On the Virasoro Fusion Kernel at $c=25$

loannis Tsiares
Institut de Physique Théorique (IPhT), CEA Paris-Saclay

Gong Show,
Workshop on String Theory, Holography, and Black Holes, ICTP, Oct. 2023.

based on: [2310.09334] w/ Sylvain Ribault .

Motivation

Conformal Bootstrap in 2d CFTs

- The basic 2d CFT data at central charge c is a list of primary operators \mathcal{O}_{i}, along with their
\diamond scaling dimensions $\Delta_{i}=h_{i}+\bar{h}_{i}$, and spins $I_{i}=\left|h_{i}-\bar{h}_{i}\right|$
\diamond OPE coefficients $C_{i j k}$.

Motivation

Conformal Bootstrap in 2d CFTs

- The basic 2d CFT data at central charge c is a list of primary operators \mathcal{O}_{i}, along with their
\diamond scaling dimensions $\Delta_{i}=h_{i}+\bar{h}_{i}$, and spins $I_{i}=\left|h_{i}-\bar{h}_{i}\right|$
\diamond OPE coefficients $C_{i j k}$.
- We are interested in a class of $c>1$ CFTs that are:
\checkmark unitary
\checkmark compact
\checkmark discrete
\checkmark only Virasoro chiral algebra

Motivation

Conformal Bootstrap in 2d CFTs

- The basic 2d CFT data at central charge c is a list of primary operators \mathcal{O}_{i}, along with their
\diamond scaling dimensions $\Delta_{i}=h_{i}+\bar{h}_{i}$, and spins $I_{i}=\left|h_{i}-\bar{h}_{i}\right|$
\diamond OPE coefficients $C_{i j k}$.
- We are interested in a class of $c>1$ CFTs that are:
\checkmark unitary
\checkmark compact
\checkmark discrete
\checkmark only Virasoro chiral algebra
- Solve conformal bootstrap equations on Riemann surfaces:

Motivation

Conformal Bootstrap in 2d CFTs

- The basic 2d CFT data at central charge c is a list of primary operators \mathcal{O}_{i}, along with their
\diamond scaling dimensions $\Delta_{i}=h_{i}+\bar{h}_{i}$, and spins $I_{i}=\left|h_{i}-\bar{h}_{i}\right|$
\diamond OPE coefficients $C_{i j k}$.
- We are interested in a class of $c>1$ CFTs that are:
\checkmark unitary
\checkmark compact
\checkmark discrete
\checkmark only Virasoro chiral algebra
- Solve conformal bootstrap equations on Riemann surfaces:

[Moore-Seiberg, '89]

Motivation

2d Conformal Bootstrap without the blocks

Let's focus on the case of the four-point functions:

$$
\sum_{h_{s}, \overline{h_{s}}} C_{\mathrm{s}-\text { channel }}^{2}\left|\mathcal{V}_{s}(z)\right|^{2}=\sum_{h_{t}, \overline{h_{t}}} C_{\mathrm{t} \text {-channel }}^{2}\left|\mathcal{V}_{t}(1-z)\right|^{2}
$$

Motivation

2d Conformal Bootstrap without the blocks

Let's focus on the case of the four-point functions:

$$
\sum_{h_{s}, \overline{h_{s}}} C_{\mathrm{s}-\text { channel }}^{2}\left|\mathcal{V}_{s}(z)\right|^{2}=\sum_{h_{t}, \overline{h_{t}}} C_{\mathrm{t} \text {-channel }}^{2}\left|\mathcal{V}_{t}(1-z)\right|^{2}
$$

Idea: Strip-off Virasoro blocks completely using the fusion kernel:

$$
\mathcal{V}_{s}(z)=\mathcal{F}_{t^{\prime}} \mathbf{F}_{s, t^{\prime}} \mathcal{V}_{t^{\prime}}(1-z)
$$

Motivation

2d Conformal Bootstrap without the blocks

Let's focus on the case of the four-point functions:

$$
\sum_{h_{s}, \overline{h_{s}}} C_{\mathrm{s}-\text { channel }}^{2}\left|\mathcal{V}_{s}(z)\right|^{2}=\sum_{h_{t}, \overline{h_{t}}} C_{\mathrm{t} \text {-channel }}^{2}\left|\mathcal{V}_{t}(1-z)\right|^{2}
$$

Idea: Strip-off Virasoro blocks completely using the fusion kernel:

$$
\mathcal{V}_{s}(z)=\mathcal{F}_{t^{\prime}} \mathbf{F}_{s, t^{\prime}} \mathcal{V}_{t^{\prime}}(1-z)
$$

One then gets

$$
\rho_{\mathrm{t} \text {-channel }}(h, \bar{h})=\mathscr{F}_{h^{\prime}, \overline{h^{\prime}}} \mathbf{F}_{h, h^{\prime}} \mathbf{F}_{\bar{h}, \overline{h^{\prime}}} \rho_{\text {s-channel }}\left(h^{\prime}, \overline{h^{\prime}}\right)
$$

where ρ is an appropriate distribution.

The Virasoro fusion kernel in 2d

- It is known exactly for $c \in \mathbb{C} \backslash(-\infty, 1]$ due to [Ponsot-Teschner, 01'; Teschner-Vartanov; '12] :

The Virasoro fusion kernel in 2d

- It is known exactly for $c \in \mathbb{C} \backslash(-\infty, 1]$ due to [Ponsot-Teschner, 01'; Teschner-Vartanov; '12] :

$$
\begin{aligned}
& \mathbf{F}_{p_{s}, p_{t}}^{(b)}\left[\begin{array}{c}
p_{2} \\
p_{1} \\
p_{3}
\end{array}\right]=\frac{\Gamma_{b}\left(Q \pm 2 i p_{s}\right)}{\Gamma_{b}\left(\pm 2 i p_{t}\right)} \prod_{f \in F} \prod_{\substack{\sigma \in \mathbb{Z}_{2}^{f} \mid \\
\sigma_{f}=\eta_{t}(f)}} \Gamma_{b}\left(\frac{Q}{2}+i \sum_{j \in f} \sigma_{j} p_{j}\right)^{\sigma_{f}} \\
& \quad \times \int_{\frac{Q}{2}+i \mathbb{R}} \frac{d u}{i} \prod_{\substack{\sigma \in \mathbb{Z}_{2}^{E} \mid \\
\sigma_{V}=1}} S_{b}\left(u+\sigma_{E} \frac{Q}{4}+\frac{i}{2} \sum_{j \in E} \sigma_{j} p_{j}\right)^{-\sigma_{E}},
\end{aligned}
$$

where Γ_{b}, S_{b} are some special functions, and

$$
h=\frac{c-1}{24}+p^{2}, \quad c=1+6 Q^{2}, \quad Q \equiv b+b^{-1} .
$$

The Virasoro fusion kernel in 2d

- It is known exactly for $c \in \mathbb{C} \backslash(-\infty, 1]$ due to [Ponsot-Teschner, 01'; Teschner-Vartanov; '12] :
$\mathbf{F}_{p_{s}, p_{t}}^{(b)}\left[\begin{array}{cc}p_{2} & p_{p_{1}} \\ p_{1} & p_{4}\end{array}\right]=\frac{\Gamma_{b}\left(Q \pm 2 i p_{s}\right)}{\Gamma_{b}\left(\pm 2 i p_{t}\right)} \prod_{f \in F} \prod_{\substack{\sigma \in \mathbb{Z}_{2}^{f} \mid \\ \sigma_{f}=\eta_{t}(f)}} \Gamma_{b}\left(\frac{Q}{2}+i \sum_{j \in f} \sigma_{j} p_{j}\right)^{\sigma_{f}}$

$$
\times \int_{\frac{Q}{2}+i \mathbb{R}} \frac{d u}{i} \prod_{\substack{\sigma \in \mathbb{Z} \\ \sigma_{V}=1}} S_{b}\left(u+\sigma_{E} \frac{Q}{4}+\frac{i}{2} \sum_{j \in E} \sigma_{j} p_{j}\right)^{-\sigma_{E}}
$$

where Γ_{b}, S_{b} are some special functions, and

$$
h=\frac{c-1}{24}+p^{2}, \quad c=1+6 Q^{2}, \quad Q \equiv b+b^{-1} .
$$

- Its form is too complicated; so far practically used in asymptotic/special limits [Collier-Maxield-Gobeil-Perlmutter, 18;
Collier-Maxfield-Maloney-I.T.,'19; I.T. '20; Numasawa-I.T.,'22; Chandra-Collier-Hartman-Maloney, '22, ...]

A simpler expression at $c=25$

- In [2310.09334] we show:

$$
\begin{gathered}
\mathbf{F}_{p_{s} p_{t}}^{(c=25)}\left[\begin{array}{ll}
p_{2} & p_{3} \\
p_{1} & p_{4}
\end{array}\right]=\frac{4 \pi^{2}}{i} \frac{G\left(\pm 2 i p_{t}\right)}{G\left(2 \pm 2 i p_{s}\right)} \prod_{f \in F} \prod_{\substack{\sigma \in \mathbb{Z}_{2}^{f} \mid \\
\sigma_{f}=\eta_{t}(f)}} G\left(1+i \sum_{j \in f} \sigma_{j} p_{j}\right)^{-\sigma_{f}} \\
\times \sum_{\epsilon= \pm} \frac{\epsilon}{\sqrt{d}} \prod_{\substack{\sigma \in \mathbb{Z}_{\mathcal{E}}^{E} \mid \\
\sigma_{V}=1}} \widetilde{G}\left(\omega_{\epsilon}-\frac{i}{2} \sum_{j \in E} \sigma_{j} p_{j}\right)^{-\sigma_{E}}
\end{gathered}
$$

where $G(x)$ is the Barnes G-function, $\widetilde{G} \equiv \frac{G(1+x)}{G(1-x)}$, and $d, \omega_{ \pm}$ are specific (trigonometric) functions of p_{i} 's.

A simpler expression at $c=25$

- In [2310.09334] we show:

$$
\mathbf{F}_{p_{s} p_{t}}^{(c=25)}\left[\begin{array}{cc}
p_{2} & p_{3} \\
p_{1} & p_{4}
\end{array}\right]=\frac{4 \pi^{2}}{i} \frac{G\left(\pm 2 i p_{t}\right)}{G\left(2 \pm 2 i p_{s}\right)} \prod_{f \in F} \prod_{\substack{\sigma \in \mathbb{Z}_{2}^{f} \mid \\
\sigma_{f}=\eta_{t}(f)}} G\left(1+i \sum_{j \in f} \sigma_{j} p_{j}\right)^{-\sigma_{f}}
$$

$$
\times \sum_{\epsilon= \pm} \frac{\epsilon}{\sqrt{d}} \prod_{\substack{\sigma \in \mathbb{Z} E_{2} \mid \\ \sigma_{V}=1}} \widetilde{G}\left(\omega_{\epsilon}-\frac{i}{2} \sum_{j \in E} \sigma_{j} p_{j}\right)^{-\sigma_{E}}
$$

where $G(x)$ is the Barnes G-function, $\widetilde{G} \equiv \frac{G(1+x)}{G(1-x)}$, and $d, \omega_{ \pm}$ are specific (trigonometric) functions of p_{i} 's.
-What does this buy us?

A simpler expression at $c=25$

- In [2310.09334] we show:

$$
\times \sum_{\epsilon= \pm} \frac{\epsilon}{\sqrt{d}} \prod_{\substack{\sigma \in \mathbb{Z} E \mid \\ \sigma_{V}=1}} \widetilde{G}\left(\omega_{\epsilon}-\frac{i}{2} \sum_{j \in E} \sigma_{j} p_{j}\right)^{-\sigma_{E}}
$$

where $G(x)$ is the Barnes G-function, $\widetilde{G} \equiv \frac{G(1+x)}{G(1-x)}$, and $d, \omega_{ \pm}$ are specific (trigonometric) functions of p_{i} 's.

- What does this buy us?
$\star \rho_{\mathrm{t} \text {-channel }}=£_{h^{\prime}, \overline{h^{\prime}}} \mathbf{F}_{h, h^{\prime}} \mathbf{F}_{\bar{h}, \overline{h^{\prime}}} \rho_{\mathrm{s} \text {-channel }}$ implemented more easily
\star surprising connection with Painleve VI non-linear diff equation
$\star c \leftrightarrow 26-c$ duality in 2d CFTs!

A simpler expression at $c=25$

- In [2310.09334] we show:

$$
\times \sum_{\epsilon= \pm} \frac{\epsilon}{\sqrt{d}} \prod_{\substack{\sigma \in \mathbb{Z} E \mid \\ \sigma_{V}=1}} \widetilde{G}\left(\omega_{\epsilon}-\frac{i}{2} \sum_{j \in E} \sigma_{j} p_{j}\right)^{-\sigma_{E}}
$$

where $G(x)$ is the Barnes G-function, $\widetilde{G} \equiv \frac{G(1+x)}{G(1-x)}$, and $d, \omega_{ \pm}$ are specific (trigonometric) functions of p_{i} 's.

- What does this buy us?
$\star \rho_{\mathrm{t} \text {-channel }}=£_{h^{\prime}, \overline{h^{\prime}}} \mathbf{F}_{h, h^{\prime}} \mathbf{F}_{\bar{h}, \overline{h^{\prime}}} \rho_{\mathrm{s} \text {-channel }}$ implemented more easily
\star surprising connection with Painleve VI non-linear diff equation
* $c \leftrightarrow 26-c$ duality in 2d CFTs!

Thank you!

Extra slides

Tetrahedron notation:

Name	Notation	Value
Edges	E	$\{1,2,3,4, s, t\}$
Pairs of opposite edges	P	$\{13,24, s t\}$
Faces	F	$\{12 s, 34 s, 23 t, 14 t\}$
Vertices	V	$\{14 s, 12 t, 34 t, 23 s\}$

Formulas will involve assigning signs to edges. We use the notations:

- $\sigma \in \mathbb{Z}_{2}^{E}$ is an assignment of a sign $\sigma_{i} \in\{+,-\}$ for any $i \in E$, and $\sigma \in \mathbb{Z}_{2}^{f}$ for a triple of signs on a face $f \in F$.
- $\sigma_{E}, \sigma_{v}, \sigma_{f}, \sigma_{p}$ for products of $6,3,3$ or 2 signs on all edges, a vertex, a face, or two opposite edges.
- $\sigma \in \mathbb{Z}_{2}^{E} \mid \sigma_{V}=1$ for sign assignments whose products are 1 at each vertex. There are 8 such assignments, and they can be split in two halves according to $\sigma_{E}= \pm 1$.
- The indicator function $\eta_{i} \in \mathbb{Z}_{2}^{F}$ is $\eta_{i}(f)=1$ if the edge i belongs to the face f, and $\eta_{i}(f)=-1$ otherwise.

Here is the set $\sigma \in \mathbb{Z}_{2}^{E} \mid \sigma_{V}=1$:

s	t	1	2	3	4	σ_{E}
-	+	-	-	+	+	-
-	+	+	+	-	-	-
+	-	-	+	+	-	-
+	-	+	-	-	+	-
+	+	-	-	-	-	+
+	+	+	+	+	+	+
-	-	-	+	-	+	+
-	-	+	-	+	-	+

The functions $d, \omega_{ \pm}$:

$$
\begin{gathered}
d=\operatorname{det}\left[\begin{array}{ccc}
2 & -2 \cosh \left(2 \pi p_{2}\right) & -2 \cosh \left(2 \pi p_{3}\right) \\
\left(\begin{array}{ccc}
2 \cosh \left(2 \pi p_{s}\right) \\
-2 \cosh \left(2 \pi p_{2}\right) & 2 & 2 \cosh \left(2 \pi p_{t}\right) \\
-2 \cosh \left(2 \pi p_{3}\right) & 2 \cosh \left(2 \pi p_{t}\right) & 2 \\
2 \cosh \left(2 \pi p_{s}\right) & -2 \cosh \left(2 \pi p_{1}\right) & -2 \cosh \left(2 \pi p_{4}\right)
\end{array}\right] \\
e^{2 \pi i \omega_{ \pm}}=\frac{\sum_{i j \in P} 4 \cosh \left(2 \pi p_{4}\right)}{2 \sum_{\sigma \in \mathbb{Z}_{2}^{E} \mid} \sigma_{E} e^{-\pi \sum_{k \in E} \sigma_{k} p_{k}}\left(2 \pi p_{i}\right) \sinh \left(2 \pi p_{j}\right) \mp \sqrt{d}} \\
\sigma_{V=1}
\end{array} .\right.
\end{gathered}
$$

