Joint ICTP-IAEA School on
Systems-on-Chip based on

FPGA for Scientific Ins’rrumen’rohon
and Reconfigurable Compuhng

NSc. él“lg an Sisterna
Universidad Nacional San Juan
Argenting

Intoduction

Hardware Language

D

Very High Speed IC Description

Hardware Description Language

> High level of abstraction

1f (reset='1’) then
count <= 0;

elsif (rising edge(clk)) then
count <= count+1;

end 1f;

> Easy to debug

» Parameterized designs

> Re-uso
» 1P Cores (free) available

HDL Synthesis Sub-Set

Used to write code
to simulate the
behavior of a design

VHDL

Used to implement
the design into
hardware (for
instance in FPGA)

HDL Synthesis Sub-Set

v"VHDL is used to DESCRIBE the behavior and/or structure of a
Digital System

v" Be careful ! -> you are describing Hardware

Concurrent Code -> Executed in Paralell

v"With HDL it is possible to describe from a simple
combinational circuit to a whole i7 processor

VHDL Describing Digital System

+ The operations in real systems are executed
concurrently.

< The VHDL language describes real systems as a set
of components (statements) that operate
concurrently.

<+FKach of these components is described with
concurrent statements.

< The complexity of each component may vary from a
simple logic gate to a processor

Synthesis versus Simulation

Extremely important to understand that VHLD is both, a
Synthesis language and a Simulation language.

o Small subset of the language is ‘synthesizable’, meaning
that it can be translated into logic gates and flip-flops.

o Every line of VHDL code must have a direct translation into

hardware.

o Another subset of the language include many features
for ‘simulation’ or ‘verification’, features that have NO
meaning in hardware

VHDL 'Description’ Examples

X if (sel='1’) then
0 yi z <= Yy,
else
y___1 7z <= X;
Sel end 1if;

Zz <= y when sel='1' else x;

VHDL - General Component Structure

— mux2x1.vhd
f entity \\
/0O
X_ 0 \ J
_Z _
y architecture
— 1
sel | Functionality

ICTP- MLAB 9

VHDL - General Component Structure

10

VHDL for Synthesis - C. Sisterna

mux2x1.vhd

(entity mux2x1
port (
X,y,sel: in

\?nd mux2x1;

Z : out std logic);

is)

std logic;

J

architecture test of mux2xl 1is

then

begin
process (x,y,sel)
begin
1f (sel=11")
z <= Yy;
else
z <= X;
end if;

end process;
end test;

ICTP- MLAB

VHDL - General Component Structure

- mux2x1.vhd

@tity mux2x1l 1is \\
port (

x,y,8el: 1in std logic;
z : out std logic);
X Gnd mux’2x1;)
— 0
_Z architecture test of mux2xl is
begin
Y— 1
z <= y when sel='1’ else x;
sel |
end test;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL - General Component Structure

/ Libraries & \

packages

J

~N

. entity

I/0

g _/

architecture

Functionality

_ /

VHDL for Synthesis - C. Sisterna

Libraries and packages provides the
incorporation of external functions, data

types and components to the component to
be described

Defines the I/0 ports as well as the name
of the component. Some times a constant(s)
is defined (generic) to write
parameterized VHDL code

It’s where the hardware behavior and/or
structure is described. It can have from 1
to thousands lines of code.. ALL
CONCURRENTs !

ICTP- MLAB

VHDL Code - Is it really Works?

Test Bench

Stimulus
Signals

. Outputs

VHDL - Simulation / Verification

[T wave - default @@
File Edt View Add Format Tools Window

J L~ =& & = & i R RN e %'_ BF;'} a1 o B ARh 4E 4
|#-acl || QY I
J 4 & Ef[oons 3 ELEIEER & B B

Messages | |
|
|

) 0110
“ q_th 110080000 jo110]

= Cursor 1

<« |»

L«

0 ps to 2203506 ps | Mow: 2,100 ns Delta: 1

VHDL for Synthesis - C. Sisterna ICTP- MLAB

-F
PGA Design Flow

VHDL

]
Qs =
£2|1 3
c 9 v
yom R
n = =
.—.lnl
n Y S
o= S
8 S
o

-l - - =
-—-— -y

VHDL - FPGA: Synthesis + P&R

with tmp select

j <= w when “1000” VHDL COde

x when “0100”
y when “0010”
z when “0001”
'0 ‘when others;

Design Constraints
NET CLOCK PERIOD = 50 ns;

Design Attributes

NET LOAD LOC = P14 —>

attribute syn encoding of

my fsm: type is “one-hot”;

Cyclone
Spartan

16

Vivado/Quartus
Libero
EDA Tool

FPGA Library of Components

%

ig'ral Sys1'
implemented in
the FPGA

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

VHDL Simple Example

Simple Example - VHDL

Design a BCD up-down counter. The count should be displayed in
a 7-segment display.

The system has a high frequency clock and system reset as inputs.

architecture

Libraries & Packages

ibrary ieee;
se ieee.std_logic_1164.zll;

: . Must be present to use
use ieee.std_logic_1164.all; .
use ieee.numeric_std.all; Std_l—Og'LC type. That
is, for ALL
synthesisable designs.

se ieee.numeric_std.all;

Must be present to add
arithmetic functions DO NOT USE these
for signed and packages. There do not

unsigned types. belong to the VHDL

Note: do not do arithmetic operations
with std_logic/std_logic_vector IEEE sta nd Z rd -

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal/Port Declarations in the Entity

high_freq_clock A
dspll_anodo f : B’

sys_reset

ys_ — seven_segm_dsply G

up_down _ ‘E C’

= (

high_freq_clock : 1 std_logic;

sys_reset A | std_logic;

up_down | std_logic;
dsplyl anodo : out std_logic;

seven_segm_dsply : out std_logic_vector(6

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top)

VHDL for Synthesis - C. Sisterna

high_freq_clock
—

dspll_anodo

sys reset
ys_ — seven_segm_dsply

up_down _

Freq.

Divider

Counter entity/arch.

high_freq_clock

~e behavioral of cont_4bits is

dspll_anodo
sys_reset I signal i_count: unsigned(3 downtc
- seven_segm_dsply
up_down

= 'l') tnen
i_count <= (others => '0");
1sif rising_edge(sys_clock) thern

low_freq_clock_en: in std_logic; e e E L

sys_clock 3 g std_logic;

std_logic; if(up_down = '1') then
- : i_count <= i_count + 1;

count <= std_logic_vector(i_count);
end cont_4bits;
d behavioral;

VHDL for Synthesis - C. Sisterna ICTP- MLAB 22

Counter Architecture

cture behavioral of cont_4bits is

Declarative part -

i _count: unsigned(3 downtc

—
g—
— 5 process(sys_clock, reset)
if(reset = '1') then
i_count <= (others => '0');
SequenTiGI e1sif rising_edge(sys_clock) ther

if (low_freq_clock_en = '1")
statements if(up_down = '1') ther

Descr‘ipTive par‘.r - (inside a I i_count <= i_count + 1;

(Concur‘r‘en.r) pr'OCQSS) ;—:”J:._count <= i_count - 1;

[

Concurrent
S.l.a.‘.emen.r count <= std_logic_vector(i_count);

end behavioral;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Understanding Concurrency

architecture example of entity_ex is

— architecture declarative part

begin
— architecture descriptive part

signal assignment concurrent statement;

» concurrent

signal assignment concurrent statement;
process concurrent statement;
begin
signal assignment sequential statement; se q ue nti a I concurre nt
signal assignment sequential statement;
end process;

signal assignment concurrent statement; > concurre nt

process concurrent statement;

begin

signal assignment sequential statement;

signal assignment sequential statement; Seq ue ntial concurre nt

end process;

end example;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Architecture (top) [EEa——

1al count_i : std_logic_vector(3 downto ©);
1 low_freq_clock_en_i : std_logic;

high_freq_clock

dspll_anodo

seven_segm_dsply

ity work.bcd_7seg
bcd_in => count_i,
segs_out => seven_segm_dsply,
enable => '1",
dot_out => open);

work.freq_div

Freq.

sys_rst => sys_reset,
sys_clock_50 => high_freq_clock,
low_freq_clock_en => low_freq_clock_en_i);

Divider

work.cont_4bits

ort map
low_freq_clock_en => low_freq_clock_en_i,
sys_clock => high_freq_clock,
reset sys_reset,

up_down up_down,

count count_1i);

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Data Types

std_logic_vector std_logic

signed / boolean

unsigned (True,
False)

natural

positive (@, +)

(+) integer

(': +)

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Assignment - strongly typed

count <% count + 1;
carry out <+ (a and b) or (a and c) or (b and c);
Z <F Vy;

\ J\)

| |
Left Hand Side (LHS) Right Hand Side (RHS)
Target Signal Source Signal(s)
LHS Signal Data Type =——— RHS Signal Data Type

signal bandera: integer;
signal flag, enable : std logic;

bandera <= flag; -—= 7

enable <= flag; -—— 7

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Object

An object holds a value of some specified type and
can be one of the three classes:
signal, variable, constant

Declaration Syntax:
object class <identifiler> : type[:= 1nitial value];
Class Object 4 Type
| boolean
signal std_logic/std_ulogic
variable S identifier < std_.(u)logic_vector
constant unsigned
y signed
integer

VHDL for Synthesis - C. Sisterna

std_logic Type

PACKAGE std logic 1164 IS

—-- logic state system (unresolved)

TYPE std ulogic IS ('U', -- Uninitialized
a 'X'", —-- Forcing Unknown
'0', -- Forcing O
'l'", -- Forcing 1
'Z', —-- High Impedance
'"W', —- Weak Unknown
'L', -—-- Weak 0
'H', —-- Weak 1
-t -—- Wild card

) 7
SUBTYPE std logic IS resolved std ulogic;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Casting

VHDL does allow restricted type of CASTING, that is
converting values between related types

datatype <= type(data object);

signal max rem: unsigned (/7 downto O0);
signal more t: std logic vector(7/ downto 0);

max rem <= more_t;

max rem <= unsigned (more t);

unsigned and std logic_vector are both vectors of the
same element type, therefore it’s possible a direct
conversion by casting. When there is not type
relationship a conversion function is used.

ICTP- MLAB

VHDL for Synthesis - C. Sisterna

Type Conversion - Functions

VHDL does have some built-in functions to convert some
different data types (not all the types allow
conversions)

datatype <= to_type (data_object);

signal internal counter: integer range 0 to 15;
signal count: std logic_vector(3 downto 0);

count <= internal count;

CoUnT <= std logic_vector (to_unsigned(internal count,4));

\ J
|

\ | Function converts integer to unsigned
| |
Cast to slv unsigned

slv

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Type Conversion - Cast / Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

to_unsigned(int,unsigned’length) (unsigned >

to_integer(unsigned)

(integer

to_integer(signed)

to_signed(int,signed’length) signed

function

@ C7 Technology
www.c7t-hdl.com

unsigned(slv
signed(slv)

std_logic_vector(unsigned)

std_logic_vecth

std_logic_vector(signed)

VHDL for Synthesis - C. Sisterna ICTP- MLAB

VHDL Operators

Operator Description Data type Datatype Data type
of a of b of result

a**b exponentiation integer
abs a absolute value integer
not a negation boolean, bit, bit_vector
a*b,alb, multiplication, division, integer
amod b, a rem b | modulo, remainder
+a, -a identity, negation integer integer
a+b,a-b addition, subtraction, integer
a&b concatenation 1D array, element
asllb,asrlb, shift-left (right) logical, bit_vector integer bit_vector
aslab,asrab, |shift-left (right) arithmetic,
arolb,arorb rotate left (right)
a=b,al=b, any same as a boolean
a<b,a<=b, scalaror 1D | same asa | boolean
a>b,a>=b array
aandb, aorb, boolean, bit, | same asa | same as a
a xor b, a nand b, bit vector
anorb,axnorb

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

VHDL Attributes

+ |t's way of extracting information from a type, from the
values of a type or it might define new implicit signals
from explicitly declared signals

+ |t's also a way to allow to assign additional
information to objects in your design description (such
as data related to synthesis)

Pre-defined User-defined/ Synthesis
attributes Attrbiutes

Simulation and
Synthesis Only Simulation

Array Attributes

+ Array attributes are used to obtain information on the
size, range and indexing of an array

+ It's good practice to use attributes to refer to the size or
range of an array. So, if the size of the array is change,
the VHDL statement using attributes will automatically

adjust to the change

Array Attributes — Range Related

A'range Returns the range value of a constrained array

Areverse range | Returns the reverse value of a constrained array

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Array Attributes

Use of the attributes range and reverse range

variable w bus: std logic vector (7 downto 0);

then:

w_bus’ range —— will return:: 7 downto O

while :
w_bus’reverse range -- Willreturn: 0 to 7

VHDL for Synthesis - C. Sisterna ICTP- MLAB

User-defined/Synthesis Attributes

VHDL provides designers/vendors with a way of adding
additional information to the system to be synthesized

+ Synthesis tools use this features to add timing,
placement, pin assignment, hints for resource locations,

type of encoding for state machines and several others
physical design information

+ The bad side of synthesis attributes is that the VHDL
code becomes synthesis tools/FPGA dependant, NO
TRANSPORTABLE

User-defined/Synthesis Attributes
Syntax

attribute attr name: type;

attribute attr name of data object: ObjectType is AttributeValue;

Example

attribute syn preserve: boolean;

attribute syn preserve of ff data: signal is true;

type my fsm state is (reset, load, count, hold);

attribute syn encoding: string;

attribute syn encoding of my fsm state: type is “gray”;

User-defined/Synthesis Attributes

Example:

type ram type is array (63 downto 0) of
std logic vector (15 downto 0);
signal ram: ram type;

attribute syn ramstyle: string;

attribute syn ramstyle of ram: signal is “block ram”;

VHDL Statements

Selective Signal Assignment Statement

Syntax

with <selection signal> select
target signal <= <expression> when <valuel ss>,
<expression> when <valueZ ss>,

<expression> when <last value ss>,
<expression> when others;

A selective signhal assignhment describes logic
based on mutually exclusive combinations of
values of the selection signal

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Selective Signal Assignment Statement

Example: Truth Table

"|" means OR only when —
used in "with" or “"case”

42

A
0
0
0
0
1
1
1
1

= = & | = | & & |}
= QO |=» @ = |©@ = @ |

- means don't care

—

library iecee;
use ieee.std logic 1lo4.all;

entity TRUTH TABLE is
port (A, B, C: in std logic;
Y: out std logic);
end TRUTH TABLE;

architecture BEHAVE of TRUTH TABLE is
signal S1: std logic vector (2 downto 0);
begin
S1 <= A & B & C; -- concatenate A, B, C
with S1 select

end BEHAVE;

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

Selective Signal Assignment Statement

Synthesis
2 o Eﬁ:ﬁ > Result
(s unt_c[3:1] unl_c_1 um ¢ 3
= >
gll } B_pad
unl_c 2)
RTL View — S BN
et >
FPGA Technology
View

Conditional Signal Assignment

Syntax

target signal <=
<expression> when <boolean condition> else
<expression> when <boolean condition> else

<expression> when <boolean condition>[else

<expression>];

A conditional signal assignment describes logic based on
unrelated boolean conditions, the first condition that 1is
true the value of expression is assigned to the
target _signal

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Conditional Signal Assignment

Main usage

dbus <= data when enable = ‘1’ else ‘Z'’;

dbus <= data when enable = ‘1’ else (others=>'‘'7');

Conditional Signal Assignment

Example

library ieee; I
. | data(0) —>— dbus(0)
use leee.std logic 1l64.all; [

enable —,

entity my tri is I

generic (bus ancho: integer := 4); dlata(1) ~>— dbus(1)
port | enable J
data: in std logic_vector (bus_ancho-1 downto 0); |
enable: in std logic; data(2) ~>— dbus(2)
dbus : out std logic vector (bus ancho-1 downto 0) |

enable J

) ; |

end my tri; data(3) ~>— dbus(3)
e]

architecture behave of my tri is enable
begin
y <= a when en = ‘1’ else (others => ‘z’) ;

end behave;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

process Statement

A process is a concurrent statement, but it is
the primary mode of introducing
sequential statements

“*A process, with all the sequential
statements, is a simple concurrent
statement.

“*From the traditional programming view, it
is an infinite Lloop

“*Multiple processes can be executed in
parallel

Process Statement

A process has two states: execution and wait

Once the process has
been executed,
it will wait for the
next satisfied
condition

Until a
condition is —
satisfied

Process Statement

« Processes are composed of sequential statements, but
process declarations are concurrent statements.

« The main features of a process are the following:
+ It is executed in parallel with other processes;
< It cannot contain concurrent statements;

+ |t defines a region of the architecture where statements are
executed sequentially

+ It must contain an explicit sensitivity list or a wait statement

« It allows functional descriptions, similar to the programming
languages;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Process Statement

[process label:] process [(sensitivity list)] [is]
[process data object declarations]

begin
variable assignment statement N\\
signal assignment statement
walt statement
1f statement
case statement
loop statement

null statement .
- > Sequential

exlit statement tat ;
next statement starements

assertion statement

report statement

procedure call statement

return statement

[wait on sensitivity list]
end process [process label]; —//

50

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Parts of the process statement

sensitivity 1list
o List of all the signals that are able to trigger the process
> Simulation tools monitor events on these signals

° Any event on any signal in the sensitivity list will cause to execute the
process at least once

B declarations

¥ Declarative part. Types, functions, procedures and variables
can be declared in this part

¥ Each declaration is local to the process

+ Sequential statements

+ All the sequential statements that will be executed each
time that the process is activated

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Signal Behaviour in a process

While a process is running ALL the SIGNALS in the system
remain unchanged -> Signals are in effect CONSTANTS during
process execution, EVEN after a signal assignment, the
signal will NOT take a new value

SIGNALS are updated at the
end of a process

Signals are a mean of communication between processes ->
VHDL can be seen as a network of processes
intercommunicating via signals

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Variable Behavior in a process

While a process is running ALL the Variables
in the system are updates IMMEDIATELY by a

variable assignment statement

Combinational Process

» In a combinational process all the input signals must be
contained in the sensitivity list

» If a signal is omitted from the sensitivity list, the VHDL
simulation and the synthesized hardware will behave

differently

» All the output signals from the process must be assigned a
value each time the process is executed. If this condition is
not satisfied, the signal will retain its value (latch !)

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Combinational Process

a process: process (a_1n, b in)
begin
c out <= not(a in and b 1in);
d out <= not b in;

end process a process;

architecture rtl of com ex is
begin
ex c: process (a,b)
begin
z <= a and b;
end process ex C;
end rtl;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

if Statement

e Syntax

VHDL for Synthesis - C. Sisterna

if <boolean expression> then
<sequential statement (s)>

[elsif <boolean expression> then
<sequential statement (s)>]

[else
<sequential statement (s)>]
end if;

ICTP- MLAB

if Statement - 3 to 8 Decoder

entity if decoder example is
port (
a: in std logic vector (2 downto O0);

z: out std logic vector (7 downto 0);
end entity;

architecture rtl of if decoder example is
begin

1f dec ex: process (a)

begin

end process 1f dec ex;
end rtl;

57

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

if Statement

Most common mistakes for describing
combinatorial logic

entity example3 1is
port (a, b, c: in std logic;
z, y: out std logic);
end example3;

architecture beh of example3 is

begin
process (a, b)
begin
if c='1' then
z <= a,
else
y <= b;
end if;

end process;
end beh;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statrement

[case label:]case <selector expression> is
when <choice 1> =>

<sequential statements> -- branch #1
when <choice 2> =>

<sequential statements> -- branch #2

[when <choice n to/downto choice m > =>

<sequentilal statements>] -- branch #n
[when <choilce x | choice y | . . .> =>
<sequential statements>] -- branch #...

[when others =>

<sequentilal statements>]-- last branch
end case [case label];

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

case Statrement

entity mux4 is

port (sel : in std ulogic vector (1l downto 0);
do, dl, d2, d3 : in std ulogic;
z : out std ulogic);

end entity mux4;

architecture demo of mux4 is
begin
out select : process (sel, dO, dl, d2, d3) is
begin
case sel is
when “00” =>

z <= d0;
when “01” =>

z <= dl;
when “10” =>

z <= d2;
when others =>

z <= d3;

end case;
end process out select;
end architecture demo;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

case Statement with if Statement

mux mem bus :process
(cont out,I PO,I P1,I AO,I Al,Q PO,Q P1,Q0 AO,Q Al)

begin
mux out <= I PO;
case (cont out) 1is
when "00" =>

if(ig bus = '0') then

mux out <= I PO;--I AO0;
else

mux out <= Q PO0;--Q AOQ;
end if;

when "01" =>

if(ig bus = '0') then

mux out <= I AO0;--I PO;
else

mux out <= Q A0;--Q PO;
end if;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

for-loop Statement

[loop label]: for <identifier> in discrete range loop

<sequentilal statements>

end loop [loop label];

<identifier>

e The identifier is called loop parameter, and for each iteration of

the loop, it takes on successive values of the discrete range,
starting from the left element

e |tis not necessary to declare the identifier
e By default the type is integer

e Only exists when the loop is executing

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

for-loop Statement

entity match bit is

port (a, b in std logic vector (7 downto 0);
matches: out std logic vector (7 downto 0))
end entity;
architecture behavioral of match bit is

begin
process (a, b)
begin
for 1 in a’range loop .
matches (i) <= not (a(i) xor b(i)); a[70] in[0]
end loop; b[7:0] [

end process;
end behavioral;

in[1
in[0]

in[0]

in[1

in[0]

in[1

in[d]

in[1

in[0]

in[1

ICTP- MLAB

14

—{ > matches[7:0]

VHDL for Synthesis - C. Sisterna

for-loop Statement

library ieee;
use ieee.std logic 1l64.all;
use leee.numeric std.all;

entity count ?7?? is
port(vec: 1in std logic_vector (15 downto 0);
count: out std logic_vector (3 downto 0))

end count ones;

architecture behavior of count ??7?7? is
begin

cnt ones proc: process (vec)
variable result: unsigned (3 downto O0);

begin
result:= (others =>'0");
for 1 in vec’range loop
if vec(i)='1l"'" then
result := result + 1;
end if;
end loop;

count <= std logic_vector (result);

end process cnt ones proc;

end behavior;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

The Role of Componentes in VHDL

Hierarchy in
VHDL

+ Divide & Conquer

+ Each subcomponent can be designed and
completely tested

4+ Create library of components (technology
independent if possible)

+Third-party available components

4+ Code for reuse

Component Instantiation

Component instantiation is a concurrent statement that is
used to connect a component I/Os to the internal signals or
to the 1/Os of the higher lever component

component label: entity work.component name
[generic map (generic assocation list)]
port map (port assoclation list);

= component label itlabels the instance by giving a name
to the instanced

= generic assocation list assign new values to the
default generic values (given in the entity declaration)

= port association list associate the signals in the top
entity/architecture with the ports of the component. There
are two ways of specifying the port map:
< Positional Association / Name Association

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Association By Name

In named association, an association list is of the form

actuall, formal ctual2, .. formaln=;

Internal Signal or Entity
Component I/0 Port Connected to I/0 Port

—— component declaration
component NAND?2

port (a, b: in std logic;

z: out std logic);

end component;
—— component instantiation
Ul: entity work.NANDZ port map (a=>S1l, z=>S3, b=>S2);
-— S1 associated with a, S2 with b and S3 with =z

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Component Instantiation Example

library ieee;
use ieee.std logic 1164.all;

entity glue logic is
port (A, CK, MR, DIN: in std logic;
RDY, CTRLA: out std logic);
end glue logic ;

architecture STRUCT of glue logic is
signal S1, S2: BIT;
begin

Dl1: entity work.DFF port map (D=>A, CLOCK=>CK, Q=>S1, QBAR=>S5S2);
Al: entity work.AND2 port map (X=>S2, Y=>DIN, Z=>CTRLA);
Nl: entity work.NOR2 port map (a=>S1, b=>MR, c=>RD1);

end STRUCT;

q

dff

clock gbar

VHDL for Synthesis - C. Sisterna

VHLD for Sequential
Logic Design

D Flip-Flop - VHDL

Clock

D(inpm) ||| || ” ||||| I

Q(Obﬂplﬂ) I

VHDL for Synthesis - C. Sisterna

I

entity ff d example is
port (
d : in std logic;
clk : in std logic;
q : out std logic);
end entity;

architecture rtl of ff d example 1is
begin
ff d: process(clk)
begin
if (rising edge(clk)) then
q <= d;
end if;
end process ff d;
end rtl;

ICTP- MLAB

D Flop-Flop with . ..

entity ff example is

port (
d, clk, rst: in std logic;
g: out std logic);
end entity;
architecture rtl of ff example is
begin
ff d rst: process (clk, rst)

begin

end process ff d rst;
end rtl;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

D Flip-Flop with

entity ff d srst is

end entity;
architecture rtl of ff d srst is
begin

begin

end process ff d srst;
end rtl;

VHDL for Synthesis - C. Sisterna

port (
d, clk, rst: in std logic;
q: out std logic);

ff d srst: process (clk)

ICTP- MLAB

72

D Flip-Flop with

entity ff d en rst is
port (

d, clk, en, rst: in std logic;
q: out std logic);
end entity;

architecture rtl of ff d en rst is
begin

ff d en rst: process (clk, rst)
begin

end process ff d en rst;
end rtl;

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

1D

2D

3D

4D

CLK

CLR_L

Registers

(4)

(5)

D Q

—OPDCLK Q
CLR

(2)

1Q
@3)
oO———1Q_L

D Q

(12)

OPDCLK Q
CLR

7
7) 2Q

6
o— = 2a.L

D Q

(13)

OpPClK Q
CLR

10
()30

1
o; 3Q_L

D Q

(1)

5oL

VHDL for Synthesis - C. Sisterna

OpCclk Q
CLR

(15)

4Q
(14)
O—4Q_L

entity reg d rst is
generic (width:= 4);

port (
d : in std logic_vector (width-1 downto 0);
clk, rst: in std logic;
q : out std logic_vector (width-1 downto 0));

end entity;

architecture rtl of reg d rst is

begin
reg d arst: process (clk)
begin
if (rst='1’) then
g <= (others =>'07); -- g <=
elsif (rising edge (clk)) then
q <= d;
end if;

end process reg d arst;
end rtl;

‘000000007

ICTP- MLAB

7P

VHDL for Synthesis - C. Sisterna

library iecee;
use ieee.std logic 1164.all;

entity shift pi po x8 is

port (
clk, clr : in std logic;
serial in : in std logic;
data out : out std logic vector (7 downto 0);

end shift pi po x8;
architecture behav of shift si so x4 is

signal data out temp: std logic vector (3 downto 0);

begin
shift proc: process(clk, clr)
begin

if (clr = '0') then

data out temp <= others(=>'0"');
elsif (rising edge(clk)) then
data out temp <= serial in & data out temp (3 downto 1);
end if;
end process shift proc;
data out <= data out temp;

end behave;

ICTP- MLAB

Shift Register : 74x194

Inputs Next state
Function S1 SO QA* QB+ Qc ap+ 194 1is
Shift right 0 1 RIN QA QB Qc !
Shift left 1 0 QB Qc QD LIN .
Load L1 A m e 5 r(l downto 0);
egin
ctrl <= s0 & sl;
shift proc: process(clk, clr n)
begin
if (clr n = '0'") then
temp g <=
elsif (rising
case ctrl 1is
when "11" =>
when "10"
when "01"

when others
end case;
end if;
end process;
q <= temp g;
end behav;

VHDL for Synthesis - C. Sisterna

ICTP- MLAB

Counter

library ieee;
use ieee.std logic 1164.all;
use leee.numeric_std.all;|

entity counter nbits is

generic (cnt w: natural:= 4) architecture rtl of counter nbits is

port (-— signal declarations
-- clock & reset inputs signal count i: (cnt w-1 downto 0) ;
clk : in std logic;] - o
rst : in std logic; begin
—-— ouptuts count proc: process(clk, rst)
count : out std_logic vectol pegin
0)) if (rst='0") then

end counter nbits;

count 1 <= (others => '0');
elsif (rising edge(clk)) then
count 1 <= count 1 + 1; .?

end process count proc;
count <= std logic_vector (count i);

end architecture rtl;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Up/Down Counter

architecture rtl of counter ud is

library ieee; —-— signal declarations
use ieee.std logic 1164.all; signal count i: unsigned(cnt w-1 downto 0);
use ieee.numeric std.all;
N begin
entity counter ud is cou@t_proc: process (clk, rst)
generic (cnt w: natural:= 4) begin
port (o if (rst='0"') then
-- clock & reset inputs count 1 <= (others => '0');
clk : in std logic; elsif (rising edge(clk)) then
rst : in std logic; if(up_dw = '1l') then -- up
-- control input signals count 1 <= count 1 + 1;
up dw : in std logic; else -- down
—— ouptuts - count 1 <= count 1 - 1;
count : out std logic_ vector (end if;
0)): end if;
end counter ud; end process count proc;

count <= std logic_vector (count 1i);

end architecture rtl;

VHDL for Synthesis - C. Sisterna ICTP- MLAB

w’ af | | A A W 1§

e’ o W6 8§ Sl i vV § § a

Enteros

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

entity counter ud 1 is
generic (cnt w: natural:= 4)
port (-
-- clock & reset inputs

clk in std logic;
rst n in std logic;
—-— ouptuts

count out std logic -

0));
end counter ud i;

VHDL for Synthesis - C. Sisterna

architecture rtl of counter ud 1 is

begin

count proc: process(clk, rst)

variable count i: integer range 0 to 255;
begin
if(rst n = '0') then
count 1 := 0;
elsif (rising edge(clk)) then
if (count 1 = 255) then
count 1 := 0;
else
count 1 := count 1 + 1;
end if;
end if;

end process count proc;
count <= std logic_vector (to_unsigned(count i,8));
end architecture rtl;

ICTP- MLAB

Up/Down Counter - Integers

library ieee;
use ieee.std logic 1164.all;
use leee.numeric std.all;

entity counter ud 1 is
generic (cnt w: natural:= 8)
port (-
-- clock & reset inputs
clk in std logic;
rst n in std logic;
-—- control input signals

up dw in std logic;
—-— ouptuts
count out std logic -

0));
end counter ud i;

VHDL for Synthesis - C. Sisterna

architecture rtl of counter ud 1 is
begin

count proc: process(clk, rst)
variable count i: integer range 0 to 199;

begin
if(rst n = '0'") then
count 1 := 0;
elsif (rising edge(clk)) then
if (count 1 = 200) then
count 1 := 0;
else
count 1 := count 1 + 1;
end if;
end if;

end process count proc;
count <= std logic_vector (to_unsigned(count i,8));
end architecture rtl;

ICTP- MLAB

Asynchronous Inputs

VHDL for Synthesis - C. Sisterna

CLOCK
(system clock)

d
ASYNCIN

asynchronous
input

ICTP- MLAB

Synchronous
system

Synchronizer

@

synchronizer

— - g \
ASYNCIN —— D Q META D Q —
(asynchronous input) > CLK > CLK Synchronous
— — system
CLOCK
(system clock)

VHDL for Synthesis - C. Sisterna ICTP- MLAB

Synchronizer

library iecee;
use ieee.std logic 1164.all;

synchronizer

ASYNCIN META Tp entity synchronizer is
(asynchronous input) Sy por t (
(_ e clk : in std logic;
i ~ asyncin : in std logic;
(system clock) ' T .
syncin : out std logic);

end synchronizer;

architecture behave of synchronizer is

sync_temp signal sync temp: std logic;
: begin
e sync proc: process (clk)
Ik N~ - :
clk [>— 10 syncin~reg0 begin

if (rising edge(clk)) then
sync_temp <= asyncin;
syncin <= sync_ temp;
end if;
end process;

end behave;

syncin

VHDL for Synthesis - C. Sisterna ICTP- MLAB

FINITE STATE
MACHINES (FSM)
DESCRIPTION IN VHDL

State Machine General Scheme

Inputs

Clk

Current
State

Rst

Outputs

State Machine General Scheme 2

C)

Inputs

| Synchr. Outputs
Output —
Logic

-

Clk

Rst

FSM VHDL General Design Flow

A
u Specification
S

|

Understand the
Problem

|

Draw the ASM or State
Diagram

—
‘

= Traditional Steps

= VHDL Steps

FSM Enumerated Type Declaration

Declare an enumerated data type with values (names) that symbolize

the states of the state machine -
Symbolic State

Names

—— declare the states of the state-machine
-— as _enwmexradieod type 4
. \
typels@START,STOP 1BIT,PARITY,SHIFT); D
— -

Declare the signals for the next state and current state of the state

machine as signal of the enumerated data type already defined for the
state machine

—-— declare signals of FSM States type
signal current state, next state:(FSM States;

The only values that current state and next state can hold are:
IDLE, START, STOP 1BIT,PARITY, SHIFT

FSM Encoding Techniques

State Assignment

=1 During synthesis each symbolic state name has to be mapped to a
unique binary representation

type FSM States is(IDLE, START, STOP 1BIT, PARITY, SHIFT);
signal current state, next state: FSM States;

o A good state assignment can reduce the circuit size and increase the
clock rate (by reducing propagation delays)

=1 The hardware needed for the implementation of the next state logic
and the output logic is directly related to the state assignment
selected

FSM Encoding Schemes

An FSM with /77 symbolic states requires at least [log, /7] bits to
encode all the possible symbolic values

Commonly used state assignment schemes:
o Binary: assign states according to a binary sequence
- Gray: use the Gray code sequence for assigning states

1 One-hot: assigns one ‘hot’ bit for each state

-1 Almost one-hot: similar to one-hot but add the all zeros code
(initial state)

FSM Encoding Schemes

idle 00001 0000
start 001 001 00010 0001
stop_1bit 010 011 00100 0010
parity 011 010 01000 0100

shift 100 110 10000 1000

Encoding Schemes in VHDL

During symtR&ilSSHESIRBBIR G E'RARE has to be

mapped to a unique binary representation

/\

user attribute enum_encoding
(synthesis attribute) (VHDL standard)
explicit user-defined default encoding

assignment

syn encoding - Quartus & Synplify

* syn encoding is the synthesis user-attribute of Quartus
(Synplify) that specifies encoding for the states modeled by an

enumeration type

* Touse the syn encoding attribute, it must first be

declared as string type. Then, assign a value to it, referencing

the current state signal.

—-—- declare the (state-machine) enumerated type

type my_fms_states is (IDLE, START, STOP 1BIT,PARITY,SHIFT) ;
—-— declare signals as my fsm states type

signal nxt state, current state: my fsm states;

-— set the style encoding
attribute syn encoding: string;
attribute syn encoding of my fms states : type is “one-hot”;

Results for Different Encoding Schemes

Simple, 5 states, state machine

Total

combination 76 66 66 68 66 68
al functions

Dedicated

logic 45 45 43 43 43 43

registers

Max. frq. 352.24 340.95 331.02 335.01 338.34 311.72

Results for Different Encoding Schemes

19 states, state machine

Total
combinational 556 523 569 566 561 573

functions

Dedicated

i) 215 215 201 201 201 206
logic registers

Max. frq. 187.3 175.22 186.39 180.6 197.63 186.22

State Machine VHDL Coding - Example

Describe in VHDL an FSM

that generate a pulse 2£§¥
per each rising edge of

the input. in_2det

i

FSM VHDL Coding

in_2det

Comb. Next State

At_pr:process (state, in_2detm

begin
case state is
when wait_inp =>
if (in_2det='0") then
next_state <= wait_inp;
else
next_state <= edge_det;
end if;
when edge_det =>
if(in_2det='0") then
next_state <= wait_inp;
else
next_state <= wait_fall;
end if;
when wait_fall =>
if(in_2det='0") then
next_state <= wait_inp;
else
next_state <= wait_fall;
end if;
when others =>
next_state <= wait_inp;

Seq. Present State

a

cst_pr: process (clk, rst)
begin
if(rst = ‘1’) then
state <= wait_inp;
elsif (rising_edge(clk)) then

end if;

end case;

wd process nxt_pr;

state

end process cst_pr;

state <= next_state;

A A

in_2det

in_2det

Seq. Output

@_pr:process (clk, rst) \

begin
if (rst = ‘1) then
pulse <=0’
elsif (rising_edge(clk)) then
case state is
when wait_inp =>
pulse <= ‘0’;
when edge_det =>
pulse <= ‘17;
when wait_fall =>
pulse <= ‘0’;
when others =>
pulse <= *-’;

end case;

in_2det

—

pulse

end if;
end process out_pr;

A ﬂk

/

State Machine VHDL Coding (complete)

-- VHDL code example for an FSM
library ieee;
use ieee.std_logic_1164.all;

entity fsm _edge_detect is

port(
in_2det: in std_logic;
clk 1 in std_logic;
rst :in std_logic;

pulse :out std_logic);
end entity fsm_edge_detect;

architecture beh of my_fsm is

-- fsm enumerated type declaration
type fsm_states is (wait_inp, edge_det, wait_fall);

-- fsm signal declarations
signal next_state, state: fsm_states;

-- current state logic \
cst_pr: process (clk, rst)
begin
if(rst = ‘1’) then
state <= wait_inp;
elsif (rising_edge(clk)) then
state <= next_state;
end if;

-- next state logic
nxt_pr:process (state, in_2det)
begin
case state is
when wait_inp =>
if(in_2det="0’) then
next_state <= wait_inp;
else
next_state <= edge_det;
end if;
when edge_det =>
if ...
next state <= .. ;

when others =>

end case;
end process nxt_pr;
- - output logic
out_pr:process (clk, rst)
begin

if(rst = ‘1") then

pulse <=°0’;
elsif (rising_edge(clk)) then
case state is

end case;
end process out_pr;

when wait_inp => pulse <= ‘0’;

when others => pulse <="-’;

J

end architecture beh;

in_2det

FSM Simulation =

wait_inp

in_2det

in_2det

wait_fall

in_2det

@® wave

File Edit View Add Format Tools Bookmarks Window Help

[T wave - Default
B-s@ 8 RO O-AF | & ER| D@m=

B-q-GF-F || (N LT B &L e e £ || 369 3 | Search:

‘R? Eltlv*}ulal

] L3

m wait_inp wait_inp | ledge det [wait fall
& nxt_state | edge_det [EVETSRINS [Twait fall \Wwait_inp |'_p‘_‘| edge_det [wait_fall
Cursor 1 5983 ps |§ ' 983 ps ' '
E i
0 ps to 840 ns Output Pulse

Another Ex.: Memory Controller FSM

Let’s try to obtain an state diagram of a hypothetical memory controller FSM that has the

following specifications:

The controller is between a processor and a memory chip, interpreting commands from the
processor and then generating a control sequence accordingly. The commands, mem, rw and
burst, from the processor constitute the input signals of the FSM. The mem signal is asserted to
high when a memory access is required. The rdwr signal indicates the type of memory access,
and its value can be either ’1’ or ’0’, for memory read and memory write respectively. The
burst signal is for a special mode of a memory read operation. If it is asserted, four
consecutive read operations will be performed. The memory chip has two control signals, oe
(for output enable) and we (for write enable), which need to be asserted during the memory
read and memory write respectively. The two output signals of the FSM, oe and we, are
connected to the memory chip’s control signals. For comparison purpose, let also add an
artificial Mealy output signal, we_mealy , to the state diagram. Initially, the FSM is in the idle
state, waiting for the mem command from the processor. Once mem is asserted, the FSM
examines the value of rdwr and moves to either the readl or the write state. The input
conditions can be formalized to logic expressions, as shown below:

* mem’ : represents that no memory operation is required (mem="'0’)
* mem.rdwr: represents that a memory read operation is required (mem=rdwr="‘1").

* mem.rdwr’: represents that a memory write operation is required (mem=*:1’; rdwr="0")
Based on an example from the “RTL Hardware Design Using VHDL” book, By Pong Chu

Memory Controller FSM

Processor Memory IC

FPGA Memory
Controller FSM

we_mealy

Memory Controller FSM

burst’ ,
mem.rdwr

read1
oe

mem.rdwr’

Memory Controller FSM - VHDL Code

library ieece ;

use leee.std logic 1164.all;

entity mem ctrl is

port (
clk, reset : in std logic;
mem, rdwr, burst: in std logic;
oe, we, we mealy: out std logic
) 7

end mem ctrl ;

architecture mult seg arch of mem ctrl is

type fsm states type 1is
(idle, readl, read2, read3, read4, write);

signal crrnt state, next state: fsm states type;

begin

Memory Controller FSM - VHDL Code

—— current state process
cs pr: process (clk, reset)
begin
if (reset = 1’) then
crrnt state <= idle ;
elsif (rising edge (clk)) then
crrnt state <= next state;
end if;
end process cs pr;

Memory Controller FSM — VHDL Code

1 Next state process (1)

mem’

mem.rdwr
read1
oe

—— next-state logic
nxp:process (crrnt state,mem, rdwr, burst)
begin

case crrnt state is

when idle =>
if mem = 1 ’ then
if rdwr = 1’ then
next state <= readl;

burst’

mem.rdwr’

else
next state <= write;
end if;
else
next state <= idle;
end if;

when write =>
next state <= idle;

Memory Controller FSM — VHDL Code

mem’

1 Next state process (2) A

when readl => e
if (burst = ’1’) then ""'s"
next state <= read2; e
else read
next state <= idle; =
end if;
when read2 =>
next state <= read3;
when read3 =>
next state <= read4;
when read4 =>
next state <= idle;
when others =>
next state <= idle;
end case;
end process nxp;

em.rdwr

1

Memory Controller FSM — VHDL Code

—— Moore output logic

1 Moore OUTpU‘I‘S process moore pr: process (crrnt state)
begin
we <= '0’; —-- default value

oe <= "0'; ——- default value
case crrnt state is
when idle => null;
when write =>
we <= '"1'";
when readl =>
oe <= "'1";
when read2 =>
oe <= "'1";
when read3 =>
oe <= "'1";
when read4 =>
o oe <= "1";
when others => null;
end case ;
end process moore pr;

Memory Controller FSM — VHDL Code

1 Mealy output process

—— Mealy output logic

mly pr: process (crrt state,mem, rdwr)

begin

we me <= ’'0’'; —-- default value

case state reg is

when idle =>

if (mem='1’")and(rdwr ="0’) then
we me <= '"1';

end if;

when write => null;

when readl => null;

mem.rdwr’
we_mealy

read3 when read2?2 => null;
when read3 => null;
when read4 => null;
oe end case;
end process mly pr;

Memory Controller FSM — VHDL Code

1 Mealy output statemer

—— Mealy output logic
we me <= "1’ when ((crrnt state=idle) and (mem=’'1’) and(rdwr='0"))
else
IOI;

