On the thermodynamics of 4 d Kerr-Newman black holes

Kiril Hristov

Sofia University and INRNE, BAS

ICTP workshop on
String Theory, Holography, and Black Holes
24 October 2023, Trieste

Based on..

- BPS thermodynamics and Euclidean saddles - 2207.12437
- Left- and right-moving sectors - 2304.07320, 2310.13437

Motivation

- The laws of black holes thermodynamics formulated in the 70's, [Bekenstein, Bardeen, Carter, Hawking, Gibbons, ...] - in analogy to the laws of statistical physics
- Major string theory advances in the 90's - succesful match with microscopic entropy via BPS state counting, SCFT_{2} index (Cardy formula) [Strominger, Vafa, Maldacena, Witten, ...]
- Quantum entropy via string corrections: OSV formula and conjecture, [Ooguri, Strominger, Vafa'04, ...]

$$
I^{\mathrm{OSv}}\left(\varphi^{i}\right)=-S_{\mathrm{BH}}-\varphi^{i} Q_{i}, \quad S_{\mathrm{BH}}=\frac{A(\mathrm{hor})}{4 G_{N}}+\ldots
$$

- Last 2 decades: advances driven by holography, asymptotically AdS black holes and (n)AdS horizons. Not much progress in the general thermal 4d asymptotically flat case

4d Kerr-Newman black holes

- 4d Einstein-Maxwell theory, $\left(G_{N}=1\right)$:

$$
\begin{equation*}
I_{\mathrm{EM}}=\frac{1}{16 \pi} \int_{\mathcal{M}} \mathrm{d}^{4} x \sqrt{-g}\left(R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right) . \tag{1}
\end{equation*}
$$

- General black hole solution (no magnetic charge for brevity):

$$
\begin{align*}
\mathrm{d} s^{2}= & -\frac{\Delta(r)}{\rho^{2}}\left(\mathrm{~d} t-a \sin ^{2} \theta \mathrm{~d} \phi\right)^{2}+\frac{\rho^{2}}{\Delta(r)} \mathrm{d} r^{2} \tag{2}\\
& +\rho^{2} \mathrm{~d} \theta^{2}+\frac{\sin ^{2} \theta}{\rho^{2}}\left(a \mathrm{~d} t-\left(r^{2}+a^{2}\right) \mathrm{d} \phi\right)^{2} \\
\Delta(r) & =r^{2}-2 M r+a^{2}+Q^{2}, \quad \rho^{2}=r^{2}+a^{2} \cos ^{2} \theta \tag{3}
\end{align*}
$$

- Conserved asymptotic charges: mass M, electric charge Q, angular momentum $J=a M$.

Extremality

- Event horizons, roots of $\Delta(r)$:

$$
\begin{equation*}
r_{ \pm}=M \pm \sqrt{M^{2}-a^{2}-Q^{2}} . \tag{4}
\end{equation*}
$$

- Hawking temperature of the two horizons:

$$
\begin{equation*}
T_{ \pm}^{\mathrm{H}}=\frac{1}{2 \pi} \frac{r_{ \pm}-M}{r_{ \pm}^{2}+a^{2}} . \tag{5}
\end{equation*}
$$

- Extremality: vanishing temperature, $T_{ \pm}^{\mathrm{H}}=0$, such that $r_{+}=r_{-}$,

$$
\begin{equation*}
M_{\mathrm{extr}}=\sqrt{a^{2}+Q^{2}} . \tag{6}
\end{equation*}
$$

- Regular thermal black holes: real positive temperature of the outer horizon, $T_{+}^{\mathrm{H}}>0$,

$$
\begin{equation*}
M>M_{\mathrm{extr}} \tag{7}
\end{equation*}
$$

- $M<M_{\text {extr }}$: complex $r_{ \pm}$, a naked singularity in Lorentzian signature

Supersymmetry

- Einstein-Maxwell theory = bosonic part of minimal $\mathcal{N}=2$ ungauged supergravity. Poincaré superalgebra:

$$
\begin{equation*}
\left\{\mathcal{Q}_{\alpha}^{A}, \mathcal{Q}_{\beta}^{B}\right\}=M \delta_{\alpha \beta} \delta^{A B}+Q\left(i \gamma^{0}\right)_{\alpha \beta} \epsilon^{A B} \tag{8}
\end{equation*}
$$

- Full supersymmetry: $M=Q=0$, Minkowski ${ }_{4}$
- Half supersymmetry ($1 / 2 \mathrm{BPS}$):

$$
\begin{equation*}
M_{\mathrm{BPS}}=|Q| . \tag{9}
\end{equation*}
$$

- The Lorentz group is not on the r.h.s. of (8): $J \sim a$ completely arbitrary, and

$$
\begin{equation*}
M_{\mathrm{BPS}} \leq M_{\mathrm{extr}} \tag{10}
\end{equation*}
$$

- $M_{\text {BPS }}=M_{\text {extr }}=|Q|$ if and only if $J=0$: static extremal BPS black holes

Smooth Euclidean saddles and NH geometry

- The BPS limit, $M=|Q|$ and $J \neq 0$, still produces regular spacetimes, but only in Euclidean signature!

$$
\begin{equation*}
t \rightarrow i \tau, \quad a \rightarrow i \alpha \tag{11}
\end{equation*}
$$

- Need to periodically identify τ :

$$
\begin{equation*}
\tau \sim \tau+\beta_{+}, \quad \beta_{+}=\frac{1}{T_{+}}=2 \pi Q \frac{(M+2 \alpha)}{\alpha} \tag{12}
\end{equation*}
$$

- Cigar shaped geometry: near the horizon the space smoothly caps off,

$$
\begin{equation*}
\mathrm{d} s_{\mathrm{NH}}^{2}=\mathbb{R}^{2} \times_{w} S_{\mathrm{sq}}^{2} . \tag{13}
\end{equation*}
$$

- For extremal BPS black holes, $\alpha \rightarrow 0$: infinite throat of (Euclidean) AdS_{2} and $\beta_{+} \rightarrow \infty$,

$$
\begin{equation*}
\mathrm{d} s_{\text {extr. }}^{2} \mathrm{NH}=\mathbb{H}^{2} \times S^{2} . \tag{14}
\end{equation*}
$$

The phase space

Inner and outer thermodynamics

- Formally, the laws of thermodynamics hold at each horizon, separately! [Curir'79, Cvetic-Larsen'97,Wu'04, ...]
- Corresponding chemical potentials and entropy:

$$
\begin{align*}
\beta_{ \pm}=2 \pi \frac{r_{ \pm}^{2}+a^{2}}{r_{ \pm}-M}, \quad \Omega_{ \pm} & =\frac{a}{r_{ \pm}^{2}+a^{2}}, \quad \Phi_{ \pm}=\frac{Q r_{ \pm}}{r_{ \pm}^{2}+a^{2}} \tag{15}\\
S_{ \pm} & =\pi\left(r_{ \pm}^{2}+a^{2}\right) \tag{16}
\end{align*}
$$

- First law of thermodynamics and quantum statistical relation:

$$
\begin{gather*}
\beta_{ \pm} \delta M=\delta S_{ \pm}+\beta_{ \pm} \Omega_{ \pm} \delta J+\beta_{ \pm} \Phi_{ \pm} \delta Q \tag{17}\\
I_{ \pm}\left(\beta_{ \pm}, \Omega_{ \pm}, \Phi_{ \pm}\right)=\beta_{ \pm} M-S_{ \pm}-\beta_{ \pm} \Omega_{ \pm} J-\beta_{ \pm} \Phi_{ \pm} Q \tag{18}
\end{gather*}
$$

Technical/conceptual problems

- Extremality requires $T_{ \pm}=0: \beta_{ \pm} \rightarrow \infty$ and $I_{ \pm}$ill-defined? First go to the BPS surface, understand the BPS thermodynamics and only then go to extremality. Works for asymptotically AdS black holes, [Cassani, Papini'19]
- Why care about r_{-}, it is behind r_{+}?

For regular thermal Lorentzian black holes $r_{-}<r_{+}$, in the BPS limit $r_{ \pm}=M \pm i a$, no ordering available

- Go beyond supersymmetry: (log of) microscopic thermal partition function at leading order should agree with $I_{ \pm}$? Easy to express $\beta_{ \pm}, \Omega_{ \pm}, \Phi_{ \pm}$in terms of M, Q, J via $r_{ \pm}$, but other way around involves quartic and higher roots \rightarrow no analytic expression for $I_{ \pm}\left(\beta_{ \pm}, \Omega_{ \pm}, \Phi_{ \pm}\right)$, only numeric evaluation possible

Solution: introduce new variables

- Left- and right-moving chemical potentials and entropy:

$$
\begin{align*}
\beta_{l, r} & :=\frac{1}{2}\left(\beta_{+} \pm \beta_{-}\right), & \omega_{l, r} & :=\frac{1}{2}\left(\beta_{+} \Omega_{+} \pm \beta_{-} \Omega_{-}\right), \\
\varphi_{l, r} & :=\frac{1}{2}\left(\beta_{+} \Phi_{+} \pm \beta_{-} \Phi_{-}\right), & S_{l, r} & :=\frac{1}{2}\left(S_{+} \pm S_{-}\right),
\end{align*}
$$

- Left- and right-moving on-shell action

$$
\begin{equation*}
I_{l, r}:=\frac{1}{2}\left(I_{+} \pm I_{-}\right), \quad \Rightarrow \quad I_{ \pm}=I_{l} \pm I_{r} \tag{20}
\end{equation*}
$$

- Equivalent first law and quantum statistical relation:

$$
\begin{gather*}
\beta_{l, r} \delta M=\delta S_{l, r}+\omega_{l, r}^{\alpha} \delta J_{\alpha}+\varphi_{l, r}^{i} \delta Q_{i}, \tag{21}\\
I_{l, r}\left(\beta_{l, r}, \omega_{l, r}, \varphi_{l, r}\right)=\beta_{l, r} M-S_{l, r}-\omega_{l, r}^{\alpha} J_{\alpha}-\varphi_{l, r}^{i} Q_{i} . \tag{22}
\end{gather*}
$$

Simple expressions

- Remarkably, $\omega_{l}=0$ identically \rightarrow the left-moving sector is static.
- Easy to invert M, Q, J as a function of the new variables. Left-moving sector:

$$
\begin{equation*}
\beta_{l}=4 \pi M, \quad \varphi_{l}=2 \pi Q, \quad \Rightarrow \quad M=\frac{\beta_{l}}{4 \pi}, \quad Q=\frac{\varphi_{l}}{2 \pi}, \tag{23}
\end{equation*}
$$

Right-moving sector:

$$
\begin{align*}
& \beta_{r}=2 \pi \frac{2 M^{2}-Q^{2}}{\sqrt{M^{2}-a^{2}-Q^{2}}}=\frac{2 M^{2}-Q^{2}}{a} \omega_{r}=\frac{2 M^{2}-Q^{2}}{M Q} \varphi_{r}, \tag{24}\\
& \Rightarrow \quad M=\sqrt{\frac{\beta_{r}^{2}-4 \varphi_{r}^{2}+\beta_{r} \sqrt{\beta_{r}^{2}+8 \varphi_{r}^{2}}}{8 \pi^{2}+2 \omega_{r}^{2}}}, \tag{25}\\
& \quad Q=\frac{-\beta_{r}+\sqrt{\beta_{r}^{2}+8 \varphi_{r}^{2}}}{4 \varphi_{r}} M, \quad a=\frac{3 \beta_{r}-\sqrt{\beta_{r}^{2}+8 \varphi_{r}^{2}}}{4\left(4 \pi^{2}+\omega_{r}^{2}\right)} \omega_{r}
\end{align*}
$$

Explicitness problem solved

- We find

$$
\begin{gather*}
I_{l}\left(\beta_{l}, \varphi_{l}\right)=\frac{1}{8 \pi}\left(\beta_{l}^{2}-2 \varphi_{l}^{2}\right), \\
I_{r}\left(\beta_{r}, \omega_{r}, \varphi_{r}\right)=\frac{1}{16}\left(3 \beta_{r}-\sqrt{\beta_{r}^{2}+8 \varphi_{r}^{2}}\right)^{3 / 2} \sqrt{\frac{\beta_{r}+\sqrt{\beta_{r}^{2}+8 \varphi_{r}^{2}}}{4 \pi^{2}+\omega_{r}^{2}}} . \tag{26}
\end{gather*}
$$

- Conjugate variables:

$$
\begin{equation*}
\frac{\partial I_{l, r}}{\partial \beta_{l, r}}=M, \quad \frac{\partial I_{r}}{\partial \omega_{r}}=-J, \quad \frac{\partial I_{l, r}}{\partial \varphi_{l, r}}=-Q \tag{27}
\end{equation*}
$$

Good BPS limit \checkmark

- Take the limit $M=Q$, leading to:

$$
\begin{equation*}
\beta_{l}=2 \varphi_{l}, \quad \omega_{r}= \pm 2 \pi i, \quad \beta_{r}=\varphi_{r} \tag{28}
\end{equation*}
$$

and vanishing right-moving on-shell action

$$
\begin{equation*}
I_{l}^{\mathrm{BPS}}=\frac{\varphi_{l}^{2}}{4 \pi}, \quad I_{r}^{\mathrm{BPS}}=0 \tag{29}
\end{equation*}
$$

- $I_{l}^{\text {BPS }}$ independent of $\beta_{l, r} \rightarrow$ well-defined extremal limit.
- Agreement with OSV formula for extremal BPS black holes:

$$
\begin{equation*}
I^{\mathrm{OSV}}=\frac{\varphi_{\mathrm{BPS}}^{2}}{4 \pi} . \tag{30}
\end{equation*}
$$

Wider applicability of the new variables

- Left- and right-moving variables similar to holomorphic and anti-holomorphic variables for thermal BTZ/CFT 2
- The construction of $I_{l, r}$ works for any black hole solution with 2 horizons \rightarrow similar structure in matter-coupled 4d/5d supergravity
- The BPS limit sets $I_{r}=0$, in agreement with susy fixed point formula (OSV and generalizations) entirely expressed by holomorphic supergravity data. (Works also for almost BPS limits in matter-coupled 4d/5d supergravity)
- Simplest higher derivative corrections preserve the analytic structure: 4der. F-terms only correct I_{l}, not I_{r}

(A)dS asymptotics

- How to properly generalize the construction in the presence of more than 2 horizons $\rightarrow(A)$ dS black holes
- Focus on AdS_{4} black holes with four different horizons: $r_{(i)}$, $i=1, \ldots, 4$ with corresponding on-shell actions $I_{(i)}$.
Left- and right-moving variables exist for each pair of horizons, but calculations harder
- Evidence that all horizons play a role and need to be included to find simplifications. Purely topological sum over all horizons:

$$
\begin{equation*}
I_{(1)}+I_{(2)}+I_{(3)}+I_{(4)}=2 \pi \kappa L^{2}|1-\mathfrak{g}| \tag{31}
\end{equation*}
$$

with L is the AdS_{4} scale, \mathfrak{g} the genus of the horizon topology, $\kappa= \pm 1$ for spherical and hyperbolic curvature. Holographic meaning?

Many open questions

- Is there a clear rule to find $I_{l, r}$ for any black hole? Thermal on-shell action in terms of NUTs and bolts?
- Technical simplification useful for dealing with higher derivative corrections from string theory?
- Fundamental meaning of the new variables?
- What is the quantum phase space of black holes?
- Having explicit expressions allows us to begin addressing some of these questions!

Thank you!

