Joint ICTP-IAEA School on
Systems-on-Chip based on (CTP
FPGA for Scientific Instrumentation

and Reconfigurable Computing

Embedded ‘C’ for Zynq

Cristian Sisterna

Universidad Nacional San Juan s

Argentina e

Embedded C

ICTP-MLAB

Embedded C

Embedded C

Embedded C

From Wikipedia, the free encyclopedia

Embedded C is a set of language extensions for the C Programming language by
the C Standards committee to address commonality issues that exist between C
extensions for different embedded systems. Historically, embedded C programming
requires nonstandard extensions to the C language in order to support exotic
features such as fixed-point arithmetic, multiple distinct memory banks, and basic I/O
operations.

In 2008, the C Standards Committee extended the C language to address these
issues by providing a common standard for all implementations to adhere to. It
includes a number of features not available in normal C, such as, fixed-point
arithmetic, named address spaces, and basic I/O hardware addressing.

Differences Between ‘C’ and ‘Embedded C’

Embedded systems programming is different from developing applications on a
desktop computers. Key characteristics of an embedded system, when compared
to PCs, are as follows:

a Embedded devices have resource constraints(limited ROM, limited RAM, limited
stack space, less processing power)

0 Components used in embedded system and PCs are different; embedded systems
typically uses smaller, less power consuming components

0 Embedded systems are more tied to the hardware

0 Two salient features of Embedded Programming are code speed and code size. Code
speed is governed by the processing power, timing constraints, whereas code size is
governed by available program memory and use of programming language.

Embedded C

Difference Between C and Embedded C

Though € and Embedded C appear different and are used in different contexts, they
have more similarities than the differences. Most of the constructs are same; the
difference lies in their applications.

Cis used for desktop computers, while Embedded C is for microcontroller based
applications.

Compilers for € (ANSI C) typically generate OS dependent executables. Embedded C requires
compilers to create files to be downloaded to the microcontrollers/microprocessors where it
needs to run. Embedded compilers give access to all resources which is not provided in
compilers for desktop computer applications.

Embedded systems often have the real-time constraints, which is usually not there with
desktop computer applications.

Embedded systems often do not have a console, which is available in case of desktop
applications.

Embedded C ICTP

Advantages of Using Embedded C

" |t is small and reasonably simpler to learn, understand, program and debug

= C Compilers are available for almost all embedded devices in use today, and there is a
large pool of experienced C programmers

= Unlike assembly, C has advantage of processor-independence and is not specific to
any particular microprocessor/ microcontroller or any system. This makes it
convenient for a user to develop programs that can run on most of the systems

= As C combines functionality of assembly language and features of high level
languages, C is treated as a ‘middle-level computer language’ or ‘high level assembly
language’

= |t is fairly efficient

= |t supports access to /O and provides ease of management of large embedded
projects

= Objected oriented language, C++ is not apt for developing efficient programs in
resource constrained environments like embedded devices.

Embedded C ICTP

Reviewing Embedded
'C” Basic Concepts

‘C’ Xilinx Basic Data Types

Embedded C

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

unsigned char
char

xbasic types.

Xuint8; Freg
Xint8; ! S

unsigned short Xuintl6; £

short
unsigned long
long

float

double

unsigned long

Xint16; /**<
Xuint32; ool
Xint32; o o

Xfloat32; e
Xfloat64; F Foicn
Xboolean; f s -

xil types.h

tybedef uint8 t u8;

h

unsigned 8-bit */

signed 8-bit */

unsigned 16-bit */

signed 16-bit */

unsigned 32-bit */

signed 32-bit */

32-bit floating point */
64-bit double precision FP */
boolean (XTRUE or XFALSE) */

typedef uintl6_t ul6;
typedef uint32_t u32;

ICTP -IAEA

Local vs Global Variables

Embedded C

Variables in ‘C’ can be classified by their scope

Accessible only by the

function within which

they are declared and

are allocated storage
on the stack

Accessible by any part
of the program and are
allocated permanent
storage in RAM

Global and Local Variables Declarations

‘ int flag = 0;
Global " char note = ‘a’;
main ()
{
flag = 1;
functionl ();
flag = 2;

}

int functionl ()

{
Local » int alarm = 128;

alarm =+1;
flag = 3;

}

Local Variables

“*Local variables only occupy RAM while the function to which they belong is
running

**Usually the stack pointer addressing mode is used (This addressing mode
requires one extra byte and one extra cycle to access a variable compared to
the same instruction in indexed addressing mode)

**If the code requires several consecutive accesses to local variables, the compiler will usually
transfer the stack pointer to the 16-bit index register and use indexed addressing instead

Embedded C

Global Variables

**Global variables are allocated permanent storage in memory at an absolute
address determined when the code is linked

** The memory occupied by a global variable cannot be reused by any other
variable

“*Global variables are not protected in any way, so any part of the program can
access a global variable at any time

**This means that the variable data could be corrupted if part of the variable is derived
from one value and the rest of the variable is derived from another value

**The compiler will generally use the extended addressing mode to access global
variables or indexed addressing mode if they are accessed though a pointer

Embedded C

Use of the ‘static’ modifier

static int flag

**The 'static' access modifier may also be used with : =0
] static char note = ‘a’;
global variables
main ()
** This gives some degree of protection to the {
variable as it restricts access to the variable to flag = 1;
. f tionl ;
those functions in the file in which the variable is TR W
declared Elegi= 2
}
¢ The ‘static’ access modifier causes that the local ’;“‘t funceronl.l)
variable to be permanently allocated storage in static int alarm = 128;
memory, like a global variable, so the value is alarm =+1;
flag = 3;

preserved between function calls (but still is local)

Embedded C

Volatile Variable

The value of volatile variables may change from outside the program.

For example, you may wish to read an A/D converter or a port whose value is
changing.

Often your compiler may eliminate code to read the port as part of the compiler’s

code optimization process if it does not realize that some outside process is
changing the port's value.

You can avoid this by declaring the variable volatile.

Embedded C

Volatile Variable - Example

1 #include <stdio.h>

2

3~ /* Optimization code snippet 1 */
4 #include<stdio.h>

5
6 int x = 9;
7
8 int main()
i |
1@ if (x == @) // This condition is always 1 #include<stdio.h>
11~ { 2
12 printf(" x = @ \n"); 3 wvelatile int =0; /¥ volatile Keyword*/
13 } 4
14 else // Else part will be optimiz 5 int main()
15 ~ { 6=
16 printf(" x != 0 \n"); 7 X = @3
17 } 2
18 return 0; 9 if (x == 9)
39) 10 ~ {
11 printf(" x = 0 \n");
12 }
13 else // Now compiler never optimize else part because the
14 ~ { // variable is declared as volatile
15 printf(" x != @ \n");
16 }
17 return 0;

18 }

Embedded C

Functions Data Types

A function data type defines the value that a subroutine can return

**» A function of type int returns a signed integer value
*** Without a specific return type, any function returns an int

¢ To avoid confusion, you should always declare main () with return type
void

void XGpioPs IntrEnable(XGpicPs *InstancePtr, u8 Bank, u32 Mask);
void XGpioPs IntrDisable(XGpioPs *InstancePtr, u8 Bank, u32 Mask);
u32 XGpioPs_IntrGetEnabled(XGpicPs *InstancePtr, u8 Bank);
u32 XGpioPs_ IntrGetStatus(XGpioPs *InstancePtr, u8 Bank);

Embedded C

Function Parameters Data Types

Indicate the values to be passed into the function and the memory to be
reserved for storing them

int XGpio_Initiahiz§KXGpio *InstancePtr, ul6 Deviceld);

XGpi/**
/s * Initialize the XGpio instance provided by the caller based on the
. | given DevicelD.
Al
o
. ak Nothing is done except to initialize the InstancePtr.
4 >
ﬁ @param InstancePtr is a pointer to an XGpio instance. The memory the
roble.; ointer references must be pre-allocated by the caller. Further
i3 calls to manipulate the instance/driver through the XGpio API
| * must be made with this pointer.
gggig* @param DeviceId is the unique id of the device controlled by this XGpio
P | instance. Passing in a device id associates the generic XGpio

Embedded C

‘C’ Structures

#include "xparameters.h”
#include "xgpic.h”
#include "xgpiops.h”

static XGpioPs psGpiocInstancePtr;
static int iPinNumber = 7; /*Led LD9

/**
* The XGpio driver instance data. The user is required to allocate a
* variable of this type for every GPIO device in the system. A pointer
* to a variable of this type is then passed to the driver API functions.
g

typedef struct {

u32 BaseAddress; /* Device base address */

u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; /* Are interrupts supported in h/w */
int IsDual; /* Are 2 channels supported in h/w */

} XGpio;

Embedded C

Review of ‘C’ Pointer

In ‘C’, the pointer data type corresponds to a MEMORY ADDRESS

eintx=l,y=5,z=8, *ptr;

@ ptr = &x; // ptr gets (point to) address of x

G Y = *ptr; // content of y gets content pointed by ptr
@ *ptr = z; // content pointed by ptr gets content of =z

ptr.

ptr —}I .
/ =
_

=

ptr =.

Embedded C

'C” Technigues for low-
level |/O Operations

Bit Manipulation in ‘C’

Bitwise operatorsin ‘C’: ~ (not), & (and), | (or), *~ (xor)
which operate on one or two operands at bit levels

u8 mask = 0x60; //0110 0000 mask bits 6 and 5
u8 data = 0xb3 //1011 0011 data
u8 d0, dl, d2, d3; //data to work with in the coming example

d0 = data & mask; // 0010 0000; isolate bits 6 and 5 from data
dl = data & ~mask; // 1001 0011l; clear bits 6 and 5 of data

d2 = data | mask; // 1111 0011; set bits 6 and 5 of data

d3 data * mask; // 1101 0011l; toggle bits 6 and 5 of data

Embedded C

Bit Shift Operators

Both operands of a bit shift operator must be integer values

The right shift operator shifts the data right by the specified number of positions.
Bits shifted out the right side disappear. With unsigned integer values, Os are shifted
in at the high end, as necessary. For signed types, the values shifted in is
implementation-dependant. The binary number is shifted right by number bits.

X >> number;

The left shift operator shifts the data right by the specified number of positions. Bits

shifted out the left side disappear and new bits coming in are 0s. The binary number is
shifted left by number bits

X << number;

Embedded C

ICTP

Bit Shift Example
void [(XGpio *pLED_GPIO, int nANumberOfTimes)
{

int 1=0; int 7=0;
u8 uchledStatus=0;

for (1=0; i<nNumberOfTimes; 1++)

{
for (7=0;3<8;3++) _p

{

uchLedStatus = 1 << 7J;
XGpio DiscreteWrite (pLED GPIO, 1, uchLedStatus);
delay(ABOUT_ONE_SECOND / 15);

}

for (1=0;3<8; 5++) (N

{

uchLedStatus = 8 >> 7j;

XGpio DiscreteWrite (pLED GPIO, 1, uchLedStatus);

delay (ABOUT ONE SECOND / 15);
}

Unpacking Data

There are cases that in the same memory address different fields are stored

Example: let’s assume that a 32-bit memory address contains a 16-bit field for an integer data
and two 8-bit fields for two characters

31 le 15 . . . g 7 . . . 0

u3Z2 10 rd data;
int num;
char chl, choO;

my iord(...);//my io read read a data
num = (int) ((i1o rd data & Oxfff£0000) >> 10);

chl = (char) ((10 rd data & 0x0000££00) >> 8);
— ch0 = (char) ((1io rd data & 0x000000f£f));

ICTP

— 1o rd data =

Unpacking —

Embedded C

Packing Data

There are cases that in the same memory address different fields are written

Example: let’s assume that a 32-bit memory address will be written as a 16-bit field for an
integer data and two 8-bit fields for two characters

le 15 . . . g 7 . . . 0

31 Lo

u3Z2 wr data;
int num = 5;
char chl, choO;

wr data = (u32) (num) ; //num[15:0]

wr data = (wr data << 8) | (u32) chl; //num[23:8],chl[7:0]

wr data = (wr data << 8) | (u32) chO; //num[31 16],chl1[15:8]
[/

Packing

my iowr(. . . , wr data) ; //ch0[7:0]

Embedded C

Another Way

u32 wr data;
int num = 5;

char chl, chO;
4 wr data = (u32) (num) ; //num[15:0] A
wr data = (wr data << 8) | (u32) chl; //num[23:8],chl[7:0]
wr data = (wr data << 8) | (u32) chO; //num[Sl 16],chl[15:8]
my iowr(. . . , wr data) ; //chO[7:0]
\ J
{ wr data = (((u32) (num))<<lo) | (((u32)chl)<<8) | (u32)ch2; J

Basic Embedded ‘C’
Program Template

Basic Embedded Program Architecture

An embedded application consists of a collection tasks, implemented by
hardware accelerators, software routines, or both.

#include “nnnnn.h”
#include <ppppp.h>
main ()
{
sys init ();//
while (1) {
task 1();
task 2();

task n();
J

Embedded C

Basic Example

The flashing-LED system turns on and off two LEDs alternatively according to the interval
specified by the ten sliding switches

Tasks ?7??7

!

1. reading the interval value from the switches

2. toggling the two LEDs after a specific amount of time

Embedded C

Basic Example

#include “nnnnn.h”
#include “aaaaa.h”

main ()
{ main ()
while (1) { {
... int period;
task 1();
task 2(); while (1) {

. .. read sw(SWITCH S1 BASE, é&period);
} led flash(LED L1 BASE, period);

} }

Embedded C

Basic Example - Reading

/**
* function: read sw ()
* purpose: get flashing period from 10 switches
* argument:
* sw—base: base address of switch PIO
* period: pointer to period
* return:
* updated period
* note
**/
void read sw(u32 switch base, int *period)
{
*period = my iord(switch base) & 0x000003ff; //read flashing period
// from switch

Embedded C

Basic Example - Writing

/*************~k**

* function: led.flash ()

* purpose: toggle 2 LEDs according to the given period

* argument:

* led-base: base address of discrete LED PIO

* period: flashing period in ms

* return : none

* note

* — The delay 1is done by estimating execution time of a dummy for loop

* — Assumption: 400 ns per loop iteration (2500 iterations per ms)

* - 2 1instruct. per loop iteration /10 clock cycles per instruction /20ns per clock cycle (50-MHz clock)
~k**/

void led flash(u32 addr led base, int period)

{

static u8 led pattern = 0x01; // initial pattern
unsigned long i, itr;

led pattern "= 0x03; // toggle 2 LEDs (2 LSBs)
my iowr (addr led base, led pattern); // write LEDs

itr = period * 2500;

for (i=0; i<itr; i++) {} // dummy loop for delay

Embedded C

Basic Example — Read / Write

void read sw(u32 switch base, int *period)

{

*period = my iord(switch base) & 0x000003ff;
}

int main ()

{

int period;

while (1) {
read_sw(SWITCH_S1_BASE, s&period) j
= — void led flash(u32 addr led base, int period)

led flash(LED L1 BASE, period); {
} static u8 led pattern = 0x01;
unsigned long i, itr; //static?
return 0O;
] | led pattern 7= 0x03;
my il1owr (addr led base, led pattern);
itr = period * 2500;
for (1i=0; i<itr; 1i++) {}

Embedded C

Read/Write From/To
GPIO Inputs and Outputs

Steps for Reading from a GPIO

Create a GPIO instance
Initialize the GPIO

Set data direction (optional)

-l

Read the data

Steps for Reading from a GPIO —Step 1

1. Create a GPIO instance

#include “xparameters.h” |
H o H ” /**
#include xgplo.h * The XGpio driver instance data. The user is required to allocate a
. . . * variable of this type for every GPIO device in the system. A pointer
Int main (VOId) * to a variable of this type is then passed to the driver API functions.

{ * //

» typedef struct {

XGpIO SWItChES,‘ u32 BaseAddress; /* Device base address */

XGpio leds; u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; /* Are interrupts supported in h/w */
int IsDual; /* Are 2 channels supported in h/w */

} XGpio;

Embedded C

Steps for Reading from a GPIO — Step 2

2. Initialize the GPIO

(int) XGpio Initialize (XGpio *InstancePtr, ul6é DevicelD);

InstancePtr: is a pointer to an XGpio instance (already declared).

DevicelD: is the unique ID of the device controlled by this XGpio component (declared in the
xparameters.h file)

@return
- XST_SUCCESS if the initialization was successfull.]_ xstatus.h
- XST_DEVICE_NOT_FOUND if the device configuration data was not

Embedded C

Steps for Reading from a GPIO — Step 2(cont’)

(int) XGpio Initialize (XGpio *InstancePtr, ul6é DevicelD);

// AXI GPIO switches initialization
XGpio Initialize (&switches, XPAR_BOARD_SW_8B_DEVICE_ID) ;

// AXI GPIO leds initialization
XGpio Initialize (&led, XPAR_BOARD_LEDS_8B_DEVICE_ID) ;

_ ‘ xi_periph
\h| xparameters.h £2 Jic| lab_gpio_in_... L] xbpiops_hw.h ‘ { maLAaLA
s a]I
co10- 34|

aé_ack > sws_8bits
/* Definitions for peripheral BOARD LEDS 8B */ Bol_presetn
#define XPAR_BOARD_LEDS_8B_BASEADDR ©x41210000 MDD_00 3 e AXI GPIO
#define XPAR_BOARD LEDS 8B HIGHADDR @x4121FFFF L
#define XPAR_BOARD_LEDS_8B_DEVICE ID @ ¢ g e i
#define XPAR_BOARD LEDS 8B_INTERRUPT_PRESENT @ «Fﬁ cmo-'-}l R i s
#define XPAR_BOARD LEDS 8B_IS DUAL © l O ‘

AXI GPIO

Embedded C

xparameters.h

| 4¢) lab_gpio_in_out.c &%

#include "xparameters.h” | Ctrl + Mouse Over
include Xxgpic.
#include "xgpiops.h”

a [exercise_05_bsp

» 1 BSP Documentation
4 (= ps/_cortexad 0 xparameters.h file can be found underneath the
(= code include folder in the ps7 cortexa9 O folder of
4 iy nclude the BSP main folder

Embedded C

xparameters.h
B C/C++ - exercise_05_bsp/ps7_cortexad_0/include/xparameters.h - Xilinx SDK e

File Edit Source Refactor Navigate Search Project XilinxTools Run Window Help

NrHRes|e-A-Rc2NED wIR| |2 o=
E&; Project Explorer &3 | =l | @ *xparameters.h &3 ’ €] xgpio.c \h platform.h L¢] platform.c
@ %' v 5T/ ‘_‘/***
> [n xil_types.h - B/ Definitions for driver GPIO */

b @ xI2cc counter.h #define XPAR_XGPIO NUM_INSTANCES 1

>] x2cch /* Definitions for peripheral AXI_GPIO @ */
> [h xparameters_ps.h #define XPAR_AXI_GPIO_@_BASEADDR 9x41200000
> [k xparameters.h #define XPAR AXI_GPIO @ HIGHADDR @x412@FFFF

#define XPAR_AXI_GPIO @ DEVICE_ID @
#define XPAR_AXI_GPIO @ INTERRUPT_PRESENT @
#define XPAR_AXI_GPIO @ IS DUAL @

> |h xplatform_info.h
> [k xpm_counter.h
> |h] xpseudo_asm_gcc.h

[@ xpseudo_asm,h -‘_,/x****x*******x*******x*******x*******x*******x*******x*
> |h xqspips_hw.h ~ /* Canonical definitions for peripheral AXI_GPIO @ */
> [xqspips.h #define XPAR GPIO @ BASEADDR 0x41200000

#define XPAR_GPIO @ HIGHADDR @x4120FFFF

; #define XPAR GPIO @ DEVICE_ID XPAR AXI_GPIO @ DEVICE_ID
> [H e #define XPAR _GPIO @ INTERRUPT PRESENT @

lh] xscugic.h #define XPAR GPIO @ IS DUAL @

> |h| xreg_cortexad.h

—
v

Embedded C ICTP

xgpio.h — Outline Pane

Embedded C

@ xgpio.h &3 =
/% =
</
* Initialization function| Definitions (#define statemens) =
*/I
int XGpio_Initialize(XGpio .
XGpio_lc)onfig *xcpio_moﬂup Includes (#include statemens) il
- /'Zt
j/API Basic functions imp ructures Declarations L
7

* *

int XGpio_CfgInitialize(XGpi fi

32 EffectiveA o og8
etpatapirectiol Types Definitions

void XGpio_SetDataDirectio
u32 Direct DI

u32 XGpio_GetDataDirection ik - 1\,
u32 XGpio_DiscreteRead(XGp .
void XGpio_DiscreteWrite(X Functions

/l.ﬁ:

* API Functions implemented in xgpio_extra.c

¥ A
void XGpio_DiscreteSet(XGpic *InstancePtr, unsigned Channel, u32 Mask);
void XGpio_DiscreteClear(XGpio *InstancePtr, unsigned Channel, u32 Mask);

/%

/
* API Functions implemented in xgpio_selftest.c

*J

/
int ¥XGnin SalfTect(¥Gnin *TnetancsPtr\-
< | m | »

m

= Qutline &2 ‘ (@ Make Target

TR <%
..@mo ¥

xil_types.h
xil_assert.h

xstatus.h
=1 xgpio_Lh

(anonymous)
W XGpio_Config : struct

(anonymous)

XGpio : struct
XGpio_lnitialize(XGpio*, ul6) : int
XGpio_LookupConfig(ul6) : XGpio
XGpio_Cfglnitialize(XGpio*, XGpio_
XGpio_SetDataDirection(XGpio®, ui
XGpio_GetDataDirection(XGpio*, u
XGpio_DiscreteRead(XGpio*, unsig
XGpio_DiscreteWrite(XGpio*, unsic
XGpio_DiscreteSet(XGpio®, unsigne

XGpio_SelfTest(XGpio™®) : int
XGpio_InterruptGlobalEnable(XGpi
XGpio_InterruptGlobalDisable(XGp

:-|¢- el R s R e e e e -I-lrc- -

-~ e o=

-~

m' ' ' |” »

~

XGpio_DiscreteClear(XGpio*, unsig

XGpio_InterruptEnable(XGpio®, u3: _

Steps for Reading from a GPIO - Step 3

3. Set data direction

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

InstancePtr: is a pointer to an XGpio instance to be working with.
Channel: contains the channel of the XGpio (1 o 2) to operate with.

DirectionMask: is a bitmask specifying which bits are inputs and which are outputs.
Bits set to ‘O’ are output, bits set to ‘1’ are inputs.

Return: none

Embedded C

Steps for Reading from a GPIO - Step 3 (cont’)

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

// AXI GPIO switches: bits direction configuration
XGpio SetDataDirection (&board sw 8b, 1, Oxffffffff);

d_periph board_sw_8b
sisaa
wiak GoIO-L|} [sws_8bits
aé_aresen
M00_AXI- 1+ fE AXI GPIO
MO1_AXI: . 2
_I board_leds_8b
slisax
wiak GO} [leds_8bits
: [ad_aresen

AXI GPIO

Embedded C

Steps for Reading from a GPIO — Step 4

4. Read the data

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

InstancePtr: is a pointer to an XGpio instance to be working with.
Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: read data

Embedded C

et e € e N

(cont’)

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

// AXI GPIO: read data from the switches
sw_check = XGpio_DiscreteRead(&board sw 8b, 1);

Embedded C

Steps for Writing to GPIO

Create a GPIO instance
Initialize the GPIO
Set the data direction (optional)

-l

Read the data

Steps for Writing to a GPIO —Step 1

1. Create a GPIO instance

#include “xgpio.h”
int main (void)
{
XGpio switches;
XGpio leds;

Embedded C

/**
* The XGpio driver instance data. The user is required to allocate a
* variable of this type for every GPIO device in the system. A pointer
* to a variable of this type is then passed to the driver API functions.
" |

typedef struct {

u32 BaseAddress; /* Device base address */

u32 IsReady; /* Device is initialized and ready */
int InterruptPresent; /* Are interrupts supported in h/w */
int IsDual; /* Are 2 channels supported in h/w */

} XGpio;

Steps for Writing to a GPIO — Step 2

2. Initialize the GPIO

(int) XGpio Initialize (XGpio *InstancePtr, ul6é DevicelD);

InstancePtr: is a pointer to an XGpio instance.

DevicelD: is the unique id of the device controlled by this XGpio component

@return
- XST_SUCCESS if the initialization was successfull.

- XST_DEVICE_NOT_FOUND if the device configuration data was not } xstatus.h

Embedded C

Steps for Writing to a GPIO — Step 2(cont’)

(int) XGpio Initialize (XGpio *InstancePtr, ul6é DevicelD);

// AXI GPIO LEDs initialization
XGpio Initialize (&board leds 8b, XPAR_BOARD_LEDS_8B_DEVICE_ID) ;

: ui_perniph
\h| xparameters.h 2 ‘ 1€ lab_gpio_in_... Lh] xlpiops_hw.h ' ¥ e e
clisAd
aé_ack Gmo.:.]li [sws_8bits
/* Definitions for peripheral BOARD] LEDS 8B */ e
#define XPAR_BOARD_LEDS_8B_BASEADDH ©x41210000 M00_A00: e AXT GPIO
#define XPAR_BOARD_LEDS_8B_HIGHADDRY @x4121FFFF i N S e
#define XPAR_BOARD_LEDS_8B_DEVICE_ID @ ¢ " 3
. sl SAX
#define XPAR_BOARD_LEDS_8B_INTERRUPT_PRESENT @ Bt onh [lecs_stits
#define XPAR_BOARD_LEDS_8B_IS_DUAL @ ¢ ak_avesetn
' AXI GPIO

Embedded C

Steps for Writing to a GPIO — Step 3

3. Write the data

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

InstancePtr: is a pointer to an XGpio instance to be worked on.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Data: Data is the value to be written to the discrete register

Return: none

Embedded C

Steps for Writing to a GPIO — Step 3 (cont’)

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

// AXI GPIO: write data (sw check) to the LEDs
XGpio_DiscreteWrite(& board leds 8b,1, sw check);

Embedded C

‘C” Drivers for IP Cores

SPI IP Core - Example

rst_ps7_0_50M ?
ps7_0_axi_periph
slowest_sync_clk mb_reset i)
ext_reset_in bus_struct reset(0:0] p=:i[+ S00_AXI
aux_reset_in peripheral_reset[0:0) T ACLK axi_quad spi 0
mb_debug_sys rst interconnect_aresetn[0:0] ARESETN IYI ()
dem_locked peripheral_aresetn[0:0] l SO0 ACLK W“=M MOO0_AXI +| “|4 AXI_LITE
e 500 ARESETN .X.. —E ext_spi_clk SP10 +b—D spi_rtl
Processor System Reset . M0O_ACLK s axi_aclk ip2intc_irpt
MOO_ARESETN s_axi_aresetn
processing_system7_0 \) \ J
() AXI Interconnect AXI Quad SPI
DOR + || DDR
FIXED_IO +|| FIXED_IO

M_AXI_GPO ACLK
L= IRQ F2P[0:0]

M_AXI_GPO 4 |
FCLK_CLKO
FCLK_RESETO_N o—

ZYNQ

\ J

ZYNQ7 Processing System

Embedded C

SPI IP Core - Example

#include "xparameters.h"
#include "xscugic.h"
#include “xilTexception.h"

#include "xspi.h" /* SPI device driver */

[/ —---mmmmm e e SPI related functions --------------------- //
// Initialize the SPI driver

SPI ConfigPtr = XSpi LookupConfig(XPAR AXI QUAD SPI © DEVICE ID);

if (SPI ConfigPtr == NULL) return XST DEVICE NOT FOUND;

Status = XSpi CfgInitialize(&SpiInstance, SPI_ConfigPtr, SPI_ConfigPtr->BaseAddress);
if (Status != XST SUCCESS) return XST FAILURE;

// Reset the SPI peripheral
XSpi Reset(&SpiInstance);

Embedded C

SPI IP Core - Example

* Initializes a specific XSpi instance such that the driver is ready to use.

* The state of the device after initialization is:

* - Device is disabled

* - Slave mode

* - Active high clock polarity

* - Clock phase ©

* @param InstancePtr is a pointer to the XSpi instance to be worked on.

* @param Config is a reference to a structure containing information

* about a specific SPI device. This function initializes an

* InstancePtr object for a specific device specified by the

* contents of Config. This function can initialize multiple

* instance objects with the use of multiple calls giving
different Config information on each call.

* @param EffectiveAddr is the device base address in the virtual memory

* address space. The caller is responsible for keeping the

* address mapping from EffectiveAddr to the device physical base

* address unchanged once this function is invoked. Unexpected

* errors may occur if the address mapping changes after this

* function is called. If address translation is not used, use

* Config->BaseAddress for this parameters, passing the physical

* address instead.

* @return

* - XST SUCCESS if successful.

* - XST DEVICE IS STARTED if the device is started. It must be

* stopped to re-initialize.

* @note None.

‘int XSpi_ CfgInxtxalxzo(XSpl *InstancePtr, XSpi_ Conflg *Conflg,

_ UINTPTR EffectiveAddr) _

‘C” Drivers for Custom IP

Embedded C

Custom IP

rst_processing_system?7_0_50M

_sync_ck mb_reset
t_reset_in bus_struct_reset[0:0]
reset_in peripheral_reset[0:0]
mb_debug_sys_rst interconnect_aresetn[0:0)
_locked peripheral_aresetn[0:0]

buttons
“|4s_AXI
processing_system7_0_axi_periph _axi_ack GPIO 3 ||, btns_5bits
_axi_aresetn
AXI GPIO
switches
:[-o-s_;m
_AReSETN(0:0] 7 Moo axa 4 i _axi_ack GPIO 4 ||, sws_8bits
EsE MOL_AXI 3 e _axi_aresetn
§—==MO0_ARESETN[0:0] &y MO2_AXI 4k i3
[2 01_ACLK

Processor System Reset

01_ARESETN[0:0)
Eoz_m
MO2_ARESETN

processing_system?7_0

AXI Interconnect

led[7:0]

led_ip_v1.0 (Beta)

FCLK_RESETO_N

ZYNQ? Processing System

DDR 4+ DDR
—, FIXED_IO 4 FIXED_IO
—M_AXI_GPO_ACLK ZYNQ M_g&cs;oi;

My IP — Memory Address Range

V[E-uoiagram X | [Address Editor X |

A cel Slave Interface Base N... Offset Address Range High Address
X, | E-4F processing_system7_0
| pég =) M) Data (32 address bits : 0x40000000 [1G])

Rz = switches S_AXI Reg 0x4120_0000 64K v 0x4120_FFFF
11 | S_AXI Reg 0x4121_0000 64K v 0x4121 FFFF
S_AXI Mem0 0x4000_0000 8K ~ 0x4000_1FFF

| |s_Axi_reg Jox43co_oooo 0x43C0_FFFF

Embedded C

Custom IP Drivers

" The driver code are generated automatically when the IP template is

created.

" The driver includes higher level functions which can be called from the

user application.

" The driver will implement the low level functionality used to control your

peripheral.

led _ip\ip_repo\led ip_1.0\drivers\led ip v1 O\src —

pu—

Embedded C

—

led ip.c

led ip.h —

LED IP_mMWriteReg(...)

LED IP_mReadReqg(...)

Custom IP Drivers: *.c

led _ip\ip_repo\led ip_1.0\drivers\led ip _v1 O\src\led ip.c

=

. edit_led_ip_v1_0.hw
. edit_led_ip_vl_0.sim
. led_ip 1.0

J. bd

. drivers

m

o led_ipv1 0
.. data

o src

Embedded C

Organize » New folder c|
. lab_custom_ip 4 Name A Date modified Type
B lab_custom ip.cache (] #led_ip.h# 8/19/20156:57 PM H2 File
W bl CusE g ap e led_ip 8/18/20158:28PM CFile ‘
W fob custom ipuns | led_ip 8/18/20158:28PM H File
Bl e | led_ip_selftest 8/18/20158:28PM CFile
- ::z-z:zz:':zz':s || Makefile 8/18/20158:28PM File
2 o _IP.
o led_ip
. ip_repo F

‘@ led_ip.c &2

/***************************** Include Files EE o

#include "led _ip.h"

/************************** Function Definitions *

Custom IP Drivers: *.h

led _ip\ip_repo\led ip_1.0\drivers\led ip _v1 O\src\led ip.h

Organize ¥ New folder o
. lab_custom_ip “ Name . Date modified Type
- 'ab-‘”mm-fp‘“he L] #led_ip.h# 8/19/20156:57 PM H# File
W b ciEtom Ip. ey led_ip 8/18/20158:28PM CFile
B0 ALtOm pLIUns | led_ip 8/18/20158:28PM H File
S | led_ip_selftest 8/18/2015828PM CFile —
i‘ ::s-z:z::'::z':s || Makefile 8/18/20158:28PM File
o led_ip
. ip_repo F

. edit_led_ip_vl_0.hw
. edit_led_ip_vl_0.sim
1 led_ip 1.0

. bd

.. drivers

m

1 led_ip v1 0
. data

Ji src

Embedded C

Custom IP Drivers: *.h (cont’ 1)

led _ip\ip_repo\led ip_1.0\drivers\led ip _v1 O\src\led ip.h

@ led_iph 53 |

/#xxi:x::xxx*xxx:&:x:xxx Include Files :i:#*xi:**x*#*#**##*#*x/

#include "xil types.h"
#include "xstatus.h"

#define LED I
#define LED I
#define LED_I
#define LED_I

_AXI_SLV_REG@ OFFSET @
_AXI_SLV_REG1_OFFSET 4
_AXI_SLV_REG2_OFFSET 8
_AX

p—
p—
p—
P_S_AXI_SLV_REG3_OFFSET 12

v wvwnn

Embedded C

Custom IP Drivers: *.h (cont’ 2)

led _ip\ip_repo\led ip_1.0\drivers\led ip _v1 O\src\led ip.h

/**

*

* Write a value to a LED_IP register. A 32 bit write is performed.

* If the component is implemented in a smaller width, only the least

* significant data is written.

*

* @param BaseAddress is the base address of the LED_IPdevice.

* @param RegOffset is the register offset from the base to write to.
* @param Data is the data written to the register.

*

* @return None.

*

* f@note

* C-style signature:

* wvoid LED_IP mWriteReg(u32 BaseAddress, unsigned RegOffset, u32 Data)
*x

ol
#define LED_IP_ mWriteReg(BaseAddress, RegOffset, Data) \
Xil Out32((BaseAddress) + (RegOffset), (u32)(Data))

Embedded C

Custom IP Drivers: *.h (cont’ 3)

Embedded C

led _ip\ip_repo\led ip_1.0\drivers\led ip _v1 O\src\led ip.h

/**

*x

* Read a value from a LED_IP register. A 32 bit read is performed.

* If the component is implemented in a smaller width, only the least

* significant data is read from the register. The most significant data
* will be read as 0.

*

* @param BaseAddress is the base address of the LED IP device.

* @param RegOffset is the register offset from the base to write to.
*x

* @return Data is the data from the register.

*x

* @note

* C-style signature:

* u32 LED_IP mReadReg(u32 BaseAddress, unsigned RegOffset)

*

*/
#define LED_IP_ mReadReg(BaseAddress, RegOffset) \
Xil In32((BaseAddress) + (RegOffset))

Custom IP Drivers: *.h (cont’ 4)

led _ip\ip_repo\led ip_1.0\drivers\led ip _v1 O\src\led ip.h

/**

ES

* Run a self-test on the driver/device. Note this may be a destructive test if
* resets of the device are performed.

»

* If the hardware system is not built correctly, this function may never

* return to the caller.

*

B

@param baseaddr_p is the base address of the LED_IP instance to be worked on

¥

*

@return

*

- - XST_SUCCESS if all self-test code passed

> - XST_FAILURE if any self-test code failed

*

* @note Caching must be turned off for this function to work.

* f@note Self test may fail if data memory and device are not on the same bus.
b

XStatus LED_IP_Reg_SelfTest(void * baseaddr_p);

Embedded C

‘C’ Code for Writing to My _IP

#include "xparameters.h”
#include "xgpio.h"
#include "led_ip.h"

int main (void)

d
XGpio dip, push;
int i, psb_check, dip_check;

xil printf("-- Start of the Program --\r\n");

XGpio_Initialize(&dip, XPAR SWITCHES DEVICE ID);
XGpio_SetDataDirection(&dip, 1, @xffffffff);

XGpio_Initialize(&push, XPAR BUTTONS DEVICE_ID);
XGpio_SetDataDirection(&push, 1, exffffffff);

while (1)

1
psb_check = XGpio_DiscreteRead(&push, 1);
xil _printf("Push Buttons Status ¥x\r\n", psb_check);
dip_check = XGpio_DiscreteRead(&dip, 1);
xil_printf("DIP Switch Status ¥x\r\n", dip_check);

for (i=0; 1<9999999; i++);

Embedded C

IP Drivers — Xil Out32/Xil In32

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data)| Xil Out32((BaseAddress) + (RegOffset), (Xuint32)(Data))

#tdefine LED_IP_mReadReg(BaseAddress, RegOffset)(BaseAddress) + (RegOffset))

o For this driver, you can see the macros are aliases to the lower level functions
Xil_Out32() and Xil_In32()

o The macros in this file make up the higher level APl of the led_ip driver.

o If you are writing your own driver for your own IP, you will need to use low level
functions like these to read and write from your IP as required. The low level hardware
access functions are wrapped in your driver making it easier to use your IP in an

Application project.

Embedded C

IP Drivers — Xil In32 (xil io.h/xil io.c)

Embedded C

/***/

/**
* Performs an input operation for a 32-bit memory location by reading from the

* specified address and returning the Value read from that address.
*

* @param Addr contains the address to perform the input operation at.
*

* @return The Value read from the specified input address.
*

* @note None.
k

**/
u32 Xil_In32(INTPTR Addr)

return *(volatile u32 *) Addr;

IP Drivers — Xil Out32 (xil io.h/xil io.c)

/***/
/**
* Performs an output operation for a 32-bit memory location by writing the

* specified Value to the the specified address.
%k

* @param Addr contains the address to perform the output operation at.

* @param Value contains the Value to be output at the specified address.
%k

* @return None.
Xk

* @note None.
**/

void Xil_Out32(INTPTR Addr, u32 Value)

{
u32 *LocalAddr = (u32 *)Addr;

*LocalAddr = Value;

Embedded C

IP Drivers — SDK ‘Activation’

o Select <project_name>_bsp in the project view pane. Right-click

o Select Board Support Package Settings
o Select Drivers on the Overview pane

o If the led_ip driver has not already been selected, select Generic under
the Driver Column for led_ip to access the dropdown menu. From the

dropdown menu, select led _ip, and click OK>

Embedded C

IP Drivers — SDK ‘Activation’ (cont’)

@ Board Support Package Settings

Board Support Package Settings

Control various settings of your Board Support Package.

4 Overview
standalone '
; 4 drivers Drivers
ps/_cortexad_0 The table below lists all the components found in your hardware system. You can modify the driver (

compoenent. If you do not want to assign a driver to a component or peripheral, please choose 'none

Component Component Type Driver

ps/_cortexa9_0 ps/_cortexal cpu_cortexad

axi_bram_ctrl_0 axi_bram_ctrl bram

buttons axi_gpio gpio

led_ip led_ip led_ip -
ps/_afi_0 ps7_afi nocne

ps/_afi_1 ps7_afi eneric

ps/_afi_2 ps7_afi

Embedded C

System Level Address Map

CPUs and Other Bus
Address Range ACP AXI_HP | oo sters(l) Notes
oCM oCM OCM Address not filtered by SCU and OCM is
mapped low
DDR OCM OCM Address filtered by SCU and OCM is
mapped low
0000_0000to 0003_FFFF(2
- - Address filtered by SCU and OCM is not
DDR
mapped low
Address not filtered by SCU and OCM is
not mapped low
DDR Address filtered by SCU
0004 0000 to 0007 FFFF
- - Address not filtered by SCU
DDR DDR DDR Address filtered by SCU
0008 0000 to 000F FFFF
- - DDR DDR Address not filtered by SCU(3)
0010 0000 {0 3FEE CEDE DDR DDR DDR Acceccible to all interconnect mactere |
General Purpose Port #0 to the PL.
4000_0000 to 7FFF_FFFF PL PL M_AXI GPO
General Purpose Port #1 to the PL,
8000_0000 to BFFF_FFFF PL PL M_AXI_GP1
E000_0000 to EO2F_FFFF 10P 10P 1/O Peripheral registers, see lable 4-6
E100_0000 to ESFF_FFFF SMC SMC SMC Memories, see Table 4-5
F800_0000 to FB00_OBFF SLCR SLCR SLCR registers, see Table 4-3
F800_1000 to F880_FFFF PS PS PS System registers, see Table 4-7
F890_0000 to FBF0_2FFF CPU CPU Private registers, see Table 4-4
FC00_0000 to FDFF_FFFF# | Quad-SPI Quad-SPI | Quad-SPI linear address for linear mode
OoCcM OoCM OCM OCM is mapped high

FFFC_0000 to FFFF_FFFF(2) : :
Embedded C OCM is not mapped high 71

/0 Read Macro

Read from an Input

int switch sl;

switch sl = *(volatile int *) (0x00011000) ;
\ J
/

#define SWITCH S1 BASE = 0x00011000;

switch sl = *(volatile int *)(SWITCH_Sl_BASE);/

.
(#define SWITCH S1 BASE = 0x00011000; A
| | #define my_iord(addr) (*(volatile int *) (addr)) || Macro
switch sl = my iord(SWITCH S1 BASE) ; // P

ICTP

Embedded C

/O Write Macro

Write to an Output

2)
char pattern = 0x01;

0x11000110) = pattern;

l
-
4 _)
#define LED L1 BASE = 0x11000110;

*(LED L1 BASE) = pattern;

- J
(#define LED L1 BASE = 0x11000110; o
[#define my lowr (addr, data) (* (1nt *) (addr) = (data))]Nkmro

\Ty_iowr(LED_Ll_BASE, (int)pattern); //

Embedded C ICTP

‘CrStatement ‘memespyy « scc, size t)

memcpy() is used to copy a block of memory from a location (src)
to another (dest). It is declared in string.h

Syntax

Parameters

dest — This is pointer to the destination array where the content is to be copied, type-
casted to a pointer of type void*.

src — This is pointer to the source of data to be copied, type-casted to a pointer of
type void*.

n — This is the number of bytes to be copied.

‘C’ Statement: memcopy()

#include <stdio.h>

#include <string.h>

int main () {
const char src[50] = "http://www.tutorialspoint.com”;
char dest[50];
strcpy(dest, "Heloooo!!");
printf("Before memcpy dest = %s\n", dest);
memcpy(dest, src, strlen(src)+l);
printf("After memcpy dest = %s\n", dest);

return(0);

Before memcpy dest = Heloooo!!
After memcpy dest = http://www.tutorialspoint.com

Xil_printf(...) dif with printx

Memory occupied in sdk? ? ?

