Bootstrapping scattering amplitudes at high energies

Faizan Bhat, Indian Institute of Science, Bangalore, India
PhD advisor: Aninda Sinha
Work with A. Sinha, A. Zahed, D.Chowdhury, S. Tiwari, To appear soon

S-Matrix Bootstrap Basics

- Bootstrap Philosophy: Any 2-2 scattering amplitude must obey constraints arising from Lorentz invariance, causality and unitarity.
- Definition: $\mathcal{M}(s, t) \equiv 2-2$ amplitude of identical massive scalars (e.g., $\pi^{0} \pi^{0} \rightarrow \pi^{0} \pi^{0}$) where

$$
\begin{equation*}
s=\left(p_{1}+p_{2}\right)^{2}=4 E^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}=\frac{1}{2}(s-4)(\cos \theta-1) \tag{1}
\end{equation*}
$$

Energy-Momentum conservation: $s+t+u=4 m^{2}$

- In the centre-of-mass frame

- Problem: Find bounds on the space of all functions of two complex variables consistent with the bootstrap/physical constraints

Beyond low energies

- Why is this a good strategy?
- The expectation is that physical theories of interest may saturate the bootstrap bounds and therefore be solvable. Due to cues from the conformal bootstrap program.
- Bootstrap bounds also allow us to test the validity of the basic QFT axioms. If experiments violate the bounds, one of the axioms has to go/be modified. Signs of new physics?
- Past work has focused on bounds on low-energy observables like the scattering lengths and the quartic coupling $\lambda \equiv \frac{1}{32 \pi} \mathcal{M}\left(\frac{4 m^{2}}{3}, \frac{4 m^{2}}{3}\right)$. E.g. Sever, Guerreri ('21), Miro, Guerreri, et al ('22),

$$
\begin{equation*}
-8.02 \leq \lambda \leq 2.66 \tag{2}
\end{equation*}
$$

- Beyond low-energy observables: We study the behaviour of $\rho(s)=\operatorname{Re} \mathcal{M}(s, 0) / \operatorname{Im} \mathcal{M}(s, 0)$ parameter at large energies. Khuri, Kinoshita ('65)
- Dispersion relations relate $\rho(s)$ to the total cross section at large energies. E.g., if $\sigma_{\text {tot }}(s) \sim \log ^{2}(s), \rho(s) \sim \pi / \log (s)$

Experimental measurement of $\rho(s)$

- Experimental measurement of ρ for $p p$ scattering by ATLAS (2023)

$\rho(s)$ from the bootstrap

- We study $\rho(s)$ for the amplitude with the minimum quartic coupling λ when S -wave ($\operatorname{spin} 0$) and D -wave (spin 2) scattering lengths are fixed to the pion values.
- We observe that $\rho(s)$ crosses from negative to positive as in the $p p$ scattering but then it crosses again and becomes negative.

- We set up the numerical bootstrap using the Primal approach \& use the Crossing Symmetric Dispersive Representation for the amplitude.

THANK YOU!

Extra: PWE and Bootstrap Constraints

- Partial Wave Equation

$$
\begin{equation*}
\mathcal{M}(s, t)=32 \pi \sqrt{\frac{s}{s-4}} \sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell}(s) P_{\ell}\left(z \equiv 1+\frac{2 t}{s-4}\right) \tag{3}
\end{equation*}
$$

- Bootstrap Constraints
- Unitarity leads to the condition $\left|f_{\ell}(s)\right|^{2}<\operatorname{Im} f_{\ell}(s)<1$ imposed as

$$
\left(\begin{array}{ll}
1+2 \operatorname{Re} f_{\ell}(s) & 1-2 \operatorname{Im} f_{\ell}(s) \tag{4}\\
1-2 \operatorname{Im} f_{\ell}(s) & 1-2 \operatorname{Re} f_{\ell}(s)
\end{array}\right) \succeq 0, \quad s \geq 4 .
$$

- Crossing Symmetry: $\mathcal{M}(s, t)=\mathcal{M}(t, u)=\mathcal{M}(u, s)$
- Maximal Analyticity: Only branch cuts from $s \in(4, \infty)$ and simple poles for bound states at $s \in(0,4)$ and their images under crossing
- Real Analyticity: $\mathcal{M}\left(s^{*}, t^{*}\right)=\mathcal{M}^{*}(s, t)$
- Polynomials boundedness: $\lim _{|s| \rightarrow \infty}\left|\frac{\mathcal{M}(s, t)}{s^{2}}\right| \rightarrow 0$ for fixed t

Extra: Crossing Symmetric Dispersion relation

- Crossing Symmetric Dispersion relation. (Auberson, Khuri ('72), Sinha, Zahed ('21))

$$
\begin{equation*}
\mathcal{M}_{0}\left(s_{1}, s_{2}\right)=\alpha_{0}+\frac{1}{\pi} \int_{\frac{8}{3}}^{\infty} \frac{d \tau}{\tau} \mathcal{A}_{0}\left(\tau ; \widehat{s}_{2}(\tau, \beta)\right) \times H_{0}\left(\tau ; s_{1}, s_{2}, s_{3}\right), \tag{5}
\end{equation*}
$$

- $\alpha_{0}=\mathcal{M}_{0}(0,0)$ is the subtraction constant, $\mathcal{A}_{0}\left(s_{1} ; s_{2}\right)$ is the s-channel discontinuity and

$$
\begin{aligned}
& H_{0}\left(\tau ; s_{1}, s_{2}, s_{3}\right) \equiv \frac{s_{1}}{\tau-s_{1}}+\frac{s_{2}}{\tau-s_{2}}+\frac{s_{3}}{\tau-s_{3}}, \\
& \widehat{s}_{2}(\tau, \beta) \equiv \tau \frac{-1+\sqrt{1+4 \beta}}{2}, \quad \beta=\frac{a}{\tau-a}
\end{aligned}
$$

- $s_{1}=s-\frac{4 m^{2}}{3}$ and $a=\frac{s_{1} s_{2} s_{3}}{s_{1} s_{2}+s_{2} s_{3}+s_{3} s_{1}}$

Extra: Behavior of $\rho(\mathbf{s})$ for different $\sigma_{\text {tot }}(s)$

- From twice-subtracted dispersion relations, it can be shown (Khuri, Kinoshita ('65))

Extra: Ansatz for the numerical boostrap

- We choose the "wavelet" ansatz

$$
\begin{equation*}
\operatorname{Im} f_{\ell}(s)=b_{0} \delta_{\ell, 0}+\left(\frac{s-4}{s}\right)^{2 \ell+\frac{1}{2}} \sum_{\kappa \in \Sigma} b_{\ell, \kappa} \operatorname{Im} \Delta_{\kappa}(s), \quad s>4 \tag{6}
\end{equation*}
$$

- Here, $\Delta_{\kappa}(s)=\rho_{\kappa}(s) \frac{\Gamma}{(s-\kappa)^{2}+\Gamma}, \rho_{\kappa}(s)=\frac{\sqrt{4-s}-\sqrt{\kappa-4}}{\sqrt{4-s}+\sqrt{\kappa-4}}$ and

$$
\begin{equation*}
\operatorname{Im} \Delta_{\kappa}(s)=\sin \left(2 \arctan \sqrt{\frac{s-4}{\kappa-4}}\right) \frac{\Gamma}{(s-\kappa)^{2}+\Gamma} \tag{7}
\end{equation*}
$$

- Ansatz for spin two absorptive partial wave

