String theory and chaos

Mihailo Čubrović

Center for the Study of Complex Systems Institute of Physics Belgrade, Serbia
with Nikola Savić and Dragan Marković,
Department of Physics, University of Belgrade, Serbia

Chaos meets black holes and holography

Chaos + high-energy physics: until ~ 10 years ago an unlikely marriage, now a mainstream topic

Holography connects chaos, black hole information problem and stringy corrections to black holes

Susskind: Black holes are the fastest scramblers - the information on anything falling in quickly gets mixed up with all the degrees of freedom inside

Outline

D) Quantum chaos

Chaos bound, black holes and holography

- Away from black holes I: chaos in the string S-matrix [Savić \& Čubrović 2311.xxxxx]
- Away from black holes II: chaos in matrix models [Čubrović 2203.10697, Marković \& Čubrović 2202.09443 + some fresh results]

What is chaos?

-) Everybody knows: nonintegrability, exponential sensitivity to initial conditions

Integrability \Rightarrow one integral of motion per degree of freedom $\Rightarrow \mathrm{N}$ independent 1D oscillators

Non-integrability \Rightarrow insufficient symmetry, aperiodic motion, higher-dimensional phase space

- Positive (classical) Lyapunov exponent λ_{c} :
$\lambda_{c}=\lim _{t \rightarrow \infty} \lim _{\delta X(0) \rightarrow 0} \frac{1}{t} \log \delta X(t)$

What is quantum chaos?

6. Evolution operator is linear \Rightarrow no direct analogue of classical chaos, no Lyapunov exponent

> Anyone who uses words "quantum" and "chaos" in the same sentence should be hung on a tree in the park behind the Niels Bohr institute!

Boris A. Chirikov, Usp. Fiz.
Nauk 71, 112, (1973).

Quantum chaos and level statistics

6. Evolution operator is linear \Rightarrow no direct analogue of classical chaos, no Lyapunov exponent

- N independent 1D oscillators vs. coupled dynamics \rightarrow independent vs. correlated energy levels

Integrable quantum system: independent levels, Poisson distribution of energy level spacings $P(s)=e^{-s}$

Nonintegrable quantum system: level repulsion, Wigner-Dyson distribution
$P(s)=c_{\beta} s^{\beta} e^{-a_{\beta} s^{2}}$

Quantum chaos and OTOC

5. Loschmidt echo: evolve the system for time t with the Hamiltonian H, perturb the Hamiltonian as $H+\Delta H$, then evolve backward in time (i.e. for time $-t$), and calculate the overlap of initial and final state

A variation: act by operator A at $\tau=0$, observe the evolution of operator B until time $\tau=t$, then evolve backwards and compute the overlap

- This is captured by out-of-time ordered correlator (OTOC)
$\left.\left.C(t) \equiv\langle |[A(t), B(0)]\right|^{2}\right\rangle=2\left\langle A^{\dagger}(t) A(t) B^{\dagger}(0) B(0)\right\rangle-2\left\langle A^{\dagger}(t) B^{\dagger}(0) A(t) B(0)\right\rangle=2(\mathrm{TOC}-\mathrm{OTOC}$
- Putting $A=X, B=P$ we get the closest possible meaningful quantum generalization of the Lyapunov/exponent

Quantum chaos and OTOC

6. This is captured by out-of-time ordered correlator (OTOC)
$\left.\left.(t) \equiv\langle |[A(t), B(0)]\right|^{2}\right\rangle=2\left\langle A^{\dagger}(t) A(t) B^{\dagger}(0) B(0)\right\rangle-2\left\langle A^{\dagger}(t) B^{\dagger}(0) A(t) B(0)\right\rangle=2(\mathrm{TOC}-\mathrm{OTOC})$

- Putting $A=X, B=P$ we get the closest possible meaningful quantum generalization of the Lyapunov exponent

The confusing terminology of quantum chaos

Level statistics
Random matrix theory in the large system limit - Gaussian ensembles

Fully determined solely by the Hamiltonian

Very hard for many-body systems

\qquad

Perturbation growth:
$\left\langle A^{\dagger}(0) B^{\dagger}(t) A(0) B(t)\right\rangle \sim \exp (\lambda t)$
Out-of-time-ordered correlators
Related (?) to classical Lyapunov exponents for $A=P, B=X$

Similar to Loschmidt echo but there are subtleties with order of limits etc

Non-equilibrium property, depends on the choice of A, B

Outline

Quantum chaos

Chaos bound, black holes and holography

- Away from black holes I: chaos in the string S-matrix [Savić \& Čubrović 2311.xxxxx]
- Away from black holes II: chaos in matrix models [Čubrović 2203.10697, Marković \& Čubrović 2202.09443 + some fresh results]

Scrambling and chaos

Scrambling - a new (~ 10 years ago) concept of chaos, dressed in quantum information: even in a pure state detailed information about the system is effectively hidden

- Rigorously: a system of size M is scrambled if the entanglement entropy of any subsystem of size $m<M / 2$ is maximal
- Interpretation: we need to study at least half of the system to retrieve info on even a small part of it
- Scrambling time: time needed for a/small perturbation (adding a few qubits) to distribute over the system

Scrambling and chaos

Dimensional analysis for scrambling time at inverse temperature β :

$$
\frac{M}{2} \sim D(\beta) t_{*}^{d / 2}, \quad D(\beta) \text { - diffusion coefficient, } d \text { - space dimension }
$$

$t_{*} \sim M^{2 / d} D(\beta)^{-2 / d}$

- At infinite dimension $d \rightarrow \infty \Leftrightarrow$ mean-field limit \Leftrightarrow large N limit (number of colors, $M \sim N^{2}$):
$t_{*} \sim \log M \times \lim _{d \rightarrow \infty} D(\beta)^{-2 / d} \sim \log N \times \lim _{d \rightarrow \infty} D(\beta)^{-2 / d}$
- The large- N limit of $D(\beta)$ is nontrivial

Black holes are fast scramblers

Celebrated derivation of the scrambling time in large-N field theories from the analytic continuation of OTOC: Maldacena-Shenker-Stanford (MSS) bound [1503.01409]

$$
t_{*} \geq \frac{1}{2 \pi T} \log N^{2} \Rightarrow \lambda \leq 2 \pi T
$$

- Maximum quantum Lyapunov exponent is reached in large-N QFTs at strong coupling \Leftrightarrow QFTs dual to classical AdS black holes

Juan Maldacena
Steve Shenker
Douglas Stanford

Black holes are fast scramblers

The same large- N limit and the chaos bound can easily be found from semiclassical black hole horizons (Susskind 0808.2096)

Consider the near-horizon Rindler space:

$$
d s^{2}=-d t^{2}+d x_{i} d x^{i}+d z^{2}=-\rho^{2} d \omega^{2}+d x_{i} d x^{i}+d \rho^{2}
$$

$t=\rho \sinh \omega, z=\rho \cosh \omega$

- Wave equation for a scalar perturbation (or charge density) on the horizon yields:

$$
\Phi \sim \exp (-\omega)\left(x^{2}+1\right)^{-(d-1) / 2} \Rightarrow t_{*} \sim(d-1) r_{h}
$$

Going to asymptotic time $t=(\beta / 2 \pi) \omega$:
$t_{*} \sim \frac{1}{2 \pi T} \log r_{h}^{d-1} \sim \frac{1}{2 \pi T} \log S \Rightarrow \lambda=2 \pi T$

Stanford-Shenker protocol

- Maximally extended AdS-Schwarzschild black hole
- Four-wave scattering ~ out-of-time-ordered correlator (OTOC)

Left and right AdS with left and right dual CFT - thermofield double (a formal way of doing QFT at finite temperature)

- Fast scrambling at BH horizon \Rightarrow MSS bound $\lambda_{\max }=2 \pi T$

Fast scrambling, black holes and all that

"Maximum chaos": universal exponential growth of small perturbations $\lambda=2 \pi T$

Classical gravity + a black hole horizon

A web of connections between QFT correlation functions (pole skipping...)

Fast scrambling, black holes and all that

"Maximum chaos": universal exponential growth of small perturbations $\lambda=2 \pi T$

Claszical aravicy + a black noletrarizon

A web of connections between QFT correlation functions (pole skipping...)

Fast scrambling, black holes and all that

"Maximum chaos":

universal exnonential growth oi simall n=ıturbations $\lambda=2 \pi T$

Clasical arevicy + a black noleharizon

BH information problems

A web of connections between QFT correlation functions (pole skipping...)

Fast scrambling, black holes and all that

 "Maximum chaos": universal exnonential growth oi simall $n=1$ rurbations $\lambda=2 \pi T$Classical aravity + a black nole'tarizon

A weiv of connections between OF: carrelation functions (pole skippinis ..)

Outline

Quantum chaos

Chaos bound, black holes and holography

Away from black holes I: chaos in the string S-matrix [Savić \& Čubrović 2311.xxxxx]

- Away from black holes II: chaos in matrix models [Čubrović 2203.10697, Marković \& Čubrović 2202.09443 + some fresh results]

Highly excited strings and black holes

Highly excited string (HES): occupation number $N \gg 1$
Horowitz\&Polchinski 1990s: BH/string complementarity

$$
M_{\mathrm{BH}}=\frac{r_{s}^{D-2}}{G_{N}}, \quad M_{\text {string }}=\frac{N}{\alpha^{\prime}}
$$

when string becomes a black hole: $M_{\text {string }} \sim M_{\mathrm{BH}}, l_{s}=\sqrt{\alpha^{\prime}} \sim r_{s}$
Newton's constant: $G_{N}=\alpha^{\prime} g^{2}$

- Altogether at the transition we get:
$N g^{4} \sim\left(\alpha^{\prime}\right)^{D-3} \quad \Rightarrow \quad N_{c} \sim 1 / g^{4}$

Highly excited strings and black holes

- Altogether at the transition we get:
$N g^{4} \sim\left(\alpha^{\prime}\right)^{D-3} \quad \Rightarrow \quad N_{c} \sim 1 / g^{4}$

The bottom line: the transition to black hole can be observed at the tree level (small g) at the cost of going to large occupation numbers N

- Can we see how the string approaches the fast scrambling regime?
- Sensitive dependence of amplitudes on initial conditions found by Gross\&Rosenhaus 2103.15301, Bianchi, Firrotta, Sonnenschein \& Weissman 2303.17233 - does that mean chaos?

Highly excited string scattering

The idea: look at the S-matrix structure of the string-string scattering amplitude, when the strings are highly excited

It is known how to build a highly excited string (HES) in an analytically controled way: DDF Nikola Savić formalism (Di Vecchia, Del Guidice \& Fubini)

- Start from the tachyon ($N=0$ state) and add to it $J \gg 1$ photons ($N=1$ states) to get a HES with $N \gg 1$:
$\mid \mathrm{HES}) \propto \xi^{i_{1} \ldots i_{j}} P\left(\partial X, \partial^{2} X \ldots \partial^{N} X\right)$
Analytically doable within the DDF formalsim with the usual stock of tricks (OPE expansions etc)

Highly excited open string amplitudes

The setup: HES + tachyon \rightarrow HES' + tachyon'
Scattering amplitude at tree-level is found analytically:

$$
A=A_{s t}+A_{t u}+A_{u s}+A_{t s}+A_{s u}+A_{u t}
$$

Highly excited open string amplitudes

The setup: HES + tachyon \rightarrow HES' + tachyon'

Scattering amplitude at tree-level is found analytically:

$$
A=A_{s t}+A_{t u}+A_{u s}+A_{t s}+A_{s u}+A_{u t}
$$

$\frac{1}{L(2, R)} \int D X e^{-s_{r}} \int \prod_{i} d w_{i} V_{t}\left(w_{i}, p_{i}\right) \int \prod_{a=1}^{J} d z_{a} V_{p}\left(z_{a},-N_{a} q, \zeta\right) \int \prod_{b=1}^{J} d z_{b}{ }^{\prime} V_{p}\left(z_{b}{ }^{\prime},-N_{b}{ }^{\prime} q, \zeta\right)$

- Worldsheet integrals yield expressions of the form:

$$
A_{s t}=\sum_{i_{s}} \sum_{j_{b}} \sum_{k_{s}} \sum_{l_{s}} \prod_{i_{s}} C\left(k_{i_{a}}\right) \prod_{j_{b}} D\left(l_{j_{b}}\right) B(-1-s / 2+k,-1-t / 2+l)
$$

- The indices $i_{a}, j_{b}, k_{a}, l_{b}$ go over all the permutations of the photon insertions \Rightarrow the number of terms grows superexponentially (roughly with - N!)

Mixed dynamics of the S-matrix

- Textbook test of quantúm chaotic scattering: differences between the phases of the S-matrix eigenvalues vs. Random matrix theory (Gaussian orthogonal ensemble)
- Decent fit but there are clear deviations/ in particular the excess of near-zero spacings (islands of regular
dynamics)

Crossover from short to long

 partitions

partitions (states of the string)

- Eigenvectors of the S-matrix ordered from the largest eigenvalue ($n=1$, blue) toward smaller eigenvalues (here $n=10$, red and $n=30$, green)

The leading eigenvector (blue) contributes most to the scattering

Crossover from short to long

 partitions

partitions (states of the string)

- Small momenta: the leading eigenvector consists mainly of short partitions, like ($0,0,0 \ldots . . N, 0, \ldots 0$)
- Large momenta: the leading eigenvector consists mainly of long partitions, like (1, 1, 1, ... 1)

Persistent states

st	$\mathrm{p}=16.1$	$\mathrm{p}=17.1$	$p=17.6$	$\mathrm{p}=18.1$	
					$\left[\begin{array}{c}1.0 \\ 0.8 \\ -0.6\end{array}\right.$
	$\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$	$\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$	$\begin{array}{llllll}0 & 10 & 20 & 30 & 40\end{array}$	$\begin{array}{llllll}0 & 10 & 20 & 30 & 40\end{array}$	
tu\qquad	$\mathrm{p}=16.1$	$\mathrm{p}=17.1$	$\mathrm{p}=17.6$	$\mathrm{p}=18.1$	0.4
					$c_{-0.2}$

Phases of the S-matrix in the permutation basis (color code): random structure predicted by Wigner-Dyson but in the $t u$ channel we see nearly-invariant states - Persists for large N - - into the black hole regime!

Persistent states

st	$\mathrm{p}=16.1$	$\mathrm{p}=17.1$	$p=17.6$	$\mathrm{p}=18.1$	
					$\left[\begin{array}{c}1.0 \\ 0.8 \\ 0.6\end{array}\right.$
	$\begin{array}{llllll}0 & 10 & 20 & 30 & 40\end{array}$	$\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$	$\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$	$\begin{array}{llllll}0 & 10 & 20 & 30 & 40\end{array}$	
tu	$\mathrm{p}=16.1$	$\mathrm{p}=17.1$	$\mathrm{p}=17.6$	$\mathrm{p}=18.1$	0.4
					$\square_{0}^{-0.2}$

- Origin of the crossover: competition between the chaotic states (majority) and a few states that almost do not change upon scattering

Persistent states

- Same happens in the tu channel for closed strings. Amplitudes computed either through KLT relations or directly (brute-force numerics)

Near-fixed points of the random walk model

- Some analytical insight comes from the $N \rightarrow \infty$ probabilistic analysis of the S-matrix elements:

$$
S_{\vec{n}_{1} \vec{n}_{2}}=\sum_{i_{a}} \sum_{j_{b}} \sum_{k_{a}} \sum_{l_{b}}(\ldots)=\prod_{i=1}^{\left|\vec{n}_{i}\right|} \frac{C_{\text {st }}}{1-s^{i}} \prod_{j=1}^{\left|\vec{n}_{2}\right|} \frac{D_{\mathrm{st}}}{1-t^{j}}+(\text { all other channels })
$$

- For the $N \rightarrow \infty$ model there are always states with eigenvalues $|s-1|<$ const. $/ N^{2}$ i.e. states that remain almost unchanged

ToDo's and conclusions (so far)

Unlike individual amplitudes in 2103.15301 and 2303.17233 the S-matrix has strong and persistent (with growing \mathbf{N}) deviations from RMT statistics and strong chaos \Rightarrow important to study the whole S-matrix

- By definition we look at the asymptotic states at $t \rightarrow \infty$ just like in the Shenker-Stanford protocol but the individual string fluctuations have much richer dynamics than the MSS scaling

ToDo's and conclusions (so far)

Immediate task: understand the physical meaning of persistent states, relate to the well-known random walk models of highly-excited strings (Kazakov\&Migdal 1985, Sagerstam 1989)

- Redo for curved background - is that the missing link to chaos? From the S-matrix formula it seems not but one should check...
- Relation to quantum scars?

Outline

Quantum chaos

Chaos bound, black holes and holography

- Away from black holes I: chaos in the string S-matrix [Savić \& Čubrović 2311.xxxxx]

Away from black holes II: chaos in matrix models [Čubrović 2203.10697, Marković \& Čubrović 2202.09443 + some fresh results]

Type IIB matrix model (IKKT model)

D) The matrix formulation of type IIB string theory Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) model

Perfect testing ground for string dynamics:

- rich dynamics, including brane configurations (full nonpertrubative string theory?)
- 0-dimensional \Rightarrow no derivatives \Rightarrow simple path integrals

Path integral of the IKKT model

Discretization of the Schild action for type IIB string theory in 0 dimensions:

$$
S=\frac{1}{4}\left[X^{\mu}, X^{v}\right]^{2}+\frac{1}{2} \bar{\psi}_{\alpha} \Gamma_{\mu}\left[X^{\mu}, \psi_{\alpha}\right]+\beta
$$

$$
\mu=1 \ldots 10, \quad \alpha=1 \ldots 16
$$

X^{μ} - bosonic coordinates - NxN Hermitian matrices
ψ_{α} - Majorana-Weyl spinors - NxN Hermitian matrices

- Lorentzian signature: always real but not positive definite because of the time component \rightarrow sign problem

$$
Z_{L}=\sum_{N} \int D\left[A_{\mu}\right] \int D\left[\psi_{\alpha}\right] \int D\left[\bar{\psi}_{\alpha}\right] \exp \left(i S_{L}\left[A_{\mu}, \Psi_{\alpha}, \bar{\psi}_{\alpha}\right]\right)
$$

Dp-brane solutions

Remember: IIB string theory has Dp brane excitations with p odd: $p=-1$ - D-instantons, $p=1$ - strings, etc.

D-instantons - points in spacetime as elementary degrees of freedom; any configuration is a collection of N instantons

- Single Dp brane solution of the matrix model (IKKT 1997, Aoki, IKK, Tada \& Tsuchiya 1999):
$A_{\mu}=\left(q_{1}, k_{1}, q_{2}, k_{2} \ldots q_{(p+1) / 2}, k_{(p+1) / 2}, 0, \ldots 0\right), \quad\left[q_{\mu}, k_{v}\right]=i \frac{L^{2}}{2 \pi N^{2 /(p+1)}}$
Hermitian random matrices q_{i}, k_{i} with compactification radius L_{i} and eigenvalues bounded as $0 \leq \alpha_{j}^{p_{i}}, \alpha_{i}^{p_{i}} \leq L_{i}$

Dynamics in type IIB string regime

- Consider the matrix X_{0} as the "time operator" and its eigenvalues τ_{i} as discrete time increments:
$0<\tau_{1}<\tau_{2}<\ldots \tau_{N}$
- Off-diagonal terms are exponentially small (Tsuchiya et al, 1108.1540, 1311.5579)
- Therefore one might identify the eigenvalues with time instants...
- But that leaves strong fluctuations. Easier to work with "coarse-grained" time - suming over n neighboring eigenvalues:

$$
t_{I}=\frac{1}{n} \sum_{j=0}^{n} \tau_{I+j}, \quad I=0 \ldots N-n
$$

Dynamics in type IIB string regime

D) Consider the matrix X_{0} as the "time operator" and its eigenvalues τ_{i} as discrete time increments:

$$
0<\tau_{1}<\tau_{2}<\ldots \tau_{N} \quad t_{I}=\frac{1}{n} \sum_{j=0}^{n} \tau_{I+j}, \quad I=0 \ldots N-n
$$

- Time instants $\sim n \times n$ blocks

Dynamics in type IIB string regime

- Consider the matrix X_{0} as the "time operator" and its eigenvalues τ_{i} as discrete time increments:
$0<\tau_{1}<\tau_{2}<\ldots \tau_{N}$

$$
t_{I}=\frac{1}{n} \sum_{j=0}^{n} \tau_{I+j}, \quad I=0 \ldots N-n
$$

- Time instants $\sim n \times n$ blocks

Dynamics in type IIB string regime

- Consider the matrix X_{0} as the "time operator" and its eigenvalues τ_{i} as discrete time increments:
$0<\tau_{1}<\tau_{2}<\ldots \tau_{N}$

$$
t_{I}=\frac{1}{n} \sum_{j=0}^{n} \tau_{I+j}, \quad I=0 \ldots N-n
$$

- Time instants $\sim n \times n$ blocks

Dynamics in type IIB string regime

- Consider the matrix X_{0} as the "time operator" and its eigenvalues τ_{i} as discrete time increments:
$0<\tau_{1}<\tau_{2}<\ldots \tau_{N}$

$$
t_{I}=\frac{1}{n} \sum_{j=0}^{n} \tau_{I+j}, \quad I=0 \ldots N-n
$$

- Time instants $\sim n \times n$ blocks

Dynamics in type IIB string regime

- Consider the matrix X_{0} as the "time operator" and its eigenvalues τ_{i} as discrete time increments:

$$
0<\tau_{1}<\tau_{2}<\ldots \tau_{N}
$$

$$
t_{I}=\frac{1}{n} \sum_{j=0}^{n} \tau_{I+j}, \quad I=0 \ldots N-n
$$

- Time instants $\sim n \times n$ blocks

Dynamics in type IIB string regime

D) Consider the matrix X_{0} as the "time operator" and its eigenvalues τ_{i} as discrete time increments:
$0<\tau_{1}<\tau_{2}<\ldots \tau_{N}$

$$
t_{I}=\frac{1}{n} \sum_{j=0}^{n} \tau_{I+j}, \quad I=0 \ldots N-n
$$

- Off-diagonal elements decay exponentially fast (\sim eigenstate thermalization)

Time-disordered correlators in type IIB matrix model

- Time-ordered correlator (TOC): $\left\langle X^{\dagger}(t) X(t) X^{\dagger}(0) X(0)\right\rangle$
- Out-of-time ordered correlator (OTOC):

The usual definition of TOC and OTOC applied to matrices (coordinates $X \equiv X_{1}, Y \equiv X_{2}$:

$$
\left.\left.C\left(t_{I}\right) \equiv\langle |\left[\widetilde{X}_{I}, \widetilde{Y}_{0}\right]\right|^{2}\right\rangle=2(\mathrm{TOC}-\mathrm{OTOC})
$$

$$
\mathrm{TOC}=\left\langle\widetilde{X}_{I}^{\dagger} \widetilde{X}_{I} \widetilde{Y}_{0}^{\dagger} \widetilde{Y}_{0}\right\rangle=\frac{1}{Z_{L}} \int D\left[X_{\mu}\right] \widetilde{X}_{I}^{\dagger} \widetilde{X}_{I} \widetilde{Y}_{0}^{\dagger} \widetilde{Y}_{0} e^{i S_{L}}
$$

$$
\mathrm{OTOC}=\left\langle\widetilde{X}_{I}^{\dagger} \widetilde{Y}_{0}^{\dagger} \widetilde{X}_{I} \widetilde{Y}_{0}\right\rangle=\frac{1}{Z_{L}} \int D\left[X_{\mu}\right] \widetilde{X}_{I}^{\dagger} \widetilde{Y}_{0}^{\dagger} \widetilde{X}_{I} \widetilde{Y}_{0} e^{i S_{L}}
$$

Crucial analytical trick: separation into diagonal elements $X_{i i} \equiv q_{i}, Y_{i i} \equiv p_{i}$ and off-diagonal elements $x_{i j}, y_{i j} \ll q_{i}, p_{i}$

(O)TOC in type IIB regime

- Crucial analytical trick: separation into diagonal elements $X_{i i} \equiv q_{i}, Y_{i i} \equiv p_{i}$ and off-diagonal elements $x_{i j}, y_{i j} \ll q_{i}, p_{i}$

7. Schematically:

TOC $=\sum_{i=1}^{n}\left|q_{I+i}\right|^{2}\left|p_{i}\right|^{2}+\sum_{i, j=1}^{n}\left|q_{I+i}\right|^{2}\left|y_{i j}\right|^{2}+\sum_{i, j=1}^{n}\left|p_{i}\right|^{2}\left|x_{I+i, I+j}\right|^{2}+\ldots$
OTOC $=\sum_{i=1}^{n}\left|q_{I+i}\right|^{2}\left|p_{i}\right|^{2}+$
$+\sum_{i, j=1}^{n}\left(q_{I+i}^{*} p_{I+j}-\right.$ c.c. $)(\widetilde{x} \cdot \widetilde{y})_{I+i, i}+\sum_{i, j=1}^{n}\left(p_{i}^{*} q_{i}+\right.$ c.c. $)(\widetilde{x} \cdot \widetilde{y})_{I+i, i}+\ldots$
$C\left(t_{I}\right)=2 \sum_{i, j=1}^{n}\left|q_{I+i}\right|^{2}\left|y_{i j}\right|^{2}+2 \sum_{i, j=1}^{n}\left|p_{i}\right|^{2}\left|x_{I+i, I+j}\right|^{2}+$ subleading
$\widetilde{X}=\operatorname{diag}\left(q_{1} \ldots q_{N-n}\right)+\widetilde{x}, \quad \widetilde{Y}=\operatorname{diag}\left(p_{1} \ldots p_{N-n}\right)+\widetilde{y}$

(O)TOC in type IIB regime

- Crucial analytical trick: separation into diagonal elements $X_{i i} \equiv q_{i}, Y_{i i} \equiv p_{i}$ and off-diagonal elements $x_{i j}, y_{i j} \ll q_{i}, p_{i}$

10 Schematically:
$\mathrm{TOC}=\sum_{i=1}^{n}\left|q_{I+i}\right|^{2}\left|p_{i}\right|^{2}+\sum_{i, j=1}^{n}\left|q_{I+i}\right|^{2}\left|y_{i j}\right|^{2}+\sum_{i, j=1}^{n}\left|p_{i}\right|^{2}\left|x_{I+i, I+j}\right|^{2}+\ldots$
$\mathrm{OTOC}=\sum_{i=1}^{n}\left|q_{I+i}\right|^{2}\left|p_{i}\right|^{2}+$
$+\sum_{i, j=1}^{n}\left(q_{I+i}^{*} p_{I+j}-\right.$ c.c. $)(\widetilde{x} \cdot \widetilde{y})_{I+i, i}+\sum_{i, j=1}^{n}\left(p_{i}^{*} q_{i}+\right.$ c.c. $)(\widetilde{x} \cdot \widetilde{y})_{I+i, i}+\ldots$
$\left.C\left(t_{I}\right)=2 \sum_{i, j=}^{n} \quad\left|q_{I+i}\right|^{2}\right)\left.y_{i j}\right|^{2}+2 \sum_{i, j=1}^{n}\left|p_{i}\right|^{2}\left|x_{I+i, I+j}\right|^{2}+$ subleading
From numerics and statistical arguments $\left.\left.\left.\langle | q_{I+i}\right|^{2}\right\rangle,\left.\langle | p_{I+i}\right|^{2}\right\rangle \sim \exp \left(r t_{I}\right)$

(O)TOC in type IIB regime

- Crucial analytical trick: separation into diagonal elements $X_{i i} \equiv q_{i}, Y_{i i} \equiv p_{i}$ and off-diagonal elements $x_{i j}, y_{i j} \ll q_{i}, p_{i}$

- Schematically:

TOC $=\sum_{i=}^{n}\left|q_{I+i}\right|^{2}\left|p_{i}\right|^{2}+\sum_{i, j=1}^{n}\left|q_{I+i}\right|^{2}\left|y_{i j}\right|^{2}+\sum_{i, j=1}^{n}\left|p_{i}\right|^{2}\left|x_{I+i, I+j}\right|^{2}+\ldots$
OTOC $=\sum_{i=1}^{\prime \prime}\left|q_{1+i}\right|^{2}\left|p_{i}\right|^{2} t$
$+\sum_{i, j=1}^{n}\left(q_{I+i}^{*} p_{I+}-\right.$ c.c. $)(\tilde{x} \cdot \tilde{y})_{I+i, i}+\sum_{i, j=1}^{n}\left(p_{i}^{*} q_{i}+\right.$ c.c. $)(\tilde{x} \cdot \widetilde{y})_{I+i, i}+\ldots$
$C\left(t_{I}\right)=2 \sum_{i, j=1}^{n}\left|q_{t+i}\right|^{2}\left|y_{i j}\right|^{2}+2 \sum_{i, j=1}^{n}\left|p_{i}\right|^{2}\left|x_{I+i, I+j}\right|^{2}+$ subleading

Irrelevant for chaos - overall change of scale $\sim \exp \left(2 r t_{I}\right)$

No equilibrium state and no maximal chaos

$\left.C\left(t_{I}\right)=2 \sum_{i, j=}^{n} \quad\left|q_{I+i}\right|^{2}\right)\left.y_{i j}\right|^{2}+2 \sum_{i, j=1}^{n}\left|p_{i}\right|^{2}\left|x_{I+i, I+j}\right|^{2}+$ subleading

From numerics and statistical arguments $\left.\left.\left.\langle | q_{I+i}\right|^{2}\right\rangle,\left.\langle | p_{I+i}\right|^{2}\right\rangle \sim \exp \left(r t_{I}\right)$

- Tempting to claim r as the Lyapunov exponent but...
- This is completely wrong! The exponentially growing term comes from TOC, not OTOC!
- Non-stationary TOC: no equilibrium solution, the geometry is non-stationary

Non-maximal chaos from Monte Carlo numerics

Regular exponential growth of TOC ($C_{+}(t)$, blue), absence of exponential growth of OTOC ($C_{-}(t)$, red) and their (doubled) difference ($C(t)$, violet)

Zoom-in onto the slow (sub-exponential) growth of OTOC, the signature of weak chaos

Non-maximal chaos from Monte Carlo numerics

Log-linear plot confirming the exponential trend (black dashed line - exponential fit)

Log-log plot of OTOC and rescaled TOC (by the exponential growth function) - power-law growth of OTOC appears

Connection to replica wormholes, factorization and all that

Proposed resolution of the black hole information problems through replica wormholes and entanglement islands: Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini 1911.12333; Penington, Shenker, Stanford and Yang 1911.11977

Page curve of an evaporating black hole

Sum over saddles, including wormholes

The factorization puzzle

Remember AdS/CFT: $Z_{\text {gravity }}=Z_{\text {CFT }}$
gravity partition function $=$ CFT partiton function

- Wormholes ruin the factorization:

$$
Z_{1}=
$$

\qquad

Factorization and averaging

gravity partition function $=$ CFT partiton function

- Wormholes ruin the factorization:

Remember AdS/CFT: $\quad Z_{\text {gavity }}=Z_{\text {CFT }}$

\qquad

Where does averaging come from?

Averaging over what?
Is the average fundamental (over quenched disorder) or emergent (coarse-graining or time binning)?

Averaging over the fluctuations

Divide the fields (matrices) into slow (quenched, semiclassical) and fast degrees of freedom:

$$
A_{u} \rightarrow A_{\mu}+a_{\mu} \quad Z_{E}=\int D\left[a_{\mu}\right] \int D\left[A_{\mu}\right] \exp \left(-S_{\text {IKKT }}\left[A_{\mu}+a_{\mu}\right]\right)
$$

Annealed partition function:

- Big issue: Does the replica partition function factorize?
$\left\langle Z^{n}\right\rangle ? \approx$? $\langle Z\rangle^{n}+$ small corrections
- The plan: compute Z, Z^{2}, Z^{4} vs. $\langle Z\rangle,\left\langle Z^{2}\right\rangle,\left\langle Z^{4}\right\rangle$

Collective field formalism

The trick: collective fields - used for SYK and similar models (Sachdev et al 2017, Saad-Shenker-Stanford-Yao 2103.16754)

$$
\langle Z\rangle=\int D a_{\mu} \int D \lambda_{i} \int D g \exp \left[-a_{\mu}^{\dagger} P^{2} a_{\mu}-\frac{4}{L^{2 N-2}}\left(\operatorname{Tr} g-\operatorname{Tr} a_{\mu}^{\dagger} a_{\mu}\right)\right] \delta\left(g-a_{\mu}^{\dagger} a_{\mu}\right) \wp\left(\lambda_{i}\right)
$$

$\langle Z\rangle=\int D a_{\mu} \int D \lambda_{i} \int D g \int D s \exp \left[-a_{\mu}^{\dagger} P^{2} a_{\mu}-\frac{4}{L^{2 N-2}}\left(\operatorname{Tr} g-\operatorname{Tr} a_{\mu}^{\dagger} a_{\mu}\right)-i s\left(g-a_{\mu}^{\dagger} a_{\mu}\right)\right] \wp\left(\lambda_{i}\right)$
$\langle Z\rangle=\int D g \int D s \exp \left[-\frac{1}{2} \log \operatorname{det} s-i s g-\frac{4}{L^{2 N-2}} \operatorname{Tr} g\right]$
Solution: $s=\frac{2 i}{L^{2 N-2}} I, \quad g=\frac{L^{2 N-2}}{4} I$

- Effective action:

$$
S_{\mathrm{eff}}^{(1)} \equiv-\log \langle Z\rangle=\left(N^{2}-N\right) \log L+N \log \sqrt{2}
$$

Four replicas

Replicas L, R, L', R'

Two- and four-field combinations for bosons:
$g_{A B^{\prime}} \equiv a_{A}^{\dagger} a_{B^{\prime}} \quad G_{A A B^{\prime} B^{\prime}} \equiv a_{A}^{\dagger} a_{A} a_{B^{\prime}}^{\dagger}, a_{B^{\prime}} \quad A, B \in\{L, R\}, \quad A^{\prime}, B^{\prime} \in\left\{L^{\prime}, R^{\prime}\right\}$

Two-field combinations for fermions:

$$
\gamma_{A B} \equiv \frac{1}{N} a_{A}^{\dagger} a_{B}, \gamma_{A B^{\prime}} \equiv \frac{1}{N} a_{A}^{\dagger} a_{B}^{\prime}
$$

- Effective action:
$S_{\mathrm{eff}}^{(4)}=\frac{1}{2} \log \operatorname{det} s_{A B}+\frac{1}{2} \log \operatorname{det} s_{A^{\prime} B^{\prime}}+\frac{1}{2} \log \operatorname{det} S_{A A B^{\prime} B^{\prime}}-i S_{A A B^{\prime} B^{\prime}} G_{A A B^{\prime} B^{\prime}}+\frac{8}{L^{2 N-4}} \operatorname{Tr} g_{A A} \operatorname{Tr} g_{B B}-\frac{4}{L^{2 N-4}} \operatorname{Tr} G_{A A B^{\prime} B^{\prime}}$
- Hubbard-Stratonovich fields
- Wormhole couplings $\sigma_{L R}, \quad \sigma_{L^{\prime} R^{\prime}}$

Half-wormhole couplings
$S_{L R^{\prime}}, \quad S_{L L L^{\prime} L^{\prime}}$,
$S_{L L R^{\prime} R^{\prime}}$

Four replicas - solutions

Trivial solution:

Wormhole:

Half-wormhole: $\left\langle Z^{4}\right\rangle \sim\langle Z\rangle^{4}$
Wormhole + half wormhole:

$$
\left\langle Z^{4}\right\rangle \sim\langle Z\rangle^{4}
$$

- Full expressions for solutions and partition functions + fermionic contributions can be found in 2203.10697

Factorizing solutions have chaotic level statistics

- WH saddle: self-averaging, regular

HWH saddle: factorizing, chaotic
WH+HWH saddle: self-averaging, factorizing, chaotic

Strong chaos in the BMN model

In the IIA matrix quantum mechanics likewise power-law behavior of OTOC. In 2202.09443 we even find the same in vanilla random-matrix models.

Universality is subtler, in the OTOC plateau region: the plateau scales as a universal power-law (Bessel funs etc)

$$
\log C_{\infty}=c_{0}+c_{1} / T^{2}
$$

Red: Wigner-Dyson $N(s) \sim s^{2} \exp \left(-\pi s^{2}\right)$ Black: Poisson $N(s) \sim \exp (-s)$

$1 / T^{2}$

In line with the concept of weak quantum chaos formulated in Kukuljan, Grozdanov \& Prosen 1701.09147

What's the memo?

MSS universality and maximal chaos really hinges on the existence of a classical horizon with infinite redhsift (so the eikonal approximation becomes exact) which only sees the constant factorized TOC and exponential OTOC with MSS Lyapunov exponent at $t \rightarrow \infty$

Once we are deep in the stringy regime there is no (sharp) horizon so we see the finite-time dynamics of OTOC with non-universal and weak chaos from microscopic brane fluctuations. This is something likeprethermalization regime where TOC is also nonstationary

What's the memo?

- On the other side the level statistics see chaos because it's a stationary quantity, resolving individual levels and thus characterizing long timescales longer then the Ehrenfest time
- Factorization and chaos go hand-in-hand as expected from the "effective disorder" proposal - chaotic level statistics provides a coarse-graining mechanism
- Interesting but difficult: explicit connection to black holes and the holographic dual. Easier to do in the IIA (BFSS) matrix model. Some ideas maybe in 2310.11617?

