Joint ICTP-IAEA School on
Systems-on-Chip based on (CTP
FPGA for Scientific Instrumentation
and Reconfigurable Computing

&)

Verification - Test Bench

Cristian Sisterna

A brief chronology of events:

July 1994— A summer intern discovers a bug in the floating point unit during testing;
however, Intel did not expect it to be major problem for its users. Hence they continued
to produce the flawed chip, while planning to produce the corrected chip starting 1995.

September 1994 — A mathematics professor in Virginia, Thomas Nicely discovers the
bug that causes errors in floating-point divisions with more than 5 significant digits.
He reported it to Intel but got no official response from Intel.

November 1994—The EE times reported the story, but Intel claimed that the error
occurs very infrequently and will not be seen by the average user. The story was picked
up many newspapers including the New York Times, the San Jose Mercury News, and
the San Francisco Chronicle.

December 1994—IBM stops shipping IBM PCs that used the affected Pentium chip
in early December. Following that, on December 21, Intel officially apologized and
announced that users could get their Pentium PS5 chips exchanged for an updated
processor in which the flaw is corrected.

January 1995 —Intel spent $475 million against earnings to replace the flawed processors.

The bug was caused because of incorrect elements returned by the PLA lookup
table used in the floating-point division in the chip. When discovered in July 1994, the
cost to fix the bug was estimated to be several hundred thousand dollars, but it would
take a few months to make the change, verify the chip, and produce the corrected chips.

The field of “Verification” got a lot of attention following this event, since compa-
nies are interested in avoiding this kind of economic damage and embarrassment. In
the years following this event, PhD graduates with dissertations in verification were
heavily sought after by chip design companies.

The Intel Pentium PS5 chips with the FDIV bug looked like this.

Courtesy of Intel Corporation and CPU Collection Konstantin Lanzet

Verification

It's an IMPORTANT part of the design process:

<How do | know that the design works as expected!?

o It's IMPORTANT/NECESSARY to verify the behavior of the
daesign in at least one of following parts of the design
process:

 Functional Verification / Pre-synthesis Verification
* Post-synthesis

» Timing Verification / Post-Place & Route Verification

Verification, Where in the design flow ?

« Functional Verification / Pre-synthesis Verification:

— Where most errors can and should be found
— ALWAY'S do this verification

« Post-synthesis Verification

« not necessary unless several synthesis attributes were used and
it's necessary to verify the behavior after synthesis

« Timing Verification / Post-Place & Route Verification
— Necessary in high frequency designs, in the order of >100MHz

— Time consuming verification process (very long verification time)

What is a Test Bench ?

« A VHDL model which generates stimulus waveforms to test and verify the
functionality a digital system described in VHDL

« |t has three main purposes:
— To generate a pattern stimulus for executing a simulation

— To apply the generated stimulus to the entity under test and to
collect output’s responses

— To compare output’s responses with expected values

What is a Test Bench ?

«C A test bench is usually executed in a simulation tool (ModelSim,
ISIM, etc) where the test pattern and the outputs can seen
graphically as waveforms with precise time information.

« Test bench should be created by a DIFFERENT engineer than
the one who created the device under test (DUT)

Test Bench

_test bench.vhd

R R R R A S A R S A R S A S A A A R S A S A A A A A R A A R R A R B R R R A R B A B A A R A S A A R B A R A R R B A B A R R A A R S A R A A R A R B A A A R R R R S A A A S R A A B A R S A A R A S R S A R A R R A R A A W A A A AT A S A A A A AT A A AT A S S AT SO

Stimulus Device Under Test . Tested
Signals (DUT) g Signals

R R R R R A A A T S A A A
R R R R T R R A R AR

R R R R A I S A S S A T S A A A S A S S S S S A S S A S A A S S A T S A A S S ST S S A S S A A S S A ST S S S S S A A S S A S S A S S S A A S A A S S A S S S A S S S A S S A S S A S S A T S A A S A S S SR S S A A S S A S A A S S A S A A S A A S S A R S S A S S AT S S A AT S S ST S S AT W S AT ST S S AT Y

VHDL Components of a Test Bench

« Test bench entity:
— Empty declaration

« Test bench architecture:
— Component declaration
— Local signal declaration
— Component instantiation
— Data stimulus generation statements
— Clock/Reset generation statements
— Output’s values check statements (optional)

B0 ME B[N B/l kel %

I

329 :s\ QQQQHIILQ‘ﬂI EELE
jf«e:gﬂmﬁ@@a BB Y e

Test Bench Block Diagram

Test Bench

Stimulus Simulator

TN

Clock
Generation

N

Generatlon

Component) Instantiation

[T wave - default

Test Bench Simulation Result - Waveforms

5J%%Q%

[acaag

EBEX

File Edit View Add Format Tools Window

*M%EEJ'__@J

é%]gékﬂ

J N-2l@ & L@

L]

[

nadd I
penabple I
" = 1
+ prdata U
+ pwdats 1
g 0 obo Ua654149
= Cursor 3 137.868904158 ms 37.868904158 ms
o1 |
| 0 ps to 243522210107 ps | Now: 3,868,370,563,414ps D | >
AT

Test Bench VHDL Template

library ieee;
use leee.std logic 1lo64.all;

—-— TB entity declaration del TB (empty entity)
entity testbench 1is
end testbench;

—-— architecture declaration
architecture tb of testbench is
—-—- component declaration: component to test
component device under test
port (list of ports);
end component;

—-—- local signal declarations. Used to:
—-— stimulate the DUT’s inputs
—-— test the DUT’s outputs

<local signal declarations;>

Test Bench VHDL Template

begin
—-— component instantiation:
—— associate the top-level (TB)

—-—- signals to their equivalent DUT’s signals

DUT: entity under test port map(list of ports);

-— stimulus statements for the input signals.
-—- values are assigned at different times per each input

generate input waveforms;
—-— ouptut signals’ check
monitor output statements; -- optional

end tb;

Test Bench Template - Example

library ieee;)) :
Y } Define library, same as in VHDL

use ieee.std logic 1164.all;
- - source code

entity test my design is _ o
end test my design; } VHDL model without entity interface

architecture testbench of test my design is
component my design is -
port (a,b : in std logic; Component declaration of the
x,y : out std logic); device to test
end component; B

signal as,bs : std logic:='1'; Defi . onal
signal xs,ys : std logic; etine signal names
begin
uut : my design port map Instantiated UUT in test
(a=>as, b=>bs, x=>xs, y=>Vys); bench

as <= not(as) after 50 us; A

process begin ~ Define the stimulus for the
bs <= '1'; wait for 75 us; inputs of the component under
bs <= '0'; wait for 25 us; Test

end process;
end testbench;
L '’

!y

Most Common VHDL Statements for Test Bench

walt statement

« The wait statement can be located anywhere between begin and end process

+ Basic Usages:

wait for time;,
wait until condition;
wait on signal list;

wait;,

Use of wait (1)

process
J <= ‘1/’;
wait for 50 us; -- process is suspended for 50 ns after] is
... -- assigned to ‘I’
end process;
process

wait until CLK = ‘1’ ;--sync with CLK rising edge before
-- continuing of simulation

end process;

Use of wait (2)

process

wait on A until CLK

end process;

‘1’ ;-- the process is resumed

-- after a change on A signal,
-- but only when the value of

-- the signal CLK is equal to”’

process
rst <= ‘1';
wait for 444 us;
rst <= ‘0';

wait; -- used without any condition,
-- the process will be suspended

-- forever
end process;

!y

Data Stimulus Generaftion

Periodic Signal Generation

architecture testbench of test my design is

signal clk 50 : std logic := ‘1’';

signal clk 75 : std logic := '0’;

constant clk period: time := 100 us;

constant h clk period: time := 50 us;
begin

—— case 1: concurrent statement
clk 50 <= not(clk 50) after h clk period;-- 50% duty

—-— case 2: sequential statement//r
clk 75 proc: process

begin 50 00
clk 75 <= '1"; —
wait for 75 us; -- 75% duty clk_50

clk 75 <= '0';
wait for 25 us;
end process clk 75 proc clk 75

end testbench; \\;

Stimulus Generation

« Avoid race conditions between data and clock

— Applying the data and the active edge of the clock simultaneously might
cause a race condition

— To keep data synchronized with the clock while avoiding race
condition, apply the data at a different point in the clock period that
at the active edge of clock

Data Generation (1)

Clock
generation
process
Example of
Data generation
on inactive clock
edge
Data
generation
process

/fﬂk_gen_proc: process
begin
clk <= "0";

<

wait for 25 ns;
clk<= 717" ;

wait for 25 ns;
N\E?d process clk_gen_proc;g//

~

/c;;a;gen_proc: process
while not (data done)

DATAl <= X1;

loop

DATAZ <= X2;

wait until falling edge(clk);

end loop;

end process data gen proc;

Data Generation (2)

Relative time: signal waveforms that are specified to change at simulation
times relative to the previous time, in a time accumulated manner

architecture relative timing of myTest is

signal Add Bus : std logic vector (7 downto 0);

begin
ﬁat?—ge“—pr OC: process 00000101 00000000
egin 00000000 10101010 00000101

Add Bus <= “00000000";

— —_—
wait for 10 us;

Add Bus <= “00000101";
wait for 10 us;

Add Bus <= “10101010";
wait for 10 us;
end process patt gen proc;

end relative timing;

Data Generation (3)

Absolute time: signal waveforms that are specified to change at simulation
times absolute since the moment that the simulation begin

architecture absolute timing of testbench is
signal A BUS : std logic vector (7 downto 0);

begin
A BUS<= “000000007,
0000101” after 10 us,

“00001010” after 20 us;
-— etc.

000000 00001010
00000101 .

end absolute timing;

X"0A”

101 20’ 30

Data Generation (4)

-—- 2 bits test pattern
begin
test0 <= ‘0', 1‘1'

testl <= ‘0',

‘17 after 20 us;

after 10 us,
‘1’ after 30 us;

\OI

after 20 us,

testO

testl

Data Generation (5)

architecture array usage of in test benches 1is
signal add bus : std logic vector (7 downto 0);
-- type & signal declarations: 5 data for 8 bits
subtype stimulus is array (0 to 4) of
std logic vector (7 downto 0);
constant data : stimulus :=
(“00000000", —— declare the stimulus
“00000001", —-— as an array.
“000o00010", —— these values will be
“oooooo11", —-— used to stimulate the
“00000100™) ; —-— 1inputs
begin
stim proc: process
begin
for 1 in 0 to 4 loop -— for loop that
assign
add bus <= data(i); —-- to add bus a new value
wait for 10 us; —— from stimulus every 10ns
end loop;
end process stim proc;

end array usage;

Data Generation (6)

architecture array usage of in test benches is
-- same declarations as previous example

begin
process
begin
for 1 in 0 to 4 loop
Add BUS <= DATA (i) ;
wait until falling edge(clk);
for k in 1 to 7 loop
wait until rising edge(clk);
end loop; B
end loop;
end process;

end array usage;

In this case each pattern in the sequence is held for how many clock cycles???

Reset Generation

—-— asynchronous desassert
reset

—-— synchronous desassert reset

sreset: process
r : pPr .
eset: process begin
begin

g rst <= "17;
rst <= "17;

for 1 in 1 to 5 loop
wait for 23 us;

wait until clk = ‘1’;
rst <= '0";

_ end loop;
wait for 1402 us;

rst <= '0";
rst <= "'17";

wait for 23 us; wait;

n r :
rst <= 0’ ; end process;

wait;

end process;

!y

Simple Example

2:4 Decoder

library Library ieee;
use leee.std logic 1l64.all;

entity decoder 2 4 is
port (in d : in std logic vector (1 downto 0);
out d : out std logic vector (3 downto 0));
end decoder 2 4 ;
architecture dataflow of decoder 2 4 is
begin
with inl select
outl <= "0001" when "0O0",
"0010" when "01",
"0100" when "10",
"1000" when "11",
"0000" when others;
end dataflow;

How to test ‘Simple Decoder™??

in_d(1 downto 0) out_d(3 downto 0)

uut_d(0)
in_d(1) uut_d(1)
in_d(0) Deco 2-4 uut_d(2)
uut_d(3)

Test Bench for Simple 2:4 Decoder

Test Bench

Stimulus

Data
Generation

Clock
Generation

Reset
Generation

Check

Data
Verification

Deco 2-4

(Component Instantiation)

Simulator

[T wave - default EEX
File Edit View Add Format Tools Window
-8 -84 IEE T o

aag3]|axa’TumimT S 7]

|4 e FouefElBEBR BB

[0ps to 2203506 ps [ow: 2,100 ns Delta: 1

Test Bench 1

library ieee;
use leee.std logic 1lo64.all;

—-— Test Bench to exercise and verify
—-— correctness of decoder 2 4 entity
entity tb casel decode is

end tb casel decode ;

architecture tb cl of tb casel decode 1is
—-—- signal declarations
signal in tb : std logic vector (1 downto 0);
signal out tb : std logic vector (3 downto 0);
—-— component declaration
component decode
port (
in d : in std logic vector(l downto 0);
out d: out std logic vector (3 downto 0));
end component;

Test Bench 1

begin
dut:

decode port map (
in d

out d => out tk

patt gen proc: process

begin

in tb<= “007;

wait for 10 us;

in tb <= “017;

wait for 10 us;

in tb <= “107;

wait for 10 us;

in tb <= “117;

wait for 10 us:

end process patt gen proc;

end architecture tb cl ;

=> 1n tb,

.
4

Component
Instantiation-
Inputs
Stimulus and
Outputs port
map

Stimulus
generation

Test Bench 2

library ieee;
use ieee.std logic 1lo64.all;

—-— Test Bench to exercise and verify
—-— correctness of decoder 2 4 entity
entity tb case2Z decode is

end tb case2Z decode ;

architecture tb c2 of tb case2 decode 1is
—-—- signal declarations
signal in tb : std logic vector (1 downto 0);
signal out tb : std logic vector (3 downto 0);
—-— component declaration
component decode
port (
in d : in std logic vector(l downto 0)
out d: out std logic vector (3 downto 0)
end component;

) ;

Test Bench 2

begin
dut: decode port map Component
in d => in tb, Instantiation-
out d => out tb); Inputs
Stimulus and
Outputs port
ma
begin P
in tb <= “007, N
“01” after 10 us, mul
“10” after 20 us, —s Stimu ‘j's
“11” after 20 us; generation
J
end architecture tb c2;

Test Bench 3

library ieee;
use leee.std logic 1164.all;
use leee.numeric std.all;

—-—- Test Bench to exercise and verify
—-— correctness of decoder 2 4 entity
entity tb case3 decode 1is

end tb case3 decode ;

architecture tb c3 of tb case3 decode 1is
—-—- signal declarations
signal in tb : std logic vector (1 downto 0);
signal out tb : std logic vector (3 downto 0);
—-— component declaration
component decode
port (
in d : in std logic vector (1l downto O0)
out d: out std logic vector (3 downto 0)
end component;

) ;

Test Bench 3

begin
dut: decode port map (

in d => in tb,

=> out tb);

apply inputs: process
begin
wait on (rising edge(clk));
count <= count + 1;

end process apply inputs;

in tb <= std logic vector (count);

end architecture tb c3;

signal count: unsigned(l downto 0);--numeric std

out d

Component
Instantiation-
Inputs
Stimulus and
Outputs port
map

., Data
generation

Any error?

Test Bench 4

library ieee;
use leee.std logic 1164.all;

entity tb cased4 decode 1is
end tb cased decode;

architecture tb c4 of tb cased4 decode 1is

subtype input array is array(0 to 3) of

std logic vector (1l downto 0);
constant input vectors: input array :=

("ooQ", "o1"™, ™"10"™, "11");
signal in tb : std logic vector (1 downto 0);
signal out tb : std logic vector (3 downto 0);

component decode
port (
in d : in std logic vector(l downto 0);
out d: out std logic vector (3 downto 0));
end component;

Test Bench 4

begin

dut: decode port map (
in d => in tb,
out d => out tb);

apply inputs: process
begin
for j in input vectors‘range loop .
in tb <= input vectors(Jj);

Data

wait for 50 ns; T .
generation

end loop;
wait; -- 2?2727

end process apply inputs;

-— verification process

Test Bench 4

Tnput
stimulus

begin
wait until<1££;£b = "01"); Wait on

wait for 25 ns:

test outputs: process

> certain time
assert(ZEEE;tb = "éEEEE) > Check the
report"Output not equal to 0110" output’'s
severity ERROR; value
-- check the other outputs Error
Message

end process test outputs;

end architecture tb c4;

Test Bench 5

library ieee;
use leee.std logic 1l64.all;

entity tb caseb5 decode 1is
end tb case5 decode;

architecture tb c5 of tb caseb decode 1is
type decoder test is record
in tb stimulus: std logic vector (1l downto 0);
out tb stimulus: std logic vector (3 downto 0);
end record;
type test array 1s array(natural range <>) of decoder test;
constant test data: test array :=
(("oo"™, "oo0o01Mm),
("o1", "oo01i0"),
("10"™, "0100"),
("11", "1000"));
-— same component declaration as before
signal inl tb : std logic vector(l downto 0);
signal outl tb: std logic vector (3 downto 0);

Test Bench 5

begin
dut: decode port map (
inl => inl tb,
outl => outl tb);
apply in check outs: process
begin
for j in test data’range loop
inl tb <= test data(j).in tb stimulus);
wait for 50 ns;
assert (outl tb = test data(j).out tb stimulus)
report "Output not equal to the expected value,

error en indice

severity ERROR;

& integer’image (J);

end loop;

end process apply in check outs;

end architecture tb c5;

Test Bench 5

begin
apply inputs: process
begin
for jJ in test data’range loop
inl tb <= test data(j). in tb stimulus);
wait for 50 ns;
end loop;
end process apply inputs;
data verif: process
begin
wait for 25 ns;
assert (outl tb = test data(j).out tb stimulus)
report "Output not equal to the expected value"
severity ERROR;
wait for 50 ns;

end process data verif;

Synchronous 2:4 Decoder

entity synch decoder 2 4 is
port (in d : in std logic vector(l downto 0);
clk : in std logic ;
out d : out std logic vector (3 downto 0));
end synch decoder 2 4 ;
architecture dataflow of synch decoder 2 4 is
signal outl i: std logic vector (3 downto 0);
begin
with inl select
outl 1 <= "0001" when "0O0",
"0010" when "O01",
"0100" when "10",
"1000" when "11",
"0000" when others;
reg proc: process (clk)
begin
if(rising edge(clk)) then
out d <= outl ij;
end if;
end process reg proc;
end dataflow;

Synchronous 2:4 Decoder — Test Bench

entity tb synch decode is
end tb synch decode ;

architecture test bench of tb synch decode is
—-— component declaration

type decoder test is record
in tb : std logic vector(l downto 0);
out tb: std logic vector (3 downto 0);
end record;

subtype test array is array(natural range <>)

constant test data: test array :=
("oo", ™“00017,
"o1", “0o010",
"10%, “01007,
“117, “10007);

of decoder test;

TB — Synch. Decoder 2:4

= = -
|
|

begin
dut: decode port map(in d => in tb, out d => out tb);
apply Inputs: process
begin
for j in test data’range loop
in d <= test data(j).in tb);
clk <= '0';
wait for 5 ns;
clk <= ‘17;
wait for 5 ns;
assert (out d = test data(j).out tb)
report "Output not equal to the expected value"
severity ERROR;
end loop;

wait;

Another Example
Test Bench for a Shift Register

74x194

CP

Vee =
GND =PIN 8

(O = PIN NUMBERS

PIN 16

S Q3
cP

CLEAR

>

_CDq|>c

74x194

MODE SELECT — TRUTH TABLE

INPUTS OQUTPUTS
OPERATING MODE

MR S1 So Dsr Dsi Pn Qo Q Q, Q;

Reset L X X X X X I L L L
Hold H | | X X X do qq d2 ds3
Shift Left H h X | X dq do ds L
- h I X h X q1 a2 a3 H

Shift Right H | h | X X L do a1 dz
H | h h X X H do a1 qz

Parallel Load H h h X X Pi Po P P> P3

L = LOW Voltage Level

H = HIGH Voltage Level

X =Don't Care

| = LOW voltage level one set-up time prior to the LOW to HIGH clock transition

h = HIGH voltage level one set-up time prior to the LOW to HIGH clock transition

Pn (dn) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.

74x194 — VHDL Description

-— example of a 4-bit shift register
-- LS194 4-bit bidirectional universal shift register

—-—- Based on the 74LS194 true table

-— MODE - INPUTS - OUTPUTS |
-— | MR\ S1 SO Dsr Dsl Pn | Q0 Q1 Q2 Q3 |
—-— Reset | L X X X X X | L L L L |
-—- Hold | H L L X X X | Q0 Q1 Q2 Q3 |
-- Shift Left | H H L X H/L X | 01 Q2 Q3 H/L|
-- Shift Right | H L H H/L X X | H/L Q0 Q1 Q2 |
-—- Parallel Load | H H H X X Pn| PO P1 P2 P3 |

74x194 — VHDL Description

library ieee;

port (
clk
mr n

s0, sl

P

g
end 1s194;

use leee.std logic 1l64.all;

-— entity declaration
entity 1s194 is

—— maln clock

in std logic;

—— async master reset

in std logic;

-— shift control signals

in std logic;

-— shift input data
dsr,dsl ser: in std logic;
—-— parallel load data

in std logic vector (3 downto O0);

—-— output data

out std logic vector (3 downto 0));

74x194 — VHDL Description

architecture behav of 15194 is

begin
ctrl <= s0 & sl;
shift proc: process(clk, mr n)
begin
if (mr n = '0") then
temp <= (others => '0');
elsif (rising edge(clk)) then
case ctrl is

when "11" => temp <= p;

end case;
end if;
end process shift proc;

g <= temp;

signal temp: std logic vector (3 downto 0);

signal ctrl: std logic vector (1 downto 0);

when "10% => temp <= dsr & temp (3 downto 1);

when "01%“ => temp <= temp (2 downto 0) & dsl;

when others => temp <= temp;

_ end behavi

74x194 — Test Bench

—-—- example of test bench to test the 1s194
library ieee;

use leee.std logic 1164.all;

entity test bench is

end test bench;

architecture tb of test bench is

—-— 1nternal signal declarations

signal clk tb: std logic:= ‘1’;

signal sO0 tb, sl tb, mr tb n, dsr tb, dsl tb: std logic:= '0';
signal p tb, g tb : std logic vector (3 downto 0);

74x194 — Test Bench

—— constant declarations
constant clk period: time := 200 ns;

begin
—— component instantiation
Ul: work.entity.1s194 port map (
clk => clk tb,
mr n => mr tb n,
sO => s0_ tb,
sl => sl tb,
dsr => dsr tb,
dsl => dsl tb,
P => p_tb,
q => g_tb);

-—- clock generation
clk tb <= not clk tb after clk period/2;

74x194 — Test Bench

main proc: process

begin
—— check 1nitialization (reset)
wait for 10 ns;

assert g tb = "0000"

report " Initialization Error

severity ERROR;

1A)

wait for 2 * clk period;

mr th n <= '1l";

—— check synchronous load
sO tb <= ‘1';

sl tb <= ‘1’;

p tb <= "0110";

wait for clk period;

74x194 — Test Bench

-— walt until falling edge clk tb
wait until clk tb = '0’;
assert g tb = "0110"

report " Load Error "

severity ERROR;

—-— check shift left

sO tb <= '0';

-— walt until falling edge clk tb
wait until clk tb = '0’;

assert g tb = "1100"
report " Error: Shift left Failed "

severity ERROR;

wait for 3 * clk period;

74x194 — Test Bench

—-— three more shift left
for 1 in 0 to 2 loop
if 1 = 1 then
dsl tb <= '0’;

else
dsl tb <= ‘17;
end if;
wait until clk tb = '0';
end loop;
assert g tb = "0101"

report " Error: serial left shift failed "

severity ERROR;

wait for 5 * clk period;

wait until clk tb = ‘0’;

74x194 — Test Bench

sO tb <=
sl th <=

wait for

wait for

sO tb <=
sl th <=
p th <=

wait for

-— shift right

\1’ .
4
\OI .

14

c3 * clk period;

assert g tb = "0001"

report " Error: serial left shift

severity ERROR;

clk period;

—— change load value

\1’;
\l/;
\\0101//;

clk period;

failed "

74x194 — Test Bench

-— walt until falling edge clock

wait until clk tb = '0’;

assert g tb = “0101"

report " Error: load failure. . "

severity ERROR;

wait for clk period;

—-— check left shift

sO tb <= '0';

sl tb <= ‘1’;

wait for 3 *clk period;

assert g tb = “0111"

report " Error: shift left failure.

severity ERROR;
end process maln pProc;

end tb;

1A)

Simulation Waveforms - 1

@® wave

File Edit View Add Format Tools Bookmarks Window Help
ﬂjWave-DefauIt

& -

....... O T
g L T S N W

g || & G| Dt @ EF
+ €+ %= | Search:
4 [tb_Is194/clk_tb
4 [tb_Is194/mr_tb
— Control Signals

100 ps :

] Q@ 8.0 n°

uT:u]

@
[@
o

4 Jtb_Is194/s1_tb

?Q . Em'?m
— Input Shift Bit —

O S - R QUL T T -
S Pl Ty I ey S oy S oy S e A R GO [| S N O S T o S e S iy S oy S G e [y [G Qo S Sy O e e e [I
¢ [tb_Is194/dsr_tb
¢ [tb_Is194/ds|_tb
— Paralell Load
8 [tb_Is194/p_tb

02 28 / ’
1 — 1 — 1 1 1 1 1 1 71 71 71 71 717 71T 717 71T 7 "1 771 "7"7"717T/7"7T1T/ /71T 71—
¢ Jtb_Is194/s0_tb

—Output

0 ps to 5595481 ps

5123.107 ns

Simulation Waveforms — 1a

@® wave

File Edit View Add Format Tools Bookmarks Window Help
ﬂjWave-DefauIt

O T

G-

K
S Yt @
i Search:
“ Jtb_Is194/clk_tb
4 ftb_Is194/mr tb
— Control Signals
4 Jtb_ls194/s0_tb
4 Jtb_Is194/s1_tb
— Input Shift Bit
[tb_Is194/dsr_tb
“ _ Jtb_Is194/dsl_tb
— Paralell Load

oy 4 L B
8- [tb_|s194/p_tb
—Output

E)

B | RQAQ [2R

uT:u]

@
[@
o

Al Iy BE B

?Q . Em'?m

q-q-5 R

o ps to 2797740 ps

Simulation Waveforms — 1b

@@® wave

File Edit View Add Format Tools Bookmarks Window Help
ﬂjWave-DefauIt

& -

....... O T
g L T S N W

| @ G| Yt = R 0oy -3 B-F || [N oL
~ %€+ % | Search: e /2% LALLM :
4 Jtb_Is194/clk_tb ‘ 1
4 Jtb_Is194/mr tb
— Control Signals
4 tb_Is194/s0_tb
4 Jtb_Is194/s1_tb o |] ' [: R
— Input Shift Bit
[tb_Is194/dsr_tb
4 tb_Is194/ds| tb
— Paralell Load
B /tb_Is194/p_tb
—Output

uT:u]

@
[@
o

?Qt Em'?m

2381322 ps to 5179062 ps

