Mutual information of subsystems and the Page curve of Hawking radiation

Sunandan Gangopadhyay

Department of Astrophysics and High Energy Physics, S. N. Bose National Centre for Basic Sciences, India

Based upon:

A. Saha, S. Gangopadhyay, J.P. Saha, Euro. Phys. Journal C 82 (2022) 476 A.R. Chowdhury, A. Saha, S. Gangopadhyay, Phys. Rev. D 106 (2022) 8, 086019.

October 21, 2023

- Demystification of the entropic paradox: Page curve of Hawking radiation
- Resolution: the *island* proposal
- Role of mutual information of subsystems in the Page curve
- Insights from gauge/gravity duality

Page curve of radiation: an entropic paradox

Hawking's observation: [Comm. Math. Phys. 43, 199-220 (1975)]

The BH radiation appears as a thermal radiation for an observer at asymptotic infinity and the von Neumann entropy of the radiation is monotonically increasing with respect to the observer's time.

Page's observation: [Phys. Rev. Lett. 71, 3743-3746 (1993)]

The von Neumann entropy of radiation of an evaporating black hole should fall after the Page time and for eternal black holes, it should reach a constant value which is the coarse-grained entropy of the black holes.

- These two observations give us a paradoxical situation.
- The definitions of fine-grained and coarse-grained entropy help us in choosing the right path.

Page curve of radiation: an entropic paradox

Considering Total system = BH + Radiation ($R \cup R^c$ = Full system) and the state of the full system (on a Cauchy slice) is a pure state. Then one should have [Almheiri et al. Rev.Mod.Phys. 93, 035002 (2021)]

Entropic bound:

 $S(R) = S(R^c) \le S_{\text{coarse}}$.

- This is due to the fact that S_{coarse} provides a measure of the total number of degrees of freedom available to the system, it sets an upper bound on how much the system can be entangled with something else.
- The above mentioned property can also be understood as an artefact of the Bekenstein bound.
- This understanding of the situation motivates us to look for a new method of computation which shall produce the correct time-evolution of radiation.
- The Page time efficiently points out the region of paradox.

Replica wormholes and island

• island formula: [Almheiri et al. JHEP 12, 063 (2019), JHEP 03, 149 (2020); Pennington JHEP 09, 002 (2020)]

$$S(R) = \min_{\mathbf{I}} \left\{ \frac{\operatorname{Area}(\partial I)}{4G_N} + S_{\operatorname{mat}}(I \cup R) \right\} \, \bigg| \, .$$

• The island appears due to the application of replica technique in dynamical gravitational background. There two different saddle points of the gravitational path integral (partition function)

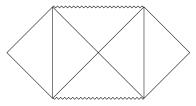
Hawking saddle \rightarrow monotonically increasing S(R)

Replica wormhole saddle $\rightarrow S(R) = S(R^c) \leq S_{\text{coarse}}$.

• It has also been argued that at early times, the Hawking saddle dominates whereas in the late time, the replica wormhole saddle points dominate. [Almheiri et al. arXiv:1910.11077]

Gravitational set up: JT gravity + flat baths

• We consider the 2d eternal black hole solution of Jackiw-Teitelboim (JT) gravity coupled to a pair of flat baths, filled with conformal matter (free CFT) of central charge c.



Two-sided eternal BH in AdS + flat thermal baths

- The flat baths introduce transparent boundary condition for the outgoing Hawking quantas.
- Metric in Schwarzschild coordinate:

$$ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)}; \ f(r) = \frac{(r^2 - r_+^2)}{l^2}$$

Gravitational set up: Kruskal coordinate

• In Kruskal coordinates, the metric corresponding to gravitating region reads

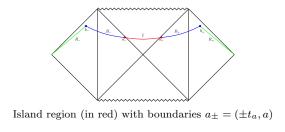
$$ds_{JT}^2 = -F^2(r)dudv \; ; \; F^2(r) = -\frac{f(r)}{\kappa^2 uv} \; .$$

- We assume that the curved spacetime influences of the JT gravity vanishes at a certain hypothetical cut-off distance, namely, $r_{R(L)} = \xi$, which lies inside the AdS boundary.
- In Kruskal coordinates, the metric corresponding to non-gravitating region (flat baths) reads

$$ds_{Bath}^2 = -F^2(\xi, r) du dv \; ; \; F^2(\xi, r) = -\frac{f(\xi)}{\kappa^2 u v} ; \; \xi = \alpha r_+, \; \alpha \gg 1 \; .$$

• This ensures that both of the metrics (associated to bath and JT gravity) are continuously connected along $r_{R(L)} = \xi$.

After Page time scenario: in presence of island



• Geometrical Part:

$$\frac{\operatorname{Area}(\partial I)}{4G_N} = 2 \times \frac{2\pi a}{4G_N}$$

• In this set up, the matter entropy can be realized as

$$S_{\mathrm{mat}}(I \cup R) = S_{\mathrm{mat}}(B_+ \cup B_-) \ .$$

- The regions of B_{\pm} can be specified as $(b_{\pm} \rightarrow a_{\pm})$.
- We now make use of the Calabrese-Cardy formula for computing von Neumann entropy associated to two-disjoint subsystems.

After Page time scenario: in presence of island

Calabrese-Cardy formula 2d CFT disjoint subsystem formula:

$$S_{\text{mat}}(B_+ \cup B_-) = \left(\frac{c}{3}\right) \log \left[\frac{d(a_+, a_-)d(b_+, b_-)d(a_+, b_+)d(a_-, b_-)}{d(a_+, b_-)d(a_-, b_+)}\right]$$

• Explicit computation of the matter entropy suggests that it can be recast to the following form

$$S_{\text{mat}}(B_{+} \cup B_{-}) = S_{\text{mat}}(B_{+}) + S_{\text{mat}}(B_{-}) + \mathcal{O}(e^{-\frac{2\pi t_{a}}{\beta}}) + \mathcal{O}(e^{-\frac{2\pi t_{b}}{\beta}})$$

late time approximation of the Island formula:

$$S(R) \approx \min \operatorname{ext}_{\mathrm{I}} \left\{ \frac{\operatorname{Area}(\partial I)}{4G_N} + S_{\mathrm{mat}}(B_+) + S_{\mathrm{mat}}(B_-) \right\}$$

After Page time scenario: in presence of island

Extremization of the island parameters $(t_a \text{ and } a)$ yields $t_a - t_b = 0$, $a \approx r_+$ and upon substitution one obtains

$$S(R) \approx 2S_{BH} + \dots = S_{\text{coarse}}$$

Some crucial points:

- In the above computation, usually one just simply ignores all the contributions from the terms with time dependency $\mathcal{O}(e^{-\frac{2\pi t}{\beta}})$.
- However, if we keep those terms this will lead to a time-dependent expression of S(R) !
- One has to justify the approximation and also needs to incorporate the consequences it produces.

Our method:

• We note that under late time approximation the mutual information between the subsystems B_+ and B_- is approximately zero,

 $I(B_{+}:B_{-}) = S_{\text{mat}}(B_{+}) + S_{\text{mat}}(B_{-}) - S_{\text{mat}}(B_{+} \cup B_{-}) \approx 0.$

In this set up, the standard extremization of the Island parameters (t_a and a) fixes the position of the QES (end points of the Island).

Our Proposal: [A. Saha et al. EPJC 82 (2022) 476]

Just after the Page time, inclusion of the Island contribution leads to the exact saturation of the mutual correlation between B_+ and B_- , *i.e.* $I(B_+ : B_-) = 0$.

• We observe that $I(B_+:B_-)$ vanishes only if the following condition is satisfied

Condition for $I(B_+:B_-)=0$

$$t_a - t_b = |r^*(a) - r^*(b)|; \quad r^*(r) = \left(\frac{l^2}{2r_+}\right) \log\left(\frac{r - r_+}{r_+}\right).$$

Finding ' t_a '

The condition of vanishing mutual information fixes t_a as

$$t_a = t_b + |r^*(a) - r^*(b)|$$

Computation of $S_{mat}(I \cup R)$ [Phys.Rev.D 106 (2022) 8, 086019]

Substituting t_a in $S_{\text{mat}}(B_+ \cup B_-)$ we get

$$S_{\text{mat}}(I \cup R) = \frac{c}{3} \log\left[\left(\frac{\beta}{\pi}\right) \sqrt{(\alpha^2 - 1)(a^2 - r_+^2)}\right]$$

• Remarkably, the obtained expression of $S_{\text{mat}}(I \cup R)$ has no time dependency.

• We now use the fact the Geometrical Part: $\frac{\text{Area}(\partial I)}{4G_N} = 2 \times \frac{2\pi a}{4G_N}$ and apply the extremization condition for 'a'.

Finding 'a'

$$\partial_a S(R) = 0 \quad \rightarrow \quad a = r_+ + \left(\frac{2cG_N l}{3}\right)^2 \frac{1}{8r_+} + \dots \,.$$

We note that the correction term to "a" suggests that the QES has formed just outside the horizon.

Finding S(R)

$$S(R) = 2S_{BH} - \left(\frac{2c}{3}\right)\log(S_{BH}) + \frac{\left(\frac{c}{2}\right)^2}{2S_{BH}} + \frac{\left(\frac{c}{3}\right)^3}{32S_{BH}^2} + \dots$$

- Apart from the leading piece $2S_{BH}$, the expression of S(R) contains universal corrections involving the Hawking entropy of the black hole.
- The saturation of the mutual information $I(B_+:B_-)$ leads to the correct Page curve.

Simplifying the condition for $I(B_+:B_-)=0$

$$t_a - t_b \equiv |r^*(a) - r^*(b)| = \boxed{\left(\frac{\beta}{2\pi}\right)\log(S_{BH})} + \left(\frac{\beta}{16\pi}\right)\left(\frac{c}{12}\right)^2 \frac{1}{S_{BH}^2} + \dots$$

Finding out the Scrambling time in the Page curve

$$t_a - t_b = t_{scr} + \mathcal{O}\left(\frac{1}{S_{BH}^2}\right) \;.$$

- As soon as the time difference $t_a t_b$ equals t_{scr} , the mutual information between B_+ and B_- vanishes which results in a time independent nature of S(R).
- The Scrambling time is defined as the minimum time required to reterive the information after sending the information into the black hole.

Page time t_p

The fine grained entropy of radiation stops growing at

$$t_p = \left(\frac{3\beta}{\pi c}\right) S_{BH} - \left(\frac{\beta}{\pi}\right) \log\left(S_{BH}\right) + \left(\frac{3c}{8}\right) \frac{\beta}{2\pi S_{BH}} + \dots$$

Observations:

- Saturation of the Mutual Information $I(B_+ : B_-)$ happens when the time difference $t_a t_b$ equals the Scrambling time t_{scr} .
- $I(B_+:B_-) = 0$ yields a time independent S(R) and eventually leads to the correct Page curve.
- S(R) contains universal corrections which are logarithmic and inverse power law in form.

Insights from gauge/gravity duality:

- In the context of holography, the mutual information is a crucial parameter which determines the phase of the entanglement wedge.
- $I(A:B) \neq 0$ means a connected (phase) entanglement wedge of $A \cup B$ and I(A:B) = 0 means disconnected (phase) entanglement wedge of $A \cup B$. [Takayanagi et al. Nature Phys. 14 (2018) 6]
- Disconnected EW (I(A : B) = 0): $\rho_{A \cup B} = \rho_A \otimes \rho_B$.

Concluding remarks for the after Page time scenario:

Just after the Page time, inclusion of the Island contribution leads to the disconnected phase of the entanglement wedge corresponding to $B_+ \cup B_-$, that is,

$$\rho_{B_+\cup B_-}=\rho_{B_+}\otimes\rho_{B_-}.$$

- The island is precisely what that separates the entanglement wedge of $B_+ \cup B_-$ which in turn saturates the bound $S(R) \leq S_{\text{coarse}}$.
- This particular observation was also mentioned later in [JHEP 03 (2022) 136].

