Nuclear Weapons: A Technical Overview

Steve Fetter University of Maryland King's College London

International Centre for Theoretical Physics, Trieste, Italy 23 October 2023

Outline

- Nuclear weapon primer
- Nuclear weapon effects
- Current nuclear arsenals
- Modernization and expansion
- Deterrence and risks

Nuclear Weapons Primer

- All nuclear weapons use materials that can sustain a fast-fission chain reaction.
- Highly-enriched uranium (HEU)
 - Natural uranium is 0.7% U235, 99.3% U238
 - Isotope enrichment in needed to increase U235 to ~90%
 - Electromagnetic, gaseous diffusion, gas centrifuge, laser
- Plutonium
 - Pu does not exist in nature; produced in reactors from U238:

$${}^{238}_{92}\mathrm{U} + {}^{1}_{0}\mathrm{n} \longrightarrow {}^{239}_{92}\mathrm{U} \xrightarrow{\beta^{-}}_{23.5 \mathrm{ min}} {}^{239}_{93}\mathrm{Np} \xrightarrow{\beta^{-}}_{2.3565 \mathrm{ d}} {}^{239}_{94}\mathrm{Pu}$$

1 gram per MW-d (25 MW reactor produces 8 kg per year)

- Pu is chemically separated from highly radioactive spent nuclear fuel in reprocessing plants
- Limiting the spread of enrichment and reprocessing technology is key to limiting the spread of nuclear weapons

Fast Fission Chain Reaction

Energy Release from Fission of 1 kg U235 (or Pu239)

200 MeV per fission: KE of fission fragments 165 MeV KE of neutrons 5 MeV Gamma-rays 7 MeV Decay of fission products 13 MeV Neutrinos 10 MeV

$$\begin{bmatrix} \frac{1000 \ g}{kg} \end{bmatrix} \begin{bmatrix} \frac{mol}{235 \ g} \end{bmatrix} \begin{bmatrix} \frac{6 \times 10^{23} \ nuclei}{mol} \end{bmatrix} \begin{bmatrix} \frac{180 \ MeV}{fission} \end{bmatrix} \begin{bmatrix} \frac{1.6 \times 10^{-13} J}{MeV} \end{bmatrix} \begin{bmatrix} \frac{ton \ TNT}{4.2 \times 10^{9} J} \end{bmatrix}$$
$$= 17,500 \ \frac{ton \ TNT}{kg} = 17.5 \ \frac{kt}{kg}$$

Hiroshima: 15 kilotons (kt) Nagasaki: 20 kt

Neutron Velocity, Mean Free Path, Generation Time

200 MeV per fission:

KE of fission fragments

KE of neutrons

Gamma-rays

Decay of fission products 13 MeV

Neutrinos

165 MeV

7 MeV

10 MeV

5 MeV = (2.5 neutrons/fission) x (2 MeV/neutron)

Average cross section for fast fission: U235: 1.2 barn = 10⁻²⁴ cm² Pu239: 1.8 barn

$$v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2(2 MeV) \left(1.6 \times 10^{-6} \frac{erg}{MeV}\right)}{1.67 \times 10^{-24}g}} = 2 \times 10^9 \frac{cm}{s}$$

$$\lambda = \frac{A}{\rho N_A \sigma} = \left[\frac{235 \ g}{mol}\right] \left[\frac{cm^3}{19 \ g}\right] \left[\frac{mol}{6 \times 10^{23}}\right] \left[\frac{1}{1.2 \times 10^{-24} \ cm^2}\right] = \mathbf{17} \ cm$$
Pu239: 11 cm

$$\tau = \frac{\lambda}{\nu} = \frac{17 \ cm}{2x10^9 \ \frac{cm}{s}} \approx 10^{-8} \ s = \mathbf{10} \ \mathbf{ns} = \text{``shake''}$$

Time to Fission of 1 kg U235

Number of nuclei in 1 kg of U235:

$$\left[\frac{1000 g}{kg}\right] \left[\frac{mol}{235 g}\right] \left[\frac{6 \times 10^{23} nuclei}{mol}\right] = 2.5 \times 10^{24} \frac{nuclei}{kg}$$

If the number of fissions doubles each generation, then after *n* generations the total number of fissions is:

$$2^{n+1} = 2^{81} = 2.4 \times 10^{24}$$

So about 80 generations to fission 1 kg—less than 1 μ s. 99.9% of the energy is released in the last 10 generations, 0.1 μ s.

Critical Mass

An assembly of fissile material is "critical" fission rate and neutron population is constant (i.e., each fission causes one new fission)

Bare critical mass U235: 52 kg (17 cm sphere) Pu: 10 kg (10 cm sphere) Critical mass can be decreased by: Using a reflector Increasing density

Assembly of Super-Critical Mass: Gun v. Implosion

"Little Boy" (Hiroshima) Gun-type device 64 kg of HEU (51 kg U235) 15 kilotons Efficiency = 1.7%

"Fat Man" (Nagasaki)Implosion device6.2 kg of Pu20 kilotonsEfficiency = 18%

D-Li6: 65 kt per kg (3.6x the 17.5 kt/kg for fission)

Li6 + n
$$\rightarrow$$
 He4 + T + 4.8 MeV
 \downarrow
D + T \rightarrow He4 + n + 17.6 MeV

Use fission to cause fusion: boosted and two-stage weapons

Boosted Fission Weapon

Hollow Pu Pit

Two-Stage Fission-Fusion Weapon

Two-stage Thermonuclear (fission-fusion) Weapons

Effects of Nuclear Weapons

- Blast and Shock (≈50% of energy)
 - Air blast
 - Ground shock, cratering
- Thermal Radiation (35-45%)
 - Fires and firestorms
 - Burns, blindness
- Initial Nuclear Radiation (5%)
 - γ , n released during fission
- Fallout (5-10%)
 - $\gamma,\,\beta$ released during decay of fp
 - Local (if fireball touches ground)
 - Global fallout
- EMP and Radar Effects

The Effects of Nuclear Weapons

Compiled and edited by Samuel Glasstone *and* Philip J. Dolan

Third Edition

Prepared and published by the UNITED STATES DEPARTMENT OF DEFENSE and the

UNITED STATES DEPARTMENT OF ENERGY

Effects of Nuclear Weapons

Distribution of energy, effects depends on

- Environment
 - Air burst (maximizes blast, thermal)
 - Ground burst (shock, local fallout)
 - Underground, underwater (shock)
 - High altitude, space (EMP, radio)
- Weapon yield
 - Low yield: blast and initial radiation are dominant effects
 - High yield: thermal radiation

Effects calculator:

https://nuclearsecrecy.com/nukemap/

The Effects of Nuclear Weapons

Compiled and edited by Samuel Glasstone *and* Philip J. Dolan

Third Edition

Prepared and published by the UNITED STATES DEPARTMENT OF DEFENSE and the

UNITED STATES DEPARTMENT OF ENERGY

Area Covered by Effect, Air Burst (solid), Surface Burst (dash), v. Yield

Hiroshima: 125,000 deaths from burns, firestorm, debris, radiation, and radiation-induced cancer

Area of Complete Destruction 350-kt warhead centered on White House

About 1 million deaths from blast and fire

Global Nuclear Arsenals: 2023

Ρ5	Russia	4,500] ~	0.00/
	United States	3,700	90%
	China	400	
	France	300	
	United Kingdom	220	
non- NPT	Pakistan	170	
	India	160	
	Israel	90	
	North Korea	20-30	
	Total	9,600	

U.S. Nuclear Stockpile, 2022

	Delivery Vehicles	Warheads
ICBMs	400 Minuteman-III x 1 warhead	400
SLBMs	12 Trident SSBN x 20 D-5 x 4-5 warheads	920
Bombers	45 B-52 x 4 ALCMs x 1 warhead	180
	20 B-2 x 5 bombs	100
Deployed strategic warheads		1,600
on alert	; can be launched within minutes	900
Deployed nonstrategic warheads		150
Reserve strategic and nonstrategic warheads		2,050
Total active stockpile		3,800
Retired and awaiting dismantling		2,000

All to be replaced starting 2030 at a total cost of \$1.3 trillion

Nuclear Forces Costs, 2017-2046

	Cost	
Modernization	(billion)	Deployment
400 new ICBMs (GBSD)	\$84	2030-2080
12 new Columbia-class SSBNs	\$182	2031-2080s
100 new B-21 bombers	\$134	2030-2080s
Long-range standoff ALCM (LRSO)	\$20	2030-2060s
	\$420	
Operation/sustainment		
Strategic and tactical nuclear forces	\$405	
Nuclear command and control	\$202	
Warhead production complex	\$298	
	\$905	

Russian Nuclear Stockpile, 2022

	Delivery Vehicles	Warheads
ICBMs	306 ICBMs x 1-10 warheads	812
SLBMs	10 SSBN x 16 SLBMs x 4-6 warheads	576
Bombers	68 bombers x 6-16 ALCMs x 1 warhead	200
Deployed strategic warheads		1,588
on alert	and can be launched within minutes	1,000
Reserve strategic warheads		1,000
Nonstrategic warheads		1,900
Total active stockpile		4,500
Retired and awaiting dismantling		1,500

Russia's New Nuclear Weapons

Poseidon Intercontinental Nuclear-Powered Nuclear-Armed Autonomous Torpedo 2м39 'Poseidon' (Посейдон) / 'Status-6' (Статус-6 / 'Skif' (Скиф) seabed launched variant / NATO: KANYON

China is building more than 100 new missile silos in its western desert, analysts say

Deterrence through Assured Destruction

Because nuclear weapons are so destructive, effective defense against nuclear attack is impossible

- A large country can be destroyed by fewer than 100 nuclear detonations
- Weapons are deployed on submarines, mobile missiles, and aircraft designed to survive an attack and penetrate missile and air defenses
- Because countries cannot prevent a devastating nuclear attack, they deter such an attack by maintaining a capability to deliver devastating nuclear retaliation
- When adversaries both have assured retaliatory capability, a state of "mutual assured destruction" exists and both should be deterred from using nuclear weapons

Nuclear Weapon Risks

Deterrence can fail through miscalculation and mistakes

- A conflict that escalates to use of nuclear weapons
 - Russian aggression against a NATO country
 - Chinese aggression against Taiwan or Japan
 - North Korean attacks against South Korea or Japan
 - War between India and Pakistan
 - Wars involving Israel
- Accidental, inadvertent, mistaken, or unauthorized use
 - Accidental detonation; false warning; rogue officer
- Nuclear terrorism using stolen weapons or materials
 - 21 known intercepts of 20 kg of stolen HEU and Pu
- Spread to additional states (Iran, Saudi Arabia, South Korea)
- Nuclear arms races that result in unnecessary expenditures