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S-Matrix Bootstrap Basics

• Bootstrap Philosophy: Any 2-2 scattering amplitude must obey
constraints arising from Lorentz invariance, causality and unitarity.

• Definition: M(s, t) ≡ 2-2 amplitude of identical massive scalars
(e.g., π0π0 → π0π0) where

s = (p1 + p2)2 = 4E 2, t = (p1 − p3)2 = 1
2(s − 4)(cos θ − 1)

Energy-Momentum conservation: s + t + u = 4m2
(1)

• In the centre-of-mass frame

• Problem: Find bounds on the space of all functions of two complex
variables consistent with the bootstrap/physical constraints 1



Beyond low energies

• Why is this a good strategy?
• The expectation is that physical theories of interest may saturate the

bootstrap bounds and therefore be solvable. Due to cues from the
conformal bootstrap program.

• Bootstrap bounds also allow us to test the validity of the basic QFT
axioms. If experiments violate the bounds, one of the axioms has to
go/be modified. Signs of new physics?

• Past work has focused on bounds on low-energy observables like the
scattering lengths and the quartic coupling λ ≡ 1

32π M
(

4m2

3 , 4m2

3

)
.

E.g. Sever, Guerreri (’21), Miro, Guerreri, et al (’22),

−8.02 ≤ λ ≤ 2.66 (2)

• Beyond low-energy observables: We study the behaviour of
ρ(s) = ReM(s, 0)/ImM(s, 0) parameter at large energies. Khuri,
Kinoshita (’65)

• Dispersion relations relate ρ(s) to the total cross section at large
energies. E.g., if σtot(s) ∼ log2(s), ρ(s) ∼ π/ log(s)
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Experimental measurement of ρ(s)

• Experimental measurement of ρ for pp scattering by ATLAS (2023)
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ρ(s) from the bootstrap

• We study ρ(s) for the amplitude with the minimum quartic coupling
λ when S-wave (spin 0) and D-wave (spin 2) scattering lengths are
fixed to the pion values.

• We observe that ρ(s) crosses from negative to positive as in the pp
scattering but then it crosses again and becomes negative.
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• We set up the numerical bootstrap using the Primal approach & use
the Crossing Symmetric Dispersive Representation for the amplitude. 4
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Extra: PWE and Bootstrap Constraints

• Partial Wave Equation

M(s, t) = 32π

√
s

s − 4

∞∑
ℓ=0

(2ℓ + 1)fℓ(s)Pℓ

(
z ≡ 1 + 2t

s − 4

)
(3)

• Bootstrap Constraints
• Unitarity leads to the condition |fℓ(s)|2 < Imfℓ(s) < 1 imposed as(

1 + 2Refℓ(s) 1 − 2Imfℓ(s)
1 − 2Imfℓ(s) 1 − 2Refℓ(s)

)
⪰ 0, s ≥ 4 . (4)

• Crossing Symmetry: M(s, t) = M(t, u) = M(u, s)
• Maximal Analyticity: Only branch cuts from s ∈ (4, ∞) and simple

poles for bound states at s ∈ (0, 4) and their images under crossing
• Real Analyticity: M(s∗, t∗) = M∗(s, t)
• Polynomials boundedness: lim|s|→∞

∣∣M(s,t)
s2

∣∣→ 0 for fixed t
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Extra: Crossing Symmetric Dispersion relation

• Crossing Symmetric Dispersion relation. (Auberson, Khuri (’72),
Sinha, Zahed (’21))

M0 (s1, s2) = α0 + 1
π

∫ ∞

8
3

dτ

τ
A0 (τ ; ŝ2 (τ, β)) × H0 (τ ; s1, s2, s3) ,

(5)
• α0 = M0(0, 0) is the subtraction constant, A0 (s1; s2) is the

s-channel discontinuity and

H0(τ ; s1, s2, s3) ≡ s1
τ − s1

+ s2
τ − s2

+ s3
τ − s3

,

ŝ2(τ, β) ≡ τ
−1 +

√
1 + 4β

2 , β = a
τ − a

• s1 = s − 4m2

3 and a = s1s2s3
s1s2 + s2s3 + s3s1
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Extra: Behavior of ρ(s) for different σtot(s)

• From twice-subtracted dispersion relations, it can be shown (Khuri,
Kinoshita (’65))

σtot  0

σtot = const

σtot rising

σtot ~ (log s)2

π

log s

s

ρ(s)
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Extra: Ansatz for the numerical boostrap

• We choose the ”wavelet” ansatz

Imfℓ(s) = b0δℓ,0 +
(

s − 4
s

)2ℓ+ 1
2 ∑

κ∈Σ
bℓ,κIm∆κ(s), s > 4 (6)

• Here, ∆κ(s) = ρκ(s) Γ
(s−κ)2+Γ , ρκ(s) =

√
4−s−

√
κ−4√

4−s+
√

κ−4 and

Im∆κ(s) = sin
(

2 arctan
√

s − 4
κ − 4

)
Γ

(s − κ)2 + Γ . (7)

• Ansatz for spin two absorptive partial wave
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