
VHDL For Synthesis

MSc. Cristian Sisterna
Universidad Nacional San Juan
Argentina

VHDL for Synthesis - C. Sisterna ICTP- MLAB 2

Intoduction

Very High Speed IC

Hardware

Description

Language

V H D L

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Hardware Description Language

ØHigh level of abstraction

ØEasy to debug

Ø Parameterized designs

ØRe-uso
Ø IP Cores (free) available

if(reset=‘1’) then
count <= 0;

elsif(rising_edge(clk)) then
count <= count+1;

end if;

3
3

VHDL for Synthesis - C. Sisterna ICTP- MLAB

HDL Synthesis Sub-Set

VHDL
Synthesizable

VHDL

Used to write code
to simulate the
behavior of a design

Used to implement
the design into
hardware (for
instance in FPGA)

4
4

ü VHDL is used to DESCRIBE the behavior and/or structure of a
Digital System

ü Be careful ! -> you are describing Hardware
Concurrent Code -> Executed in Paralell

üWith HDL it is possible to describe from a simple
combinational circuit to a whole i7 processor

VHDL for Synthesis - C. Sisterna ICTP- MLAB

HDL Synthesis Sub-Set

5
5

VHDL for Synthesis - C. Sisterna ICTP- MLAB 6

VHDL Describing Digital System

v The operations in real systems are executed
concurrently.

v The VHDL language describes real systems as a set
of components (statements) that operate
concurrently.
vEach of these components is described with
concurrent statements.

v The complexity of each component may vary from a
simple logic gate to a processor

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Synthesis versus Simulation

Extremely important to understand that VHLD is both, a
Synthesis language and a Simulation language.

l Small subset of the language is ‘synthesizable’, meaning
that it can be translated into logic gates and flip-flops.

l Every line of VHDL code must have a direct translation into
hardware.

l Another subset of the language include many features
for ‘simulation’ or ‘verification’, features that have NO
meaning in hardware

7
7

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL ‘Description’ Examples

x

y
z

sel

0

1

if(sel=‘1’) then
z <= y;

else
z <= x;

end if;

z <= y when sel=‘1’ else x;

8
8

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – General Component Structure

entity

architecture

I/O

Functionality

mux2x1.vhd

9

x

y
z

sel

0

1

9

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL - General Component Structure

entity mux2x1 is
port(
x,y,sel: in std_logic;
z : out std_logic);

end mux2x1;

architecture test of mux2x1 is
begin

end test;

mux2x1.vhd
entity
port(

end ;

architecture test of mux2x1 is
begin
process(x,y,sel)
begin
if(sel=‘1’) then

z <= y;
else

z <= x;
end if;
end process;
end test;

10

x

y
z

sel

0

1

10

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL - General Component Structure

entity mux2x1 is
port(
x,y,sel: in std_logic;
z : out std_logic);

end mux2x1;

architecture test of mux2x1 is
begin

end test;

mux2x1.vhd

entity
port(

end ;

architecture test of mux2x1 is
begin

z <= y when sel=‘1’ else x;

end test;

11

x

y
z

sel

0

1

11

Libraries and packages provides the
incorporation of external functions, data
types and components to the component to
be described

VHDL for Synthesis - C. Sisterna ICTP- MLAB 12

VHDL - General Component Structure

entity

architecture

I/O

Functionality

Libraries &
packages

Defines the I/O ports as well as the name
of the component. Some times a constant(s)
is defined (generic) to write
parameterized VHDL code

It’s where the hardware behavior and/or
structure is described. It can have from 1
to thousands lines of code… ALL
CONCURRENTs !

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Code – Is it really Works?

Unit Under Test

(UUT)

Test Bench

Stimulus
Signals

Outputs

13
13

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – Simulation / Verification

14
14

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL - FPGA Design Flow

15

15

with tmp select
j <= w when “1000”,

x when “0100”,

y when “0010”,
z when “0001”,

'0‘when others;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL – FPGA: Synthesis + P&R

Vivado/Quartus
Libero

EDA Tool

VHDL Code

FPGA Library of Components

Design Constraints

Design Attributes

Cyclone
Spartan

NET CLOCK PERIOD = 50 ns;
NET LOAD LOC = P14

attribute syn_encoding of
my_fsm: type is “one-hot”;

16

Synthesis +
P&R

Digital System
implemented in

the FPGA
16

VHDL Simple Example

Design a BCD up-down counter. The count should be displayed in
a 7-segment display.

The system has a high frequency clock and system reset as inputs.

VHDL for Synthesis - C. Sisterna ICTP- MLAB 18

Simple Example – VHDL

Option 01
Option

2

library &
packages

architecture

entity

1

3

VHDL for Synthesis - C. Sisterna ICTP- MLAB 19

Libraries & Packages

Must be present to use
std_logic type. That

is, for ALL
synthesisable designs.

Must be present to add
arithmetic functions

for signed and
unsigned types.

Note: do not do arithmetic operations
with std_logic/std_logic_vector

DO NOT USE these
packages. There do not
belong to the VHDL
IEEE standard.

use only
in/out modes

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal/Port Declarations in the Entity

20

use only std_logic/std_logic_vectortypes

high_freq_clock

sys_reset
up_down

dspl1_anodo

seven_segm_dsply

use only inout mode in

the higher lever top-

module

20

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top)

21

high_freq_clock

sys_reset
up_down

dspl1_anodo

seven_segm_dsply

Freq.
Divider

bcd_2_7segm

counter

??

21

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Counter entity/arch.

22

high_freq_clock

sys_reset
up_down

dspl1_anodo

seven_segm_dsplycounter

22

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Counter Architecture

23

Declarative part

Descriptive part
(concurrent)

Sequential
statements
(inside a
process)

Concurrent
statement

23

VHDL for Synthesis - C. Sisterna ICTP- MLAB 24

Understanding Concurrency

concurrent

sequential

sequential

concurrent

concurrent

concurrent

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top)

25

high_freq_clock

sys_reset
up_down

dspl1_anodo

seven_segm_dsply

Freq.
Divider

bcd_2_7segm

counter

??

25

VHDL for Synthesis - C. Sisterna ICTP- MLAB 26

VHDL Data Types

VHDL
Types

std_logic_vector std_logic

Your Text
Here

natural
(0, +)positive

(+)

signed /
unsigned

boolean
(True,
False)

integer
(-, +)

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Assignment – strongly typed

27

count <= count + 1;
carry_out <= (a and b) or (a and c) or (b and c);
Z <= y;

Left Hand Side (LHS)
Target Signal

Right Hand Side (RHS)
Source Signal(s)

RHS Signal Data TypeLHS Signal Data Type

signal bandera: integer;
signal flag, enable : std_logic;
. . . .

bandera <= flag; -- ?

enable <= flag; -- ?

27

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Object

28

An object holds a value of some specified type and
can be one of the three classes:

signal, variable, constant

Class Object Type

signal
variable identifier
constant

std_logic/std_ulogic

unsigned
signed

boolean

std_(u)logic_vector

Declaration Syntax:
object_class <identifier> : type[:= initial_value];

integer

28

VHDL for Synthesis - C. Sisterna ICTP- MLAB 29

std_logic Type

PACKAGE std_logic_1164 IS
--
-- logic state system (unresolved)
--
TYPE std_ulogic IS ('U', -- Uninitialized

'X', -- Forcing Unknown
'0', -- Forcing 0
'1', -- Forcing 1
'Z', -- High Impedance
'W', -- Weak Unknown
'L', -- Weak 0
'H', -- Weak 1
'-' -- Wild card

);
SUBTYPE std_logic IS resolved std_ulogic;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Casting

30

VHDL does allow restricted type of CASTING, that is
converting values between related types

datatype <= type(data_object);

signal max_rem: unsigned (7 downto 0);
signal more_t: std_logic_vector(7 downto 0);

max_rem <= more_t;

max_rem <= unsigned(more_t);

unsigned and std_logic_vector are both vectors of the
same element type, therefore it’s possible a direct

conversion by casting. When there is not type
relationship a conversion function is used.

30

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Functions

31

VHDL does have some built-in functions to convert some
different data types (not all the types allow

conversions)
datatype <= to_type(data_object);

signal internal_counter: integer range 0 to 15;
signal count: std_logic_vector(3 downto 0);

count <= internal_count;

CoUnT <= std_logic_vector(to_unsigned(internal_count,4));

Function converts integer to unsigned

Cast to slv unsigned

slv
31

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion – Cast / Function

32
32

VHDL for Synthesis - C. Sisterna ICTP- MLAB 33

VHDL Operators

VHDL for Synthesis - C. Sisterna ICTP- MLAB 34

VHDL Attributes

34

It’s way of extracting information from a type, from the
values of a type or it might define new implicit signals
from explicitly declared signals

It’s also a way to allow to assign additional
information to objects in your design description (such
as data related to synthesis)

User-defined/ Synthesis
Attrbiutes

Pre-defined
attributes

Simulation and
Synthesis Only Simulation

VHDL for Synthesis - C. Sisterna ICTP- MLAB 35

Array Attributes
Array attributes are used to obtain information on the

size, range and indexing of an array

It’s good practice to use attributes to refer to the size or
range of an array. So, if the size of the array is change,
the VHDL statement using attributes will automatically

adjust to the change

Array Attributes – Range Related

A’range Returns the range value of a constrained array

A’reverse_range Returns the reverse value of a constrained array

VHDL for Synthesis - C. Sisterna ICTP- MLAB 36

Array Attributes

variable w_bus: std_logic_vector(7 downto 0);

Use of the attributes range and reverse_range

then:

w_bus’range -- will return: 7 downto 0

while:
w_bus’reverse_range -- will return: 0 to 7

2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

37

VHDL provides designers/vendors with a way of adding
additional information to the system to be synthesized

Synthesis tools use this features to add timing,
placement, pin assignment, hints for resource locations,
type of encoding for state machines and several others
physical design information

The bad side of synthesis attributes is that the VHDL
code becomes synthesis tools/FPGA dependant, NO
TRANSPORTABLE ….

2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

38

attribute syn_preserve: boolean;

attribute syn_preserve of ff_data: signal is true;

type my_fsm_state is (reset, load, count, hold);

attribute syn_encoding: string;

attribute syn_encoding of my_fsm_state: type is “gray”;

attribute attr_name: type;

attribute attr_name of data_object: ObjectType is AttributeValue;

Syntax

Example

2017 Intel Corporation - Confidential

User-defined/Synthesis Attributes

39

type ram_type is array (63 downto 0) of

std_logic_vector (15 downto 0);

signal ram: ram_type;

attribute syn_ramstyle: string;

attribute syn_ramstyle of ram: signal is “block_ram”;

Example:

VHDL Statements

VHDL for Synthesis - C. Sisterna ICTP- MLAB 40

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

41

with <selection_signal> select
target_signal <= <expression> when <value1_ss>,

<expression> when <value2_ss>,
...

<expression> when <last_value_ss>,
<expression> when others;

Syntax

A selective signal assignment describes logic
based on mutually exclusive combinations of

values of the selection signal

41

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

42

library ieee;
use ieee.std_logic_1164.all;

entity TRUTH_TABLE is
port(A, B, C: in std_logic;

Y: out std_logic);
end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is
signal S1: std_logic_vector(2 downto 0);

begin
S1 <= A & B & C; -- concatenate A, B, C
with S1 select

Y <= ‘1’ when “000” | “010” | “100” ,
‘0’ when “001” | “011” | “101”,
‘-’ when others;

end BEHAVE;‘-’ means don’t care

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

“|” means OR only when
used in “with” or “case”

Example: Truth Table

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

42

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

43

Synthesis
Result

RTL View

FPGA Technology
View

43

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

44

target_signal <=
<expression> when <boolean_condition> else
<expression> when <boolean_condition> else
....
<expression> when <boolean_condition>[else

<expression>];

Syntax

A conditional signal assignment describes logic based on
unrelated boolean_conditions, the first condition that is

true the value of expression is assigned to the
target_signal

44

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

45

dbus <= data when enable = ‘1’ else ‘Z’;

dbus <= data when enable = ‘1’ else (others=>‘Z’);

Main usage

45

Example

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

46

library ieee;
use ieee.std_logic_1164.all;

entity my_tri is
generic(bus_ancho: integer := 4);
port(
data: in std_logic_vector(bus_ancho-1 downto 0);

enable: in std_logic;
dbus : out std_logic_vector(bus_ancho-1 downto 0)
);

end my_tri;

architecture behave of my_tri is
begin

y <= a when en = ‘1’ else (others => ‘z’) ;
end behave;

EN

A(0) Y(0)

EN

A(1) Y(1)

EN

A(2) Y(2)

EN

A(3) Y(3)

data(0)

data(1)

data(2)

data(3)

enable

enable

enable

enable

dbus(0)

dbus(1)

dbus(2)

dbus(3)

46

process Statement

vA process, with all the sequential
statements, is a simple concurrent
statement.

vFrom the traditional programming view, it
is an infinite loop

vMultiple processes can be executed in
parallel

A process is a concurrent statement, but it is
the primary mode of introducing

sequential statements

VHDL for Synthesis - C. Sisterna ICTP- MLAB 47

Process Statement

48

execution

wait

A process has two states: execution and wait

Once the process has
been executed,

it will wait for the
next satisfied

condition
Until a

condition is
satisfied

VHDL for Synthesis - C. Sisterna ICTP- MLAB 48

VHDL for Synthesis - C. Sisterna ICTP- MLAB 49

Process Statement

v Processes are composed of sequential statements, but
process declarations are concurrent statements.

v The main features of a process are the following:
v It is executed in parallel with other processes;
v It cannot contain concurrent statements;
v It defines a region of the architecture where statements are

executed sequentially
v It must contain an explicit sensitivity list or a wait statement
v It allows functional descriptions, similar to the programming

languages;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Process Statement

50

[process_label:] process [(sensitivity_list)] [is]
[process_data_object_declarations]
begin

variable_assignment_statement
signal_assignment_statement
wait_statement
if_statement
case_statement
loop_statement
null_statement
exit_statement
next_statement
assertion_statement
report_statement
procedure_call_statement
return_statement
[wait on sensitivity_list]

end process [process_label];

Sequential
statements

50

VHDL for Synthesis - C. Sisterna ICTP- MLAB 51

Parts of the process statement
sensitivity_list
◦ List of all the signals that are able to trigger the process
◦ Simulation tools monitor events on these signals
◦ Any event on any signal in the sensitivity list will cause to execute the

process at least once

sequential_statements
All the sequential statements that will be executed each
time that the process is activated

declarations
Declarative part. Types, functions, procedures and variables
can be declared in this part
Each declaration is local to the process

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Behaviour in a process

52

While a process is running ALL the SIGNALS in the system
remain unchanged -> Signals are in effect CONSTANTS during
process execution, EVEN after a signal assignment, the

signal will NOT take a new value

SIGNALS are updated at the
end of a process

Signals are a mean of communication between processes ->
VHDL can be seen as a network of processes

intercommunicating via signals

52

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Variable Behavior in a process

53

While a process is running ALL the Variables

in the system are updates IMMEDIATELY by a

variable assignment statement

53

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Combinational Process

54

} In a combinational process all the input signals must be
contained in the sensitivity list

} If a signal is omitted from the sensitivity list, the VHDL
simulation and the synthesized hardware will behave
differently

} All the output signals from the process must be assigned a
value each time the process is executed. If this condition is
not satisfied, the signal will retain its value (latch !)

54

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Combinational Process

55

a_process: process (a_in, b_in)

begin

c_out <= not(a_in and b_in);

d_out <= not b_in;

end process a_process;

. . . .
architecture rtl of com_ex is
begin
ex_c: process (a,b)
begin

z <= a and b;
end process ex_c;
end rtl;

55

� Syntax

VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement

56

if <boolean_expression> then
<sequential_statement(s)>

[elsif <boolean_expression> then
<sequential_statement(s)>]

. . .
[else

<sequential_statement(s)>]
end if;

56

VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement – 3 to 8 Decoder

57

entity if_decoder_example is
port(
a: in std_logic_vector(2 downto 0);
z: out std_logic_vector(7 downto 0);

end entity;

architecture rtl of if_decoder_example is
begin
if_dec_ex: process (a)
begin

if (a = “000”) then
z <= “00000001”;

elsif (a = “001”) then
z <= “00000010”;

. . .
else

z <= (others => ‘0’);
end if;

end process if_dec_ex;
end rtl;

a(2:0) b(7:0)
??

57

VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement

58

entity example3 is
port (a, b, c: in std_logic;

z, y: out std_logic);
end example3;

architecture beh of example3 is
begin
process (a, b)
begin
if c='1' then

z <= a;
else

y <= b;
end if;

end process;
end beh;

Most common mistakes for describing
combinatorial logic

58

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement

59

[case label:]case <selector_expression> is
when <choice_1> =>

<sequential_statements> -- branch #1
when <choice_2> =>

<sequential_statements> -- branch #2
. . .

[when <choice_n to/downto choice_m > =>
<sequential_statements>] -- branch #n
....

[when <choice_x | choice_y | . . .> =>
<sequential_statements>] -- branch #...

[when others =>
<sequential_statements>]-- last branch

end case [case_label];

59

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement

60

entity mux4 is
port (sel : in std_ulogic_vector(1 downto 0);

d0, d1, d2, d3 : in std_ulogic;
z : out std_ulogic);

end entity mux4;

architecture demo of mux4 is
begin
out_select : process (sel, d0, d1, d2, d3) is
begin
case sel is

when “00” =>
z <= d0;

when “01” =>
z <= d1;

when “10” =>
z <= d2;

when others =>
z <= d3;

end case;
end process out_select;
end architecture demo;

60

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement with if Statement

61

mux_mem_bus :process
(cont_out,I_P0,I_P1,I_A0,I_A1,Q_P0,Q_P1,Q_A0,Q_A1)

begin
mux_out <= I_P0;
case (cont_out) is
when "00" =>

if(iq_bus = '0') then
mux_out <= I_P0;--I_A0;

else
mux_out <= Q_P0;--Q_A0;

end if;
when "01" =>

if(iq_bus = '0') then
mux_out <= I_A0;--I_P0;

else
mux_out <= Q_A0;--Q_P0;

end if;
.

61

VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

62

[loop_label]: for <identifier> in discrete_range loop

<sequential_statements>

end loop [loop_label];

• The identifier is called loop parameter, and for each iteration of
the loop, it takes on successive values of the discrete range,
starting from the left element

• It is not necessary to declare the identifier
• By default the type is integer
• Only exists when the loop is executing

<identifier>

62

VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

63

entity match_bit is
port (a, b : in std_logic_vector(7 downto 0);

matches: out std_logic_vector(7 downto 0));
end entity;
architecture behavioral of match_bit is
begin
process (a, b)
begin
for i in a’range loop

matches(i) <= not (a(i) xor b(i));
end loop;

end process;
end behavioral;

-- process (a, b)
-- begin
-- matches(7) <= not (a(7) xor b(7));
-- matches(6) <= not (a(6) xor b(6));
-- ..
-- matches(0) <= not (a(0) xor b(0));
-- end process;

63

VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

64

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity count_??? is
port(vec: in std_logic_vector(15 downto 0);

count: out std_logic_vector(3 downto 0))
end count_ones;

architecture behavior of count_???? is

begin

cnt_ones_proc: process(vec)
variable result: unsigned(3 downto 0);

begin
result:= (others =>'0');
for i in vec’range loop
if vec(i)='1' then

result := result + 1;
end if;

end loop;

count <= std_logic_vector(result);

end process cnt_ones_proc;

end behavior;

64

VHDL for Synthesis - C. Sisterna ICTP- MLAB

The Role of Componentes in VHDL

65

Hierarchy in
VHDL

Divide & Conquer

Each subcomponent can be designed and
completely tested

Create library of components (technology
independent if possible)

Third-party available components

Code for reuse

65

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Component Instantiation

66

Component instantiation is a concurrent statement that is
used to connect a component I/Os to the internal signals or

to the I/Os of the higher lever component

▫ component_label it labels the instance by giving a name
to the instanced

▫ generic_assocation_list assign new values to the
default generic values (given in the entity declaration)

▫ port_association_list associate the signals in the top
entity/architecture with the ports of the component. There
are two ways of specifying the port map:
" Positional Association / Name Association

component_label: entity work.component_name
[generic map (generic_assocation_list)]
port map (port_association_list);

66

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Association By Name

67

In named association, an association list is of the form

(formal1=>actual1, formal2=>actual2, … formaln=>actualn);

-- component declaration

component NAND2

port (a, b: in std_logic;

z: out std_logic);

end component;

-- component instantiation

U1: entity work.NAND2 port map (a=>S1, z=>S3, b=>S2);

-- S1 associated with a, S2 with b and S3 with z

Connected to Component I/O Port
Internal Signal or Entity

I/O Port

67

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Component Instantiation Example

68

library ieee;
use ieee.std_logic_1164.all;

entity glue_logic is
port (A, CK, MR, DIN: in std_logic;

RDY, CTRLA: out std_logic);
end glue_logic ;

architecture STRUCT of glue_logic is

signal S1, S2: BIT;

begin

D1: entity work.DFF port map (D=>A, CLOCK=>CK, Q=>S1, QBAR=>S2);
A1: entity work.AND2 port map (X=>S2, Y=>DIN, Z=>CTRLA);
N1: entity work.NOR2 port map (a=>S1, b=>MR, c=>RD1);

end STRUCT;

dff
d

clock

q

qbar
and2

x

y
z

nor2
a

b

c

68

VHLD for Sequential
Logic Design

VHDL for Synthesis - C. Sisterna ICTP- MLAB 69

VHDL for Synthesis - C. Sisterna ICTP- MLAB

D Flip-Flop – VHDL
entity ff_d_example is
port(

d : in std_logic;
clk : in std_logic;
q : out std_logic);

end entity;

architecture rtl of ff_d_example is
begin
ff_d: process(clk)
begin
if (rising_edge(clk)) then
q <= d;

end if;
end process ff_d;
end rtl;

q

clk

d

70

VHDL for Synthesis - C. Sisterna ICTP- MLAB

D Flop-Flop with . . .
entity ff_example is
port(

d, clk, rst: in std_logic;
q: out std_logic);

end entity;
architecture rtl of ff_example is
begin
ff_d_rst: process (clk, rst)
begin
if (rst=‘1’) then

q <= ‘0’;
elsif (rising_edge (clk)) then

q <= d;
end if;
end process ff_d_rst;
end rtl;

71

VHDL for Synthesis - C. Sisterna 72

D Flip-Flop with
entity ff_d_srst is
port(
d, clk, rst: in std_logic;

q: out std_logic);
end entity;
architecture rtl of ff_d_srst is
begin
ff_d_srst: process (clk)
begin
if (rising_edge (clk)) then

if (rst =‘1’) then
q <= ‘0’;

else
q <= d;

end if;
end if;
end process ff_d_srst;
end rtl;

ICTP- MLAB

VHDL for Synthesis - C. Sisterna 73

D Flip-Flop with
entity ff_d_en_rst is
port(
d, clk, en, rst: in std_logic;
q: out std_logic);

end entity;
architecture rtl of ff_d_en_rst is
begin
ff_d_en_rst: process (clk, rst)
begin
if (rst=‘1’) then

q <= ‘0’;
elsif (rising_edge (clk)) then
if (en=‘1’) then

q <= d;
end if;

end if;
end process ff_d_en_rst;
end rtl;

ICTP- MLAB

VHDL for Synthesis - C. Sisterna 74

Registers
entity reg_d_rst is
generic(width:= 4);
port(
d : in std_logic_vector(width-1 downto 0);
clk, rst: in std_logic;
q : out std_logic_vector(width-1 downto 0));

end entity;

architecture rtl of reg_d_rst is
begin
reg_d_arst: process (clk)

begin
if (rst=‘1’) then

q <= (others =>‘0’); -- q <= ‘00000000’
elsif(rising_edge (clk)) then

q <= d;
end if;
end process reg_d_arst;

end rtl;

ICTP- MLAB

VHDL for Synthesis - C. Sisterna ICTP- MLAB 75

??
library ieee;
use ieee.std_logic_1164.all;

entity shift_pi_po_x8 is
port(

clk, clr : in std_logic;
serial_in : in std_logic;
data_out : out std_logic_vector(7 downto 0);

end shift_pi_po_x8;

architecture behav of shift_si_so_x4 is

signal data_out_temp: std_logic_vector(3 downto 0);

begin

shift_proc: process(clk, clr)

begin
if (clr = '0') then

data_out_temp <= others(=>'0‘);
elsif (rising_edge(clk)) then

data_out_temp <= serial_in & data_out_temp(3 downto 1);
end if;

end process shift_proc;
data_out <= data_out_temp;

end behave;

architecture behav of shift_74x194 is
signal temp_q: std_logic_vector(3 downto 0);

signal ctrl : std_logic_vector(1 downto 0);
begin
ctrl <= s0 & s1;
shift_proc: process(clk, clr_n)
begin

if (clr_n = '0') then
temp_q <= (others => '0');

elsif (rising_edge(clk)) then
case ctrl is
when "11" => temp_q <= paralel_in;

when "10" => temp_q <= rin & temp(3 downto 1);
when "01" => temp_q <= temp(2 downto 0) & lin;

when others => temp_q <= temp_q;
end case;

end if;
end process;
q <= temp_q;
end behav;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 76

Shift Register : 74x194

VHDL for Synthesis - C. Sisterna ICTP- MLAB 77

Counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter_nbits is
generic(cnt_w: natural:= 4)
port (

-- clock & reset inputs
clk : in std_logic;
rst : in std_logic;
-- ouptuts
count : out std_logic_vector(cnt_w-1 downto

0));
end counter_nbits;

architecture rtl of counter_nbits is
-- signal declarations
signal count_i: unsigned(cnt_w-1 downto 0);

begin
count_proc: process(clk, rst)
begin
if(rst='0') then
count_i <= (others => '0');

elsif(rising_edge(clk)) then
count_i <= count_i + 1;

end process count_proc;

count <= std_logic_vector(count_i);

end architecture rtl;

?

VHDL for Synthesis - C. Sisterna ICTP- MLAB 78

Up/Down Counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter_ud is
generic(cnt_w: natural:= 4)
port (

-- clock & reset inputs
clk : in std_logic;
rst : in std_logic;
-- control input signals
up_dw : in std_logic;
-- ouptuts
count : out std_logic_vector(cnt_w-1 downto

0));
end counter_ud;

architecture rtl of counter_ud is
-- signal declarations
signal count_i: unsigned(cnt_w-1 downto 0);

begin
count_proc: process(clk, rst)
begin
if(rst='0') then
count_i <= (others => '0');

elsif(rising_edge(clk)) then
if(up_dw = '1') then -- up

count_i <= count_i + 1;
else -- down

count_i <= count_i - 1;
end if;
end if;

end process count_proc;

count <= std_logic_vector(count_i);

end architecture rtl;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 79

Contador Up/Down en VHDL -
Enteros

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter_ud_i is
generic(cnt_w: natural:= 4)
port (

-- clock & reset inputs
clk : in std_logic;
rst_n : in std_logic;
-- ouptuts
count : out std_logic_vector(cnt_w-1 downto

0));
end counter_ud_i;

architecture rtl of counter_ud_i is
begin
count_proc: process(clk, rst)

variable count_i: integer range 0 to 255;
begin
if(rst_n = '0') then

count_i := 0;
elsif(rising_edge(clk)) then
if(count_i = 255) then

count_i := 0;
else

count_i := count_i + 1;
end if;
end if;

end process count_proc;

count <= std_logic_vector(to_unsigned(count_i,8));
end architecture rtl; ?

VHDL for Synthesis - C. Sisterna ICTP- MLAB 80

Up/Down Counter - Integers

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter_ud_i is
generic(cnt_w: natural:= 8)
port (

-- clock & reset inputs
clk : in std_logic;
rst_n : in std_logic;
-- control input signals
up_dw : in std_logic;
-- ouptuts
count : out std_logic_vector(cnt_w-1 downto

0));
end counter_ud_i;

architecture rtl of counter_ud_i is
begin
count_proc: process(clk, rst)

variable count_i: integer range 0 to 199;
begin
if(rst_n = '0') then
count_i := 0;

elsif(rising_edge(clk)) then
if(count_i = 200) then

count_i := 0;
else

count_i := count_i + 1;
end if;
end if;
end process count_proc;

count <= std_logic_vector(to_unsigned(count_i,8));
end architecture rtl; ?

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Asynchronous Inputs

81

VHDL for Synthesis - C. Sisterna ICTP- MLAB 82

Synchronizer

VHDL for Synthesis - C. Sisterna ICTP- MLAB 83

Synchronizer

library ieee;
use ieee.std_logic_1164.all;
entity synchronizer is

port(
clk : in std_logic;
asyncin : in std_logic;
syncin : out std_logic);

end synchronizer;

architecture behave of synchronizer is

signal sync_temp: std_logic;
begin
sync_proc: process(clk)
begin

if (rising_edge(clk)) then
sync_temp <= asyncin;
syncin <= sync_temp;

end if;
end process;
end behave;

FINITE STATE
MACHINES (FSM)

DESCRIPTION IN VHDL

Cristian Sisterna
UNSJ

VHDL for Synthesis - C. Sisterna ICTP- MLAB 84

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 85

State Machine General Scheme 1

Outputs
Inputs

Next
State
Logic

Current
State
Logic

Current
State

Next
State

Output
Logic

Clk
Rst

Next State
Logic

Current
State Logic

Output
Logic

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 86

State Machine General Scheme 2

Outputs

Next
State

Inputs
Next
State
Logic

Current
State
Logic

Current
State Output

Logic

Clk
Rst

Sync
Output
FFs

Next
State
Logic

Current
State
Logic

Output
Logic

Synchr.
Output
Logic

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 87

FSM VHDL General Design Flow

Specification
s

Understand the
Problem

Draw the ASM or State
Diagram

Define an FSM
Enumerated Type

Define FSM Signals

Select an Encoding
Technique (optional)

Write the VHDL
Code

Traditional Steps

VHDL Steps

+

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 88

FSM Enumerated Type Declaration
Declare an enumerated data type with values (names) that symbolize
the states of the state machine

The only values that current_state and next_state can hold are:
IDLE,START,STOP_1BIT,PARITY,SHIFT

-- declare signals of FSM_States type
signal current_state, next_state: FSM_States;

-- declare the states of the state-machine
-- as enumerated type
type FSM_States is(IDLE,START,STOP_1BIT,PARITY,SHIFT);

Declare the signals for the next state and current state of the state
machine as signal of the enumerated data type already defined for the

state machine

Symbolic State
Names

State Assignment
¨ During synthesis each symbolic state name has to be mapped to a

unique binary representation

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 89

FSM Encoding Techniques

¨ A good state assignment can reduce the circuit size and increase the
clock rate (by reducing propagation delays)

¨ The hardware needed for the implementation of the next state logic
and the output logic is directly related to the state assignment
selected

An FSM with n symbolic states requires at least [log2 n] bits to
encode all the possible symbolic values

Commonly used state assignment schemes:

¨ Binary: assign states according to a binary sequence

¨ Gray: use the Gray code sequence for assigning states

¨ One-hot: assigns one ‘hot’ bit for each state

¨ Almost one-hot: similar to one-hot but add the all zeros code
(initial state)

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 90

FSM Encoding Schemes

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 91

FSM Encoding Schemes

Binary Gray One-Hot Almost One-hot

idle 000 000 00001 0000

start 001 001 00010 0001

stop_1bit 010 011 00100 0010

parity 011 010 01000 0100

shift 100 110 10000 1000

How is the map process done ?

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 92

Encoding Schemes in VHDL

During synthesis each symbolic state name has to be
mapped to a unique binary representation

user attribute
(synthesis attribute)

enum_encoding
(VHDL standard)

explicit user-defined
assignment

default encoding

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 93

syn_encoding – Quartus & Synplify

• syn_encoding is the synthesis user-attribute of Quartus
(Synplify) that specifies encoding for the states modeled by an
enumeration type

• To use the syn_encoding attribute, it must first be
declared as string type. Then, assign a value to it, referencing
the current state signal.

-- declare the (state-machine) enumerated type
type my_fms_states is (IDLE,START,STOP_1BIT,PARITY,SHIFT);
-- declare signals as my_fsm_states type
signal nxt_state, current_state: my_fsm_states;

-- set the style encoding
attribute syn_encoding: string;
attribute syn_encoding of my_fms_states : type is “one-hot”;

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 94

Results for Different Encoding Schemes

One-hot
safe

One-hot Gray Gray-Safe Binary Johnson

Total
combination
al functions

76 66 66 68 66 68

Dedicated
logic
registers

45 45 43 43 43 43

Max. frq. 352.24 340.95 331.02 335.01 338.34 311.72

Simple, 5 states, state machine

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 95

Results for Different Encoding Schemes

One-hot
safe

One-hot Gray Gray-Safe Binary Johnson

Total
combinational
functions

556 523 569 566 561 573

Dedicated
logic registers

215 215 201 201 201 206

Max. frq. 187.3 175.22 186.39 180.6 197.63 186.22

19 states, state machine

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 96

State Machine VHDL Coding - Example

wait_inpin_2det

X = 0edge_det

wait_fall

pulsein_2det

in_2det

in_2det

FSMin_2det pulse

in_2det

in_2det

clock
reset

Describe in VHDL an FSM
that generate a pulse
per each rising edge of
the input.

Seq. Output

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 97

FSM VHDL Coding
Comb. Next State
Logic

Seq. Present State

Clk
Rst

in_2det state

nxt_pr:process (state, in_2det)
begin

case state is
when wait_inp =>

if (in_2det='0') then
next_state <= wait_inp;

else
next_state <= edge_det;

end if;
when edge_det =>

if(in_2det='0') then
next_state <= wait_inp;

else
next_state <= wait_fall;

end if;
when wait_fall =>

if(in_2det='0') then
next_state <= wait_inp;

else
next_state <= wait_fall;

end if;
when others =>

next_state <= wait_inp;
end case;

end process nxt_pr;

cst_pr: process (clk, rst)
begin

if(rst = ‘1’) then
state <= wait_inp;

elsif (rising_edge(clk)) then
state <= next_state;

end if;
end process cst_pr;

out_pr:process (clk, rst)
begin
if (rst = ‘1’) then

pulse <= ‘0’;
elsif (rising_edge(clk)) then

case state is
when wait_inp =>

pulse <= ‘0’;
when edge_det =>

pulse <= ‘1’;
when wait_fall =>

pulse <= ‘0’;
when others =>

pulse <= ‘-’;
end case;

end if;
end process out_pr;

pulse

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 98

State Machine VHDL Coding (complete)

-- VHDL code example for an FSM
library ieee;
use ieee.std_logic_1164.all;
entity fsm _edge_detect is
port(

in_2det : in std_logic;
clk : in std_logic;
rst : in std_logic;
pulse : out std_logic);

end entity fsm_edge_detect;

architecture beh of my_fsm is

-- fsm enumerated type declaration
type fsm_states is (wait_inp, edge_det, wait_fall);

-- fsm signal declarations
signal next_state, state: fsm_states;

begin

-- current state logic
cst_pr: process (clk, rst)
begin

if(rst = ‘1’) then
state <= wait_inp;

elsif (rising_edge(clk)) then
state <= next_state;

end if;
end process cst_pr;

-- next state logic
nxt_pr:process (state, in_2det)
begin
case state is

when wait_inp =>
if(in_2det=‘0’) then

next_state <= wait_inp;
else

next_state <= edge_det;
end if;

when edge_det =>
if ….

next_state <= .. ;
….

when others =>
….

end case;
end process nxt_pr;
- - output logic
out_pr:process (clk, rst)
begin

if(rst = ‘1’) then
pulse <= ‘0’;

elsif (rising_edge(clk)) then
case state is

when wait_inp => pulse <= ‘0’;
. . .
when others => pulse <= ‘-’;

end case;
end process out_pr;
end architecture beh;

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 99

FSM Simulation

Let’s try to obtain an state diagram of a hypothetical memory controller FSM that has the
following specifications:

The controller is between a processor and a memory chip, interpreting commands from the
processor and then generating a control sequence accordingly. The commands, mem, rw and
burst, from the processor constitute the input signals of the FSM. The mem signal is asserted to
high when a memory access is required. The rdwr signal indicates the type of memory access,
and its value can be either ’1’ or ’0’, for memory read and memory write respectively. The
burst signal is for a special mode of a memory read operation. If it is asserted, four
consecutive read operations will be performed. The memory chip has two control signals, oe
(for output enable) and we (for write enable), which need to be asserted during the memory
read and memory write respectively. The two output signals of the FSM, oe and we, are
connected to the memory chip’s control signals. For comparison purpose, let also add an
artificial Mealy output signal, we_mealy , to the state diagram. Initially, the FSM is in the idle
state, waiting for the mem command from the processor. Once mem is asserted, the FSM
examines the value of rdwr and moves to either the read1 or the write state. The input
conditions can be formalized to logic expressions, as shown below:

• mem’ : represents that no memory operation is required (mem=‘0’)

• mem.rdwr: represents that a memory read operation is required (mem=rdwr=‘1’).

• mem.rdwr’: represents that a memory write operation is required (mem=‘1’; rdwr=‘0’)

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 100

Another Ex.: Memory Controller FSM

Based on an example from the “RTL Hardware Design Using VHDL” book, By Pong Chu

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 101

Memory Controller FSM

Processor

FPGA Memory
Controller FSM

Memory IC

Data Bus

Address Bus

mem

burst

rdwr
oe

we

we_mealy

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 102

Memory Controller FSM
mem’

read1

read2

read3

read4

mem.rdwr

burst’
idle

write
we

oe

oe

oe

oe

mem.rdwr’
we_mealy

burst

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 103

Memory Controller FSM – VHDL Code

library ieee ;
use ieee.std_logic_1164.all;

entity mem_ctrl is
port (

clk, reset : in std_logic;
mem, rdwr, burst: in std_logic;
oe, we, we_mealy: out std_logic
);

end mem_ctrl ;

architecture mult_seg_arch of mem_ctrl is

type fsm_states_type is
(idle, read1, read2, read3, read4, write);

signal crrnt_state, next_state: fsm_states_type;

begin

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 104

Memory Controller FSM – VHDL Code

−− current state process
cs_pr: process (clk, reset)
begin
if(reset = ’1’) then

crrnt_state <= idle ;
elsif(rising_edge(clk))then

crrnt_state <= next_state;
end if;
end process cs_pr;

¨ Next state process (1)

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 105

Memory Controller FSM – VHDL Code

−− next−state logic
nxp:process(crrnt_state,mem,rdwr,burst)
begin
case crrnt_state is
when idle =>
if mem = ’1 ’ then
if rdwr = ’1’ then
next_state <= read1;

else
next_state <= write;

end if;
else

next_state <= idle;
end if;

when write =>
next_state <= idle;

¨ Next state process (2)

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 106

Memory Controller FSM – VHDL Code

when read1 =>
if (burst = ’1’) then
next_state <= read2;

else
next_state <= idle;

end if;
when read2 =>
next_state <= read3;

when read3 =>
next_state <= read4;

when read4 =>
next_state <= idle;

when others =>
next_state <= idle;

end case;
end process nxp;

¨ Moore outputs process

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 107

Memory Controller FSM – VHDL Code
−− Moore output logic
moore_pr: process (crrnt_state)
begin
we <= ’0’; −− default value
oe <= ’0’; −− default value
case crrnt_state is

when idle => null;
when write =>

we <= ’1’;
when read1 =>

oe <= ’1’;
when read2 =>

oe <= ’1’;
when read3 =>

oe <= ’1’;
when read4 =>

oe <= ’1’;
when others => null;

end case ;
end process moore_pr;

¨ Mealy output process

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 108

Memory Controller FSM – VHDL Code

−− Mealy output logic
mly_pr: process(crrt_state,mem,rdwr)
begin
we_me <= ’0’; −− default value
case state_reg is
when idle =>
if (mem=’1’)and(rdwr =’0’)then

we_me <= ’1’;
end if;

when write => null;
when read1 => null;
when read2 => null;
when read3 => null;
when read4 => null;

end case;
end process mly_pr;

¨ Mealy output statement

VHDL for Synthesis - C.
Sisterna ICTP- MLAB 109

Memory Controller FSM – VHDL Code

−− Mealy output logic
we_me <= ’1’ when ((crrnt_state=idle) and (mem=’1’) and(rdwr=’0’))

else
’0’;

