential growth of OTOC of OTOC, the signature of
(feH@). red) and their (doubled) weak chaos
| difference ([&l@l, violet)
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. Non-maximal chaos from Monte
Carlo numerics

;

e " C, (t)~const.

I I
N}

|
oo

=
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O
o0
o
—

Log-linear plot confirming the Log-log plot of OTOC and
exponential trend (black rescaled TOC (by the
dashed line - exponential fit) exponential growth
' function) - power-law
B growth of OTOC appears

OUrmss e R o5 3y
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Connection to replica wormholes,
factorization and all that

Proposed resolution of the black hole information problems through
replica wormholes and entanglement islands: Almheiri, Hartman,
Maldacena, Shaghoulian, Tajdini 1911.12333; Penington, Shenker,
Stanford and Yang 1911.11977

Hawking result_

Page curve

Page curve of an Sum over saddles,
evaporating black hole including wormholes
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The factorization puzzle

* Remember AdS/CFT:
gravity partition function = CFT partiton function

* Wormholes ruin the factorization:

| =n 0 = 0 o -

- We can live with but we do expect
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Factorization and averaging

* Remember AdS/CFT:
gravity partition function = CFT partiton function

* Wormholes ruin the factorization:

=] M 0 0 -

» We can easily have [/ineay A
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Where does averaging come from?

* Averaging over what?

* Is the average fundamental (over quenched disorder) or
emergent (coarse-graining or time binning)?

=] M 0 0 -
‘

v,
fo
!

* Many ideas: 2008.08570, 2103.16754, 2105.02129, 2105.08270,
2107.13130, 2110.06221, 2111.07863, 2111.11705, 2202.01372,
2203.09537, 2211.09398 ...
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Averaging over the fluctuations

* Divide the fields (matrices) into slow (quenched, semi-
classical) and fast degrees of freedom'

= [ Dla ][ D[A4,]exp(—

* Annealed partition function:

elliminate a,

fo
:

SIKKT[AM+aM]

* Big issue: Does the replica partition function factorize?

(Z") ?~? (Z)" + small corrections

{ » The plan: compute vs. KARVARVA
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Collective field formalism

* The trick: collective fields - used for SYK and similar
models (Sachdev et al 2017, Saad-Shenker-Stanford-Yao
2103.16754)

(z)=[ Da, [ Dn,| Dgexp|—a! P’a,~ 4

_2(Trg—TraLaM) 6(g—aztau
<Z>=f DaMJ.DkJDgJ.DseXp —aiPzau— 2N_2(Trg—Trazlau)—is(g—ala‘u)

1
<Z>:f Dgf Ds exp —Elogdets—isg—LzN_zTrg



Four replicas

Replicas L, R, L', R’

Two- and four-field combinations for bosons:

- _ [ 1 ' r—[ 711 1
G pp=0,0,05 05 A, BeEL R, A B'EL R

Two-field combinations for fermions: yABE%alaB,yAB,E—

Effective action:

1 8
. ng—_logdetS4B+_10gdetSA gt logdetSAAB 318 448 8'G 445 +L 211 g, Tr gpp—

« Hubbard-Stratonovich fields BEYE TR TRy Y

*Wormhole coupllngs O;p, O ip
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Four replicas - solutions

Trivial solution:
Wormbhole:

Half-wormhole:
Wormhole + half wormhole:

Full expressions for solutions and partition functions +
fermionic contributions can be found in 2203.10697
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Factorizing solutions have chaotic |
level statistics

L

%

Q)

g4,

'.r'
"*'- * WH saddle: self-averaging, regular
.

« HWH saddle: factorizing, chaotic

* WH+HWH saddle: self-averaging,
factorizing, chaotic

WH - regular HWH - chaotic WH+HWH - chaotic

Black - Poisson, Red - Gaussian Unitary Ensemble
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Strong chaos in the BMN model

* In the lIA matrix qguantum-mechanics likewise power-law
behavior of OTOC. In 2202.09443 we even find the same in
vanilla random-matrix models.

v,
’ &
¢

* Universality is subtler, in the OTOC plateau region: the
plateau scales as a universal power-law (Bessel funs etc)

log C,=c,+c,/T’

Red: Wigher-Dyson BB ISHTE,

Black: Poisson RIGEBENG
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What's the memo?

* MSS universality and maximal chaos really hinges on the
existence of a classical horizon with infinite redhsift
(so the eikonal approximation becomes exact) which only
sees the constant factorized TOC and exponential OTOC
with MSS Lyapunov exponent at

7
d >
.

* Once we are deep in the stringy regime there is no
(sharp) horizon so we see the finite-time dynamics of
OTOC with non-universal and weak chaos from
microscopic brane fluctuations. This is something like-
prethermalization regime where TOC is also non-
stationary
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What's the memo?

* On the other side the level statistics see chaos because
it's a stationary quantity, resolving individual levels and
thus characterizing long timescales longer then the
Ehrenfest time

* Factorization and chaos go hand-in-hand as expected
from the "effective disorder" proposal — chaotic level
statistics provides a coarse-graining mechanism

- Interesting but difficult: explicit connection to black holes
and the holographic dual. Easier to do in the IIA (BFSS)
matrix model. Some ideas maybe in 2310.116177?
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