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Page curve of radiation: an entropic paradox

Hawking’s observation: [Comm. Math. Phys. 43, 199–220 (1975)]

The BH radiation appears as a thermal radiation for an observer at
asymptotic infinity and the von Neumann entropy of the radiation is
monotonically increasing with respect to the observer’s time.

Page’s observation: [Phys. Rev. Lett. 71, 3743–3746 (1993)]

The von Neumann entropy of radiation of an evaporating black hole should
fall after the Page time and for eternal black holes, it should reach a constant
value which is the coarse-grained entropy of the black holes.

These two observations give us a paradoxical situation.

The definitions of fine-grained and coarse-grained entropy help us in
choosing the right path.
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Page curve of radiation: an entropic paradox

Considering Total system = BH + Radiation (R ∪Rc = Full system) and the
state of the full system (on a Cauchy slice) is a pure state. Then one should
have [Almheiri et al. Rev.Mod.Phys. 93, 035002 (2021)]

Entropic bound:

S(R) = S(Rc) ≤ Scoarse .

This is due to the fact that Scoarse provides a measure of the total number
of degrees of freedom available to the system, it sets an upper bound on
how much the system can be entangled with something else.

The above mentioned property can also be understood as an artefact of
the Bekenstein bound.

This understanding of the situation motivates us to look for a new
method of computation which shall produce the correct time-evolution of
radiation.

The Page time efficiently points out the region of paradox.
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Replica wormholes and island

island formula: [Almheiri et al. JHEP 12, 063 (2019), JHEP 03, 149 (2020);

Pennington JHEP 09, 002 (2020)]

S(R) = min ext
I

{
Area(∂I)

4GN
+ Smat(I ∪R)

}
.

The island appears due to the application of replica technique in
dynamical gravitational background. There two different saddle points of
the gravitational path integral (partition function)

Hawking saddle → monotonically increasing S(R)

Replica wormhole saddle → S(R) = S(Rc) ≤ Scoarse.

It has also been argued that at early times, the Hawking saddle
dominates whereas in the late time, the replica wormhole saddle points
dominate. [Almheiri et al. arXiv:1910.11077]
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Gravitational set up: JT gravity + flat baths

We consider the 2d eternal black hole solution of Jackiw-Teitelboim (JT)
gravity coupled to a pair of flat baths, filled with conformal matter (free
CFT) of central charge c.

Two-sided eternal BH in AdS + flat thermal baths

The flat baths introduce transparent boundary condition for the outgoing
Hawking quantas.

Metric in Schwarzschild coordinate:

ds2 = −f(r)dt2 +
dr2

f(r)
; f(r) =

(r2 − r2+)

l2
.

S. Gangopadhyay MI, Page curve and holography 5 / 16



Gravitational set up: Kruskal coordinate

In Kruskal coordinates, the metric corresponding to gravitating region
reads

ds2JT = −F 2(r)dudv ; F 2(r) = − f(r)

κ2uv
.

We assume that the curved spacetime influences of the JT gravity
vanishes at a certain hypothetical cut-off distance, namely, rR(L) = ξ,
which lies inside the AdS boundary.

In Kruskal coordinates, the metric corresponding to non-gravitating
region (flat baths) reads

ds2Bath = −F 2(ξ, r)dudv ; F 2(ξ, r) = − f(ξ)

κ2uv
; ξ = αr+, α� 1 .

This ensures that both of the metrics (associated to bath and JT gravity)
are continuously connected along rR(L) = ξ.
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After Page time scenario: in presence of island

a− a+R− R+

b− b+
I

B− B+

Island region (in red) with boundaries a± = (±ta, a)

Geometrical Part:
Area(∂I)

4GN
= 2× 2πa

4GN
.

In this set up, the matter entropy can be realized as

Smat(I ∪R) = Smat(B+ ∪B−) .

The regions of B± can be specified as (b± → a±).

We now make use of the Calabrese-Cardy formula for computing von
Neumann entropy associated to two-disjoint subsystems.
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After Page time scenario: in presence of island

Calabrese-Cardy formula 2d CFT disjoint subsystem formula:

Smat(B+ ∪B−) =
( c

3

)
log
[d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)

d(a+, b−)d(a−, b+)

]
.

Explicit computation of the matter entropy suggests that it can be recast
to the following form

Smat(B+ ∪B−) = Smat(B+) + Smat(B−) +O(e−
2πta
β ) +O(e−

2πtb
β ) .

late time approximation of the Island formula:

S(R) ≈ min ext
I

{
Area(∂I)

4GN
+ Smat(B+) + Smat(B−)

}
.
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After Page time scenario: in presence of island

Extremization of the island parameters (ta and a) yields ta − tb = 0, a ≈ r+
and upon substitution one obtains

S(R) ≈ 2SBH + ... = Scoarse .

Some crucial points:

In the above computation, usually one just simply ignores all the

contributions from the terms with time dependency O(e−
2πt
β ).

However, if we keep those terms this will lead to a time-dependent
expression of S(R) !

One has to justify the approximation and also needs to incorporate the
consequences it produces.
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Our method:

We note that under late time approximation the mutual information
between the subsystems B+ and B− is approximately zero,

I(B+ : B−) = Smat(B+) + Smat(B−)− Smat(B+ ∪B−) ≈ 0.

In this set up, the standard extremization of the Island parameters (ta
and a) fixes the position of the QES (end points of the Island).

Our Proposal: [A. Saha et al. EPJC 82 (2022) 476]

Just after the Page time, inclusion of the Island contribution leads to the exact
saturation of the mutual correlation between B+ and B−,i.e. I(B+ : B−) = 0.

We observe that I(B+ : B−) vanishes only if the following condition is
satisfied

Condition for I(B+ : B−) = 0

ta − tb = |r∗(a)− r∗(b)|; r∗(r) =

(
l2

2r+

)
log

(
r − r+
r + r+

)
.
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Results:

Finding ‘ta’

The condition of vanishing mutual information fixes ta as

ta = tb + |r∗(a)− r∗(b)|

Computation of Smat(I ∪R) [Phys.Rev.D 106 (2022) 8, 086019]

Substituting ta in Smat(B+ ∪B−) we get

Smat(I ∪R) =
c

3
log

[(
β

π

)√
(α2 − 1)(a2 − r2+)

]
.

Remarkably, the obtained expression of Smat(I ∪R) has no time
dependency.

We now use the fact the Geometrical Part: Area(∂I)
4GN

= 2× 2πa
4GN

and apply
the extremization condition for ‘a’.
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Results:

Finding ‘a’

∂aS(R) = 0 → a = r+ +

(
2cGN l

3

)2
1

8r+
+ ... .

We note that the correction term to “a” suggests that the QES has formed
just outside the horizon.

Finding S(R)

S(R) = 2SBH −
(

2c

3

)
log (SBH) +

(
c
2

)2
2SBH

+

(
c
3

)3
32S2

BH

+ ....

Apart from the leading piece 2SBH , the expression of S(R) contains
universal corrections involving the Hawking entropy of the black hole.

The saturation of the mutual information I(B+ : B−) leads to the correct
Page curve.
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Results:

Simplifying the condition for I(B+ : B−) = 0

ta − tb ≡ |r∗(a)− r∗(b)| =
(
β

2π

)
log (SBH) +

(
β

16π

)( c
12

)2 1

S2
BH

+ ...

Finding out the Scrambling time in the Page curve

ta − tb = tscr +O
(

1

S2
BH

)
.

As soon as the time difference ta − tb equals tscr, the mutual information
between B+ and B− vanishes which results in a time independent nature
of S(R).

The Scrambling time is defined as the minimum time required to reterive
the information after sending the information into the black hole.
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Results:

Page time tp

The fine grained entropy of radiation stops growing at

tp =

(
3β

πc

)
SBH −

(
β

π

)
log (SBH) +

(
3c

8

)
β

2πSBH
+ ... .

Observations:

Saturation of the Mutual Information I(B+ : B−) happens when the time
difference ta − tb equals the Scrambling time tscr.

I(B+ : B−) = 0 yields a time independent S(R) and eventually leads to
the correct Page curve.

S(R) contains universal corrections which are logarithmic and inverse
power law in form.
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Insights from gauge/gravity duality:

In the context of holography, the mutual information is a crucial
parameter which determines the phase of the entanglement wedge.

I(A : B) 6= 0 means a connected (phase) entanglement wedge of A∪B and
I(A : B) = 0 means disconnected (phase) entanglement wedge of A ∪B.
[Takayanagi et al. Nature Phys. 14 (2018) 6]

Disconnected EW (I(A : B) = 0): ρA∪B = ρA ⊗ ρB .

Concluding remarks for the after Page time scenario:

Just after the Page time, inclusion of the Island contribution leads to the
disconnected phase of the entanglement wedge corresponding to B+ ∪B−,
that is,

ρB+∪B− = ρB+
⊗ ρB− .

The island is precisely what that separates the entanglement wedge of
B+ ∪B− which in turn saturates the bound S(R) ≤ Scoarse.

This particular observation was also mentioned later in [JHEP 03 (2022) 136].
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