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1. Gauge-gravity correspondence: e« AdS/CFT: low energy gravity observables ~ correlators 1n strongly coupled CEFT

bulk geometry ~ entanglement in CFT
low energy states 1 gravity ~ CFT code subspace
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Motivation

1. Gauge-gravity correspondence: e« AdS/CFT: low energy gravity observables ~ correlators 1n strongly coupled CEFT

bulk geometry ~ entanglement in CFT
low energy states 1 gravity ~ CFT code subspace

" black hole microstate counting
Top-down: string theory = AdS/CFT DE— ‘

 tensionless strings: string worldsheet ~ boundary CEFT

-

e Asymptotic symmetries 1 gravity ~ symmetries of CFT 1n lower dim.
Bottom-up:

A
_* Black hole entropy § =
4G

Which aspects of gravity are captured by contormal field theories?



Motivation

2. Towards ~all-A holography ?

e (Usually) no flux through boundary

b4
L4
Il = = = =

e Bulk time evolution ~ boundary time evolution =

0 T , ' Bulk & ~ boundary #
Plausible to postulate that: !

- Bulk unitarity ~ boundary unitarity

e Can explicitly check match at weak coupling/large N

AdS: A <0
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2. Towards ~all-A holography ?

e Flux through boundary =

Boundary conditions?

No obvious place for QFT/CFT

Focus on A = 0

e Hints of CFT structure in sector of GR

Motivation

AFS: A=0
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Motivation and outline

3. New structures 1n gravity i 3+1 dimensional AFS:

A. Asymptotic symmetries and gravitational memory
Asymptotic, semiclassical Virasoro symmetry

Infinite towers of symmetries

B. Celestial amplitudes >
C. Towards bulk reconstruction 1n general relativity Infinity of charges ~ multipoles (discrete basis)

D. Flat space Iimit of AdS/CFT Emergent symmetries in flat limit

E. Twistors, self-dual sector and top-down holography in AFS



A. Asymptotic symmetries and gravitational memory



General relativity in Bond1 gauge

Asymptotic observables:

e gravitational waves: GR, scattering amplitudes, numerics, ...

Perturbations around flat (Minkowski) background:

e spherical coordinate system centered at source %2
e Bondi gauge:

8rr = 80 = 8rp = O (radial propagation) %Z

0, det (r‘ngB) = 0 (spherical wavetronts)

[Bond, van der Burg, Metzner, Sachs '62]




General relativity in Bondi gauge

e Metric near null infinity (#7):

ds’ = —du? — 2dudr + 2r2yzzdzd2
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General relativity in Bondi gauge

e Metric near null infinity (#7):

ds’ = —du? — 2dudr + 2r2yzzdzd2
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1 Retarded Time = u=¢t—r




General relativity in Bondi gauge

e Solve Einstein equations perturbatively at large r =

eg. Bondi mass loss formula (from G,, @ O(r™?))

1 .
Oy = — (DZN*® + D:N%) = T

uu

<Z n

AN |




Memory effects

Gravitational memory:

1
4

uu

(D7AC% + D:ACE) = Amy — | duT,




Memory eftfects

Gravitational memory:

1
4

uu

(D7AC% + D:ACE) = Amy — | duT,

—  Net relative displacement between observers
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Conformal compactification

Compact representation of spacetime preserving causal structure

Boundary consists of: - future and past null infinities (T, %)

[ - spacelike infinity i°

- timelike infinities i ¥, i~ (points)

Can be blown up to 3d surtaces

e Timelike infinity important for massive particles [Compere, Gralla, Wei 23]

e Spacelike infinity hosts asymptotic charges

—» at any cut from Einstein equations (constraints)



Asymptotic symmetries
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Asymptotic symmetries

ds’? = —du® — 2dudr + 2r2yzzdzd2

m
+rC,(u,z, 2)dz* + rCs=(u, z, DA + —du® + -
r

Diffeomorphism invariance left after imposing Bond1 gauge:
* at the boundary these become physical O # 0

e generate asymptotic symmetries

Look for vector fields & that preserve the metric at large r

gég/w = Vﬂ‘fv T Vv‘fﬂ
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Asymptotic symmetries

Poincare symmetries of Minkowski spacetime enhanced:

* Translations — Supertranslations &y = f(z,2)0, + -+

 Rotations

— Superrotations &y = YA(z,7)0 e

* Boosts

[bulk signature of 2D Virasoro symmetry]

Look for vector fields & that preserve the metric at large r

35&1/ = Vﬂcfy + Vycfﬂ

[Bondi, van der Burg, Metzner, Sachs '62, Barnich, Troessaert '09]



Matching condition

Finstein equations at infinity can be recast as evolution equations for (generalized) BMS covariant quantities

| - |
=0: d,mpy=— (DN¥+D;N%) —T > 0,Mc ==D’N+—Co,N
u'''B 4 < 4 u"C 2 4 "

uu

G

uu

e Boundary values of Mg are antipodally matched across spatial infinity



Matching condition

Finstein equations at infinity can be recast as evolution equations for (generalized) BMS covariant quantities

1
G

uu uu

=01 omy=— (DN%+ DN%) =T,

1
> 1

e Boundary values of Mg are antipodally matched across spatial infinity

e Imposing matching on supertranslations at .=+ allows for pairing:

uj-l-
M -

d*7f(z, )M (z,7) =

d*zf(z,2)M _(z,7) = Oy
J 7~

[Strominger '13]
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Implications for scattering

e Particles near infinity weakly interacting ~ free

 Incoming and outgoing Fock spaces: a' t(pl)---agl /Out(pn) 10)

1n/ou

Aout = STainS — Out<pn+m"°pm+1 ‘p1"°pm>in — <pn+m'"pm+l ‘S‘plpm>

\—— ——

L S-matrix

S-matrix element

e Scattering states are acted upon by the asymptotic charges:

Oy

uji-

d*z2f(z2,)M(z,7) =
o j+

1 1
dud*zf(z,7) (5D2N + an“N ) (G, constraint)

1 1
0 Mc =—D*N+—Co,N
2 4



Implications for scattering

e (Gravitons = quantized modes of the news:

o0

K : :
Nu,z,7) = " J dww (aieza)u + Cl_e_mm) [He, Mitra, Strominger '14]
U
0

e Charge action on Fock space computed via canonical brackets [Ashtekar '82]

2
[Nw), C(u')] = i’; 5(u — w8z, ')

e Scattering states are acted upon by the asymptotic charges:

i 1 1
Qf = d*z f(Z,2)Mp(z,2) = dud?z f(z,2) (EDzN + anMN > (G, constraint)
J 7+ J g+

1 1
0,Mc =—D?N+—Co, N
2 4



Matching condition = charge conservation: {out | Qf+c§’ - 80/ | in) =0

—

Implications for scattering

<OU’t‘ [Qsofta CSD] | In = — <OUt‘ [Qhard’ CS)] ‘ 1Il>

O

J g+

dud*zf(z, 7) (lDzN+ lCa N)
T\ 2 4 "

Qsoft Qhard

+0(q")



Implications for scattering

i 1 1
Matching condition = charge conservation: (out| Qf+cS’ — Q7 in) =0 O = dud*zf(z,7) (EDQN + anuN )
J g+

— <OU’t‘ [Qsofv CS)] |111 — = <Oll’[‘ [Qhard9 CS)] ‘Hl) Qsoft Qhard

Qsoft X dzzsz duN(u, <, Z)

—O0

S X +0(q")

/

SOFT FACTOR



Implications for scattering

i 1 1
Matching condition = charge conservation: (out| Qf+oS’ — 8O |in) =0 O = dud*zf(z,7) (EDzN + anuN )
J g+

— <OU’t‘ [Qsofv CS)] |111 — = <OU.’[‘ [Qhard9 CS)] ‘111) Qsoft Qhard

Oh.q  generates asymptotic symmetry transformation on scattering states ~ leading soft factor in momentum space

S X +0(q")

L ) /
N

SOFT FACTOR




Implications for scattering

Repeat for superrotations = subleading soft graviton theorem [Cachazo, Strominger '14; Kapec, Lysov, Pasterski, Strominger "14]
1 1

S=—8O 4+ 80 4 »§® + ...
)

S X +0(q")

/

SOFT FACTOR



Implications for scattering

Repeat for superrotations = subleading soft graviton theorem [Cachazo, Strominger '14; Kapec, Lysov, Pasterski, Strominger "14]
I (0) (1) (2) - -
S=—SY+SYVY+w0S5“ + ... Tower of corrections = tower of conservation laws?
)

S X +0(q")

" / /

SOFT FACTOR




B. Celestial amplitudes



Conformal primary basis

[Lorentz algebra mn 4D ~ global conformal algebra in 2D
* Subleading soft graviton <> generator of 2D conformal (Virasoro) symmetry

» 4D Lorentz boost/2D dilation action on momentum eigenstates is non-diagonal: oy._,0 (®,0) x (—wd,, + 5)O(w,0)

 Diagonalize 0y = reorganize asymptotic data in representations of 2D conformal algebra
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Conformal primary basis

[Lorentz algebra mn 4D ~ global conformal algebra in 2D
* Subleading soft graviton <> generator of 2D conformal (Virasoro) symmetry

» 4D Lorentz boost/2D dilation action on momentum eigenstates is non-diagonal: oy._,0 (®,0) x (—wd,, + 5)O(w,0)

 Diagonalize 0, = reorganize asymptotic data in representations of 2D conformal algebra

r OO

—

For massless scalars achieved by: O i(z, ) = dow” 0% (w, z,7) Massless momenta ¢ = £ @ (l,ﬁ(z, Z))
J0

Equivalently, solve eom with conformal primary wavepackets: ‘Pi(f];X ) X

(—q - XA conformal primary/

~. . _ e — J highest weight
0x(z,2) = - KY(¢: X), F (X))



Conformal primary basis

j+

| p(@,z,7))
Massless Celestial amplitude
scattermg.amphtude +— (O Al(Zla Z) = O An(zn’ Zn)>
(out| & |in)

 transforms like primary correlator in 2D CFT
e cnjoys additional symmetries from 4D bulk

* other constraints <= 4D bulk crossing symmetry, unitarity,

<5A1(Zl’ Z1) 5An(zn’ Zn» — <Out‘ S ‘ ln>> ‘boost l

causality, ...



Celestial amplitudes

n r OO n
Generalization for spinning (massless) particles: M(A,,zZ,7,) = H ( da)ia)l.A"_1> M(p,, Ga)54 ( Z pa>

i=1 0 a=1
\—\,-_J
. —~— ~ _ £13<24 Momentum space amplitude
« Poincare symmetry = M (A,z) = M(A,z)0(r —7), F= (n=4) g d
{12434 (contracted with polarization tensors)

MA + 1Ay, A) + -+ M(A, Ay, -, A +1)=0



Celestial amplitudes

n r OO n
Generalization for spinning (massless) particles: M(A L, 72.7,) = dw,w™1 M(p, ,o ok p
a a a 177y a a a

i=1 0 a=1
\—\,-_J
. —~— ~ _ £13<24 Momentum space amplitude
« Poincare symmetry = M (A,z) = M(A,z)0(r —7), F= (n=4) g d
{12434 (contracted with polarization tensors)

MA + 1Ay, A) + -+ M(A, Ay, -, A +1)=0

Generalization for (spinning) massive particles:

 Mellin 1integral replaced by integral against 3D AdS/dS bulk-to-boundary propagators

 Harder to compute, less studied so far - focus on massless case [de Boer, Solodukhin '03, Taronna, Sleight 22, 23]



Examples: Non-perturbative backgrounds

Translation breaking backgrounds appear to smoothen out singularities

3 * r N
—— Z - o o —
M (17,2737, -n™) ~ = d*0g(0) | dw,w™ | dw,w? I I da)ja)jAf 5@ 0+ Z 0.4
: Jj=3 i

r r

] 2
{23434° " Zpl o

J J .

conformal primary massive scalar (A = 2)

e 3-point function &« standard CFT 3-point function [Casali, Melton, Strominger '22; Stieberger, Taylor, Zhu '22; Sleight, Taronna 23]
e (Celestial two-point functions 1n various different backgrounds recently computed to leading order in the coupling

[Gonzo, McLaughlin, Puhm "22]



Examples: Non-perturbative backgrounds

—

. | Propagation through \ / / "
Sy — l t — ] + :{{ + ... g g g _|_ co e p—
‘

shockwave (j = 2) v

—

. . . ~ _ _ 5 iSPA0(A, + Ay)
e Celestial 2-point function A ock(Dr,s 20,203 Ay, 24, 24) = 4 | dox )

1A4A
=G4y - x) — h(x)) +ie|]

e Can be directly obtained from flat space limit of holographic correlator in AdS [de Gioia, A.R. "22]



2D conformal representations

For A =1+ i4, A € R, conformal primary wavefunctions ‘Pi(@;X ) X o X5 form a basis:
_q . +

FX)=| di|d*z <01T+M(z)\l’1+m(z;X) +h.c. >

JR
» 00
Bulk soft modes instead fall into integer A < 1 representations eg.: lim wO(w,z,7) = lim (A = 1)| dow?* '0(w, z, 7)
w—0 A—1
Jo
EA(Z,Z)
e A=—n: (sub)™! - leading soft modes organize into finite-dimensional representations

[A.R., Pate, Strominger "21; Adamo, Mason, Sharma "19; Puhm "19]



2D conformal representations

For A =1+ i4, A € R, conformal primary wavefunctions ‘Pi(@;X ) X o X5 form a basis:
_q . +

FX)=| di|d*z <01T+M(z)\l’1+m(z;X) +h.c. >

JR
» 00
Bulk soft modes instead fall into integer A < 1 representations eg.: Iim wO(w,z,7) = Iim (A — 1) doo® 10(w, z,7)
EAV(Z,Z)
e A =—n: (sub)*lleading soft mode OY__, =800
e ] .cading soft mode (n = — 1) has a O

(S0)a;

[Gelfand '65; Donnay, Pasterski, Puhm, Strominger, Trevisano, ...] Q ) = soft component of supertranslation charge
soft —



2D conformal representations

For A =1+il, 2 € R, conformal primary wavefunctions W3(g;X) 3 X5 form a basis:
_q . +

FX)=| di|d*z <01T+M(z)‘l’1+m(z;X) +h.c. >
JR J

Bulk soft modes instead fall into integer A < 1 representations eg.:

e A =—n: (sub)y"-leading soft mode N

e Set A=1-s5

[Gelfand '65; Donnay, Pasterski, Puhm, Strominger, Trevisano, ...]



Celestial operator products

Lorentzian Celestial (C)CFT with global conformal group SL;(2,R) X SLp(2,R)

Upon resuming contributions from SL;(2,R) descendants, the OPE (z;, = 0, z;,2, fixed) of two gravitons takes the form:

n+1

__ Z A+J
OA (21)0 (Zz) ~ 5 Z B(Zhl +14+n 2h2_|_ + 1) = 1+A2(ZZ) + @(212 h = 5
12 .o

[Pate, A.R., Strominger, Yuan "19; Guevara, Himwich, Pate, Strominger "21]
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Upon resuming contributions from SL;(2,R) descendants, the OPE (z;, = 0, z;,2, fixed) of two gravitons takes the form:

n+1

__ Z A+J
OA (21)0 (Zz) ~ 5 Z B(Zhl +14+n 2h2_|_ + 1) = 1+A2(ZZ) + @(212 h = 5
12 .o

e n =0 from (bulk) collinear factorization (also fixed by symmetry)

e n> (0 from resuming SL;(2,R) descendants

[Pate, A.R., Strominger, Yuan "19; Guevara, Himwich, Pate, Strominger "21]



Celestial operator products

Lorentzian Celestial (C)CFT with global conformal group SL;(2,R) X SLp(2,R)

Upon resuming contributions from SL;(2,R) descendants, the OPE (z;, = 0, z;,2, fixed) of two gravitons takes the form:

n+1

__ Z A+J
OA (21)0 (Zz) ~ 5 Z B(Zhl +14+n 2h2_|_ + 1) = 1+A2(ZZ) + @(212 h = 5
12 .o

e n =0 from (bulk) collinear factorization (also fixed by symmetry)

e n> (0 from resuming SL;(2,R) descendants

e A\ =1-s5, A,=1-s" & integral-transform (light-transform) =

s+ 3 s+ 3
[wh,wi] = (m(g—1) —n(p— D) wkti=2 p= — 4=

[Guevara, Himwich, Pate, Strominger '21; Strominger "21]



C. Towards bulk reconstruction 1n general relativity



Infinite tower of bulk charges

Recall G,,, = O constraint: 9, M- = EDzN + anuN Supertranslation charge conservation = leading soft theorem

Remaining components of Einstein equations:

|
G,=0 = 0,J=DM + ECDN Superrotation charge conservation = sub-leading soft theorem
@O(r %) : A

3 .
G,.,=0 = 0,T=DJ+ ECM “Spin-2  charge conservation = sub-sub-leading soft theorem

[Freidel, Pranzetti, A.R. ‘21]

G,.=0 @ O(r~—¢tD) —  tower of evolution equations that truncate to:

dQ. (1+s)
— D@S—l -+ C@S—Z + - s Z O, S € VA
du 2




Infinite tower of bulk charges

Asymptotic Einstein equations reorganized into a hierarchy of recursive, non-linear differential equations:

dQ. (1+s)
— @S—l | C@S_z + - s Z O, S & VA
du 2 [Freidel, Pranzetti, A.R. "21]
Y &
ds* = — 2e*du(dr + ®du) + r*y,5 | dx* > du | [ dx® > du
r r

Il m 5 1 5
(D=2 » FO@r™), 7AB=QAB+7CAB+@(V ).




Infinite tower of bulk charges

Asymptotic Einstein equations reorganized into a hierarchy of recursive, non-linear differential equations:
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Y &
ds* = — 2e*du(dr + ®du) + r*y,5 | dx* > du | [ dx® > du
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1 ) 1 ]
O = O(r™), 1ap=qap+—Cap+ O(™).
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mass/energy flux



Infinite tower of bulk charges

Asymptotic Einstein equations reorganized into a hierarchy of recursive, non-linear differential equations:

S 1+
- @S—l | ( )C@S_z + s Z O, S & VA
du 2 [Freidel, Pranzetti, A.R. "21]
(), angular momentum .
Q' YB
ds?® = — 2e*Pdu(dr + ®du) + r’y,» (dxA > u) (de > du)
r r

1 ) 1 )
O = O(r™), 1ap=qap+—Cap+ O(™).

2 (r r

o

mass/energy flux



Infinite tower of bulk charges

Asymptotic Einstein equations reorganized into a hierarchy of recursive, non-linear differential equations:

d@ 1+
- =D@,_, 1 ( > )C Q.+, §20, s€”Z < asymptotic 4D metric < Ward identities in 2D CCFT
du [Freidel, Pranzetti, A.R. "21]
(); angular momentum i
2 2 2 A @ B Y
ds* = — 2e’Pdu(dr + ®du) + r°y,5 | dx —du dx > du
r r

1 1
(I) — @(I”_z), yAB — QAB_l__CAB
2 r r ‘\
Qo

mass/energy flux Qz, Qg, *++ higher multipole moments of the
gravitational field! [Compere, Oliveri, Seraj "22]




Discrete basis

The news can be reconstructed from the tower of soft charges provided it decreases rapidly as w — oo:

o0
N (w) = Z w" M . (n),n €N  subject to UV condition
n=0

e x |u \_1_n, Vn>0 = C.(u) = 2%[2 (_’Zt) & . (n), where

n=0

« if also C(u)

&, (n) = lim ]/V\i(A), n €N  subject to IR condition

A—n

* UV & IR conditions = N(u) € space of Schwartz functions

M (n) (alternatively &, (n)) form a basis on this function space! [Freidel, Pranzetti, A.R.22]



Phase space symmetry and infrared divergences

» Renormalized Q. realize a higher spin symmetry algebra on the gravitational phase space at linearized order

Evidence from YM theory that this continues to hold in the non-linear theory [Freidel, Pranzetti, A.R. 23]

Discrete basis = (tree level) gravity amplitudes determined by higher spin symmetry Ward 1dentities?

[Cotler, Miller, Strominger, 23]



Phase space symmetry and infrared divergences

» Renormalized Q. realize a higher spin symmetry algebra on the gravitational phase space at linearized order

Evidence from YM theory that this continues to hold in the non-linear theory [Freidel, Pranzetti, A.R. 23]

Discrete basis = (tree level) gravity amplitudes determined by higher spin symmetry Ward 1dentities?

[Cotler, Miller, Strominger, 23]

Caveats: full Einstein equations, mixed helicity sectors, loop corrections, infrared divergences...



Phase space symmetry and infrared divergences

* &(n) allows to construct all order generalization of Dirac-Faddeev-Kulish dressings diagonalizing ./ (n):
[Dirac ’31; Weinberg '65; Chung; Kibble; Faddeev, Kulish...]
Pi

2
K
s=0 .

o0 _1 s
(P1D+ = (plexp { > EL 220,65, (%50 9366, } S (5) = DIF?E ()

(Pout| PP D(p) | i) reproduces amplitude of finite energy graviton exchanges



D. Flat space limit of AdS/CFT



AdS/CFT 1n the flat space limit

2 Amplitudes 1n AdS, ; (Witten diagrams) <> Correlation functions in CFT,

* CFT (Mellin) correlators related to flat space scattering amplitudes at

R — o

YAdS;4

, - \_\ —

<p()ut ‘ CS) ‘pin>



Celestial amplitudes from AdS/CEFT

HKLL

4D

Energy Mellin
Momentum space Celestial

_—————
Mellin correlators

AdS . /CFT, mﬁ - AFS, /CCFT,_,

amplitude

scattering amplitude

<@1(X1)" ' @n(xn»

3D




Celestial amplitudes from AdS/CEFT

AdS, boundary observables 3+1D ftlat space celestial observables

[de Gioia, A.R. '22]



Celestial sector in CEFT

Infinity of symmetries tfrom CFT

TG
CFT, ———» @ CCFT,
U

U

~1/R ]

Supertranslations
from [shadow of] Tpr,!

[de Gioia,. A.R. 23]
ow !

o0

5s0(3,2) ————— ? —_— {Vlrasoro X Virasoro |
[



Symmetries of mfinitesimal time intervals in 3D CEFT

Analyze conformal symmetries in infinitesimal interval on the Lorentzian cylinder:

T Q

7 A 0 T=1 "‘%
2
: ~—_“| ~ R~ ds?=—dt*+2y..dzdZ, y.-= ds’> = — R™%du’ + 2y..dzdz
2 /\///} 2z 2z (1 + 22)? Y77
0
y . Conformal Killing vectors in the interval: V€, +V €, = EV - €(X)g,,

[de Gioia, A.R. 23]



Symmetries of mfinitesimal time intervals in 3D CEFT

Analyze conformal symmetries in infinitesimal interval on the Lorentzian cylinder:

4 N >

n ~_ 2

z ~~— /o ~ R_l dS2 —_ de + 2 —dZdZ, > —

2 /772 'z < (1 +z2)?

Conformal Killing vectors 1n

U
T:T()‘l‘E

—0asR—->

2
the interval: ~ V €,+V €, = EV - €(X)8,,,

As R — oo, solutions parameterized by a function f and a vector field Y? on the sphere:

=+

2

(w)D - Y(z,2) + f(z,2)

0, + F. (u)Y*z,7)0,

[de Gioia, A.R. 23]



BMS, algebra in the strip

e For constant f and Y global CKV, €™ reorganize into generators of so(3,2) - Lorentz generators M** in 5d embedding space

e Inonu-Wigner contraction ¥ = EM ooy =0,-,3 with P, M,, fixed as R — oo yields 4D Poincare algebra



BMS, algebra in the strip

e For constant f and Y global CKV, €™ reorganize into generators of so(3,2) - Lorentz generators M** in 5d embedding space

e Inonu-Wigner contraction ¥ = EM ooy =0,-,3 with P, M,, fixed as R — oo yields 4D Poincare algebra

u
( Ly =iY%0,+i—D- Y0, + O(R™?)
e For YA(z,7) arbitrary CKV, contraction yields 2

L

T, = ie; = if(2,2)0, + O(R™?)

which generate ebmsg, [7}1, 7}2] = O(R_z), [LYI,LY2] = iL[YI,YQ] + O(R_z), [7}, Ly] = iz}'z%(l).y)f_y( nT O(R_z)



BMS, algebra in the strip

 For constant f and Y global CKV, €™ reorganize into generators of so(3,2) - Lorentz generators M*¥ in 5d embedding space

e Inonu-Wigner contraction ¥ = EM ooy =0,-,3 with P, M,, fixed as R — oo yields 4D Poincare algebra

. : U
L, =iY0,+i—D - Y0, + O(R™?
e For YA(z,7) arbitrary CKV, contraction yields 2

| Ty = iep = if(z,2)0, + O(R™)

which generate ebmsg, [7}1, 7}2] = O(R_z), [LYleYZ] = iL[YI,YQ] + O(R_z), [7}, Ly] = ﬂ}'z%(l).y)f_y( nT O(R_z)

— asymptotic symmetry algebra of 4D AFS from kinematic limit of 3D CFT!



CCFT operators from 3D CFT operators

Conformal transformations in the strip ~ celestial symmetries 1n the flat space limit

i A i i

0,0,(x) =— (V- 6)? + eV Lyt > V ﬂeyS”” O \(x) » transformation of CCFT, primary operator
A+s . A-— A

h=—" H="_" A=A+uo




CCFT operators from 3D CFT operators

Conformal transformations in the strip ~ celestial symmetries 1n the flat space limit

i A ; i
0,0,(x) =— (V- 6)? + eV Lyt > V ﬂeyS”” O A (x) » transformation of CCFT, primary operator
A +S5 - A — \) "
= ] = . A=A4+uo
h=—— h=— :
—~ 0
Diagonalize weights via O A(z,7; Ag) = N(A, Ay) du u=20 AU, 2,2)
J —00

e Same as transform relating Carrollian and celestial conformal field theories [Donnay, Fiorucci, Herfray, Ruzziconi ‘22]

e Shadow stress tensor Ward i1dentity in 3D CEFT lead to leading and subleading conformally soft graviton theorems i 2D CCEFT

[Kapec, Mitra 18; de Gioia, A.R. 23]



E. Twistors, self-dual sector and top-down holography in AES



Twistor space of Minkowski spacetime

Dynamics of sectors of gauge/gravity theories in 3+1-dimensional (complexitied) Minkowski space M, x* — x , = xﬂagd

encoded in geometry of CP°, 74 = (Z,2,,2,,72,) ~ AZA, e Cx; 74 = (u% )
Twistor space = open subset of Cp’

Twistor correspondence: u* = x**1, (incidence relations)

[Adamo 18]



Twistor space of Minkowski spacetime

Dynamics of sectors of gauge/gravity theories in 3+1-dimensional (complexified) Minkowski space M, x¥ — x . = x 0",

K aa
encoded in geometry of CP°, 74 — (Z,2,,2,,72,) ~ MZA, e C* 74 = (u%, A,)
Twistor space = open subset of Ccp’ X’
X/
Twistor correspondence: u* = x**1, (incidence relations) \
. . Lo L X
e Points 1n Minkowski “ > CP (Riemann sphere) in twistor space X
e Null cone 1n Minkowski < >  Point (intersection of two lines) 1n twistor space

[Adamo 18]



Twistor space of Minkowski spacetime

Dynamics of sectors of gauge/gravity theories in 3+1-dimensional (complexitied) Minkowski space M, x* — x , = xﬂagd

encoded in geometry of CP°, 74 — (Z,2,,2,,72,) ~ MZA, e C* 74 = (u%, A,)

Twistor space = open subset of CP’ X
/

. - - .. . X
Twistor correspondence: u* = x**1, (incidence relations) \
X

e Points 1n Minkowski “ - CP! (Riemann sphere) 1n twistor space X

e Null cone 1n Minkowski < >  Point (intersection of two lines) 1n twistor space

Penrose transform: solutions to massless eq. of motion in Mink. ~ cohomology classes 1n twistor space
[Adamo "18]



Twistor space of Minkowski spacetime

Dynamics of sectors of gauge/gravity theories in 3+1-dimensional (complexified) Minkowski space M, x¥ — x . = x 0",

K aa
encoded in geometry of CP°, 74 — (Z,2,,2,,72,) ~ MZA, e C* 74 = (u%, A,)
Twistor space = open subset of Ccp’ X’
X/
Twistor correspondence: u* = x**1, (incidence relations) \
. . Lo L X
e Points 1n Minkowski “ > CP (Riemann sphere) in twistor space X
e Null cone 1n Minkowski < >  Point (intersection of two lines) 1n twistor space

Ward transform: solutions to self dual YM eqn. ~ holomorphic vector bundle with flat connection D on PT
[Adamo 18]



Chiral algebras

v —

e 2D QFT with SL(2,C) symmetry generated by -

Zo =—20;, L_=- _2‘32

— Za

si(2); X sl(2)p  commutation relations [L,,L, ] =(m—n)L, ., L ,L]1=(m-n)L, n

e Meromorphicity condition 5@2(2, 7)=0 = 0,(,2) =0,(z) of dimension/weight A =h=s¢& N/2

n

— 1nfinity of conserved charges O, = D dzz""10(2) Op2) = Z +h
o Zn

n

 (Global subalgebra = modes that annihilate the vacuum at both O and co —= | —h <n<h -1



Chiral algebras from higher dimensions

[Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ’13]

e Chiral algebras are special, rigid structures; theories that possess them are vastly constrained
e Unexpected to encounter beyond 2D CFT

 Nevertheless they may appear as sectors of higher-dimensional SCFT, eg. 4D 4/ =2 SYM!

Consider R? ¢ R* preserving sl(2) 1 X sl(2)p C so(6) & look for operators that transform trivially under an s/(2) copy
Naive obstruction: Trivial under s/(2) = trivial under full so(6)

Bypass by looking for sl (2) that is exact with respect to some operator @ such that @% = 0 and take cohomology wrt. @



Chiral algebras from higher dimensions

[Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ’13]

Taking cohomology wrt. Q = twisting

e Schematically Q@ ~ O+ & = [0O]g(z) where [O]g = {@| 1Q,0]=0, 0+#{Q, @,]}
Examples of chiral algebras for A4 = 2 SCFT:

Ery
Z—W

Free hypermultiplet — free symplectic boson algebra: q/(2)q,(w) ~

oc(2)b(w) ~

Free vector multiplet — (b, ¢) system: b(z)dc(w) ~ X 5
(z—w) (z—w)



Top down holography 1in AES

Celestial gluon and graviton algebras related to 2D chiral algebras arising from SCFT/twisted holography/twistor theory

[Gaiotto, Costello 18; Adamo, Bu, Costello, Mason, Paquette, Sharma 21, 22, '23]

Look for 4D asymptotically flat bulk theory dual to celestial 2D chiral algebras



Top down toy model

[Costello, Paquette, Sharma 22, 23]

Consider R* ~ C? with coordinates x* — x = xﬂaﬂ o = yla [ = 42a

Equip Cz\{O} with metric associated to Kihler form @ = 00K, 0 = dud()ud, 0 = dii®0.., Hu”2 — udﬁd

u

K = ||ull* + log||ull”

e also known as the Burns metric

e self-dual (¥ =0), R=0, R, #0, asymptotically flat:
g/“/ = 5/11/ + @(Huu_z)a HMHZ X 5MDX’MXU — 0

e bulk theory: WZW, on Burns space



Top down toy model

[Costello, Paquette, Sharma '22]

Consider R* ~ C? with coordinates x* — x = xﬂaﬂ o = yla [ = 42a

Equip Cz\{O} with metric associated to Kihler form @ = 00K, 0 = dud()ud, 0 = dii®0.., Hu”2 — udﬁd

u

K = ||ull* + log||ull”

e also known as the Burns metric

N [ - _
S=——| 00K Atr(gog~' Angog™')

e self-dual (¥ =0), R=0, R, # 0, asymptotically flat: 872 )&=

N - ~ i~

i , > 00K A tr (gdg_1)3
& = 0, + O(|luf| ™), |[u]l o« 5,,xx¥ — oo 247= J a0,

e bulk theory: WZW, on Burns space . = S068) ;ﬂ . N e ;.

T Jep

—~—~—

C2 = C? with origin replaced by CP'



812

J2

Top down toy model

r.

- 00K A tr (gag_l A g(_)g_l)

J'C2

N

= ~~ ~/ 3
00K A tr (gdg_l)
247 C2x[0,1]

00K A tr (6¢ A O — %qb[a(p, ng]) + O(¢*)

[Costello, Paquette, Sharma '22]
e look for perturbative solutions by setting g = e?, g = e®

e asymptotic states obey the wave equation on Burns space

admitting a family of solutions:

~ ] ~ ~
bole D) = ) A ARk £12)
k,l



Top down toy model

[Costello, Paquette, Sharma '22]

N [ - _
S=——| 00KAtr(gog~' Angog™') N
877 )&= e look for perturbative solutions by setting g = e?, g = e’
N - ~ gy~
00K A tr (3d3")’ | |
2471? T2x[0.1] e asymptotic states obey the wave equation on Burns space
admitting a family of solutions:
N - -, | . 4 = I~
> DOK A tr | 09 N\ O0p — —@[0@, 0] | + O(@™) (2, 1) = Z —4 1/12¢a[k9 £1(z)
872 J s 3 ' k!C!

Holographic dictionary
G,k C1(2) < J 1k, C1(2)

J k,?](z) 2D chiral algebra generators



Top down toy model

[Costello, Paquette, Sharma '22]

4D perturbative gluon amplitudes on Burns space 2D OPE of Jl-j[/T](Z)
. [12] .
e two-point A(l,2) = : Jo| 24— | tr (TalTa2> matches identity contribution to OPE
12 212

e Matching also established for the three-point amplitudes/correlators [‘gravity" in Costello, Paquette, Sharma "23]



Summary

e Gravity at A =0 1n (3+1)D has a rich symmetry structure in the IR — tower of soft theorems — gravitational memory
e Subleading soft theorem (tree level) — Virasoro symmetry
e S-matrix in boost basis — celestial amplitude

e Truncation of Einstein equations reorganize into hierarchy ot recursive differential equations — w_, on phase space
e Celestial symmetries (eg. leading and subleading soft symmetries) emerge in flat limit of CEFT,

e Connections to chiral algebras and twistors — underlying mathematical structures??



e Bulk/geometric interpretation of flat space limit

e AdS boundary conditions - TTbar deformations?

e Central extensions

e Entanglement entropy; black holes?

e Spectrum of CCFT,; conformal block decompositions

e Connections to all A via AdS/dS slicing

e Top down constructions

Outlook



Ouﬂ()()k Connections to scattering amplitudes
e OPE from EFT
e Higher-derivative & loop corrections to OPE
[He, Jiang, Ren, Spradlin, Taylor, Volovich, Zhu....]

e Double copy constructions [Casali, Puhm, Sharma,...]

e IR divergences

e Self-dual amplitudes and black holes

e Discrete basis

Asymptotic symmetries and Carrollian FT

String theory, BFFS, ...

[Adamo, Ball, Cotler, Crawley, Donnay, Fan, Fiorucci, Guevara, He, Kapec, Mason, Mitra, Narayana, Ruzziconi, Salzer, Storminger, Sharma, Tropper, Wang...]
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