

20 November - 1 December 2023 An ICTP - IAEA Meeting Trieste, Italy

Further information: http://indico.ictp.it/event/10225, smr3891@ictp.it

The Role of Programmable Hardware Acceleration in Virtualized Communications Networks

L. Valcarenghi Scuola Superiore Sant'Anna, Pisa, Italy

Joint ICTP-IAEA School on Systems-on-Chip Based on FPGA for Scientific Instrumentation and Reconfigurable Computing Nov. 23, 2023, Trieste, Italy

Outline

- Who we are
- Introduction to Network Function Virtualisation
- Where and how acceleration can help
- A focus on 5G protocol stack
- Results
- Conclusions

Sant'Anna School of Advanced Studies

- Scuola Superiore Sant'Anna ...
 SSSA ... in "short"
- https://www.santannapisa.it/en
- https://www.youtube.com/user/ ScuolaSantanna

✓ Training

✓ University

Sant'Anna School of Advanced Studies

A research university, a school of talent, for a more sustainable and inclusive world

Sant'Anna

home / sant'anna school of advanced studies

100 km

Map data ©2022 Google, GeoBasis-DE/BKG (©2009), Inst. Geogr. Nacional Italy Terms Privacy Send feedback

The TeCIP Institute

 TeCIP Institute= Telecommunications, Computer Engineering, and Photonics Institute

- Scheduling algorithms
- Adaptive Resource Management
- Design of cyber-physical systems
- Open source real-time operating systems
- Methodologies and tools for the design of embedded systems
- Automatic code generation
- Real-time communication protocols
- Algorithms for energy saving management

• Networks and services

- Optical communication systems
- Optical communication theory and techniques
- Digital and microwave photonics
- Optical sensors and integrated photonic subsystems
- High-capacity optical systems
- Advanced technologies for integrated photonics.

AND PHOTO

Research

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Sant'Anna School of Advanced Studies - Pisa

ore Sant'Anna

Virtualisation basic principles

- Virtualization technology emerged with the emergence of computer technology and has always played an essential role in computer technology development
- Examples
 - Introduction of the concept of virtualization in the 1950s
 - Commercialization of virtualization on mainframes by IBM in the 1960s
 - Virtual memory of the operating system
 - Java virtual machine
 - Server virtualization technology based on the x86 architecture

Huawei Technologies Co., Ltd.. (2023). Virtualization Technology. In: Cloud Computing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3026-3_3

Virtualisation Definition

- Virtualizing a system or component, such as a processor, memory, or an I/O device, at a given abstraction level maps its interface and visible resources onto the interface and resources of an underlying, possibly different, real system.
- Consequently, the real system appears as a different virtual system or even as multiple virtual systems.

Source: J. E. Smith and Ravi Nair, "The architecture of virtual machines," in Computer, vol. 38, no. 5, pp. 32-38, May 2005, doi: 10.1109/MC.2005.173.

Abstraction and virtualisation

- Computer systems exist and continue to evolve because they are designed as hierarchies with well-defined interfaces that separate levels of abstraction
- The operating system abstracts hard-disk addressing details (for example, that it is comprised of sectors and tracks)
- Application programmers can then create, write, and read files without knowing the hard disk's construction and physical organization

Figure 1. Abstraction and virtualization applied to disk storage. (a) Abstraction provides a simplified interface to underlying resources. (b) Virtualization provides a different interface or different resources at the same abstraction level.

Computer Instruction

- Computer's instruction set architecture (ISA) clearly exemplifies the advantages of well-defined interfaces
- For example, Intel and AMD designers develop microprocessors that implement the Intel IA-32 (x86) instruction set, while Microsoft developers write software that is compiled to the same instruction set.
- Because both groups satisfy the ISA specification, the software can be expected to execute correctly on any PC built with an IA-32 microprocessor.

ENGINEERIN

ND PHOT

Sant'Anna

Figure 2. Computer system architecture. Key implementation layers communicate vertically via the instruction set architecture (ISA), application binary interface (ABI), and application programming interface (API).

Advantages of virtualisation

- Virtualization provides a way of getting around interface constraints.
- Virtualizing a system or component—such as a processor, memory, or an I/O device—at a given abstraction level maps its interface and visible resources onto the interface and resources of an underlying, possibly different, real system.
- Consequently, the real system appears as a different virtual system or even as multiple virtual systems.
- Unlike abstraction, virtualization does not necessarily aim to simplify or hide details.
- Virtualizing software uses the file abstraction as an intermediate step to provide a mapping between the virtual and real disks.

Other advantages of virtualisation technologies

- Reduce the number of terminal equipment
 - reduce the number of managed physical resources such as servers, workstations, and other equipment
- Higher security
 - Virtualization technology can achieve isolation and division that simpler sharing mechanisms cannot achieve
 - These features can achieve controllabl and secure access to data and services
- Higher availability
 - Reduce the management of resources and processes, thereby reducing the complexity of the network management system 's hardware architecture.

Common type of virtualisation technologies: infrastructure virtualisation

- Network virtualization, and storage virtualization can be classified as infrastructure virtualization
- Network virtualisation
 - refers to the virtualization technology that integrates network hardware and software resources to provide users with virtual network connections.
- Storage virtualization
 - refers to providing an abstract logical view for physical storage devices.

Network Function Virtualisation (VNF)

- ETSI has created an approach to migrate a Physical Network Function (PNF) to a Virtual Network Function (VNF)
- The core concept is that those physical functions run on commodity hardware with virtualized resources driven by software
- It is the replacement of network appliance hardware with virtual machines/containers

Paul Göransson, Chuck Black, Timothy Culver, Chapter 10 - Network Functions Virtualization, Editor(s): Paul Göransson, Chuck Black, Timothy Culver, Software Defined Networks (Second Edition), Morgan Kaufmann, 2017, Pages 241-252, ISBN 9780128045558, https://doi.org/10.1016/B978-0-12-804555-8.00010-7

ENGINEERING, AND PHOTONICS INSTITUTE

Sant'Anna

chool of Advanced Studies – Pi

What can we virtualize ?

- ETSI NFV use cases includes a wide range of functions
 - AR: Enterprise Access Router/Enterprise CPE
 - PE: Provider Edge Router
 - FW: Enterprise Firewall
 - NG-FW: Enterprise NG-FW
 - WOC: Enterprise WAN Optimization Controller
 - DPI: Deep Packet Inspection (Appliance or a function)
 - IPS: Intrusion Prevention System and other Security appliances
 - Network Performance Monitoring

Software Defined Networks

Source: B. A. A. Nunes, M. Mendonca, X. -N. Nguyen, K. Obraczka and T. Turletti, "A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks," in IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634, Third Quarter 2014, doi: 10.1109/SURV.2014.012214.00180.

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Sant'Anna

chool of Advanced Studies - Pis

Source: D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig, "Software-Defined Networking: A Comprehensive Survey," in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015, doi: 10.1109/JPROC.2014.2371999.

SDN in different representations: planes, layers, system design architecture

Source: D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig, "Software-Defined Networking: A Comprehensive Survey," in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015, doi: 10.1109/JPROC.2014.2371999.

Sant'Anna School of Advanced Studies – Pise

ELECOMMUNICATION

SDN and NFV

Trade off

Flexibility

Performance

ETSI NFV Releases

ETSI NFV Releases overview

Release 1	> Release 2	Release 3	> Release 4
 Focus: the feasibility of NFV. Delivered the baseline studies and specifications. Set the NFV Architecture: Infrastructure (NFVI), Virtualized network functions (VNF), Integration of the VNFs into Network Services (NS), and NFV Management and Orchestration (NFV-MANO) aspects at different layers. 	 Focus: interoperability of NFV solutions. Details requirements and specification of interfaces and descriptors. Realizes the interoperability of solutions based on the NFV Architecture, detailing VNF Package and VNF and NS Descriptors, Acceleration, Internal and external NFV-MANO interfaces. 	 Focus: feature enriching the NFV Architectural Framework, readying NFV for deployment and operation. Interfaces, modeling, etc. to support new features such as (not exhaustive list): Policy framework, VNF snapshot, NFV-MANO management, Multi-site, Cloud-native, etc. 	 Focus: orchestration, cloudification and simplification of network deployment and operations. Interfaces, modeling, etc. to support new features such as (not exhaustive list): Container-based deployments, Further 5G support, Service-based architecture concepts, Generic OAM functions, etc.

Source:

https://docbox.etsi.org/ISG/NFV/Open/Other/ReleaseDocumentation/NFVTSC(21)000004r1_Summary_of_NFV_Releases_by_Jan_2021.pdf © 2023 Scuola Superiore Sant'Anna https://images.app.goo.gl/KYtt5ikYpUgTk6h5A

19

ETSI NFV Release 2

AND PHOTONICS

School of Advanced Studies - Pisa

© 2023 Scuola Superiore Sant'Anna

20

ETSI NFV Release 3

VNF Acceleration Use Cases

- Acceleration is not just about increasing performance.
- NFVI operators may seek different goals as far as acceleration is concerned:
 - Reaching the desirable performance metric at a reasonable price.
 - Best performance per processor core/cost/watt/square foot, whatever the absolute performance metric is.
 - Reaching the maximum theoretical performance level.

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

chool of Advanced Studies – Pis

Source: ETSI GS NFV-IFA 001 V1.1.1 (2015-12), Network Functions Virtualisation (NFV); Acceleration Technologies & Use Cases

Report on Acceleration Technologies & Use Cases Sant'Anna

Classification of accelerators

Source: ETSI GS NFV-IFA 001 V1.1.1 (2015-12), Network Functions Virtualisation (NFV); Acceleration Technologies;

Sa Report on Acceleration Technologies & Use Cases

School of Advanced Studies - Pisa

Data transfer impact for VNF offloaded into programmable hardware

- Each packet processing in a network function consists of some packet processing tasks, • such as as packet parsing, classification, searching, forwarding, modification, queueing, and traffic management.
- Packet processing tasks issue memory requests to read or write the memory to understand • the information of the packet, update the content of the packet, and search the databases.
- Therefore, the more memory accesses are completed in a certain period of time, the more • packets are processed in the network
- For the past two decades, the communication channel between the NIC and CPU has ٠ largely remained the same
 - issuing memory requests across a slow PCIe peripheral interconnect.
- Today, with application service times and network fabric delays measuring hundreds of • nanoseconds, the NIC--CPU interface can account for most of the overhead when programming modern warehouse-scale computers.

Sources: T. Korikawa and E. Oki, "Memory Network Architecture for Packet Processing in Functions Virtualization," 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan, 2021, pp. 88-96, doi: 10.1109/NetSoft51509.2021.9492715.

Stephen Ibanez, Muhammad Shahbaz, and Nick McKeown. 2019. The Case for a Network Fast Path to the CPU. In Proceedings of the 18th ACM Workshop on Hot Topics in Networks (HotNets '19). Association for Computing Machinery, New York, NY, USA, 52–59. https://doi.org/10.1145/3365609.3365851 © 2023 Scuola Superiore Sant'Anna

smartNIC as a possible solution

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE Struct of Advanced Studies – Fisa

smartNIC as a possible solution (2)

What is a (dumb) NIC?

Source: http://www.cs.cornell.edu/~mt822/docs/smartNICs_lecture.pdf Sant'Anna

AND PHOTONI

School of Advanced Studies – Pisa

smartNIC as a possible solution (3)

Source: http://www.cs.cornell.edu/~mt822/docs/smartNICs_lecture.pdf Sant'Anna

AND PHOTON

School of Advanced Studies – Pisa

smartNIC as a possible solution (4)

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

smartNIC as a possible solution (5)

Source: http://www.cs.cornell.edu/~mt822/docs/smartNICs_lecture.pdf Sant'Anna

AND PHOTONI

School of Advanced Studies – Pisa

smartNIC as a possible solution (6)

Source: http://www.cs.cornell.edu/~mt822/docs/smartNICs_lecture.pdf Sant'Anna

AND PHOTONI

School of Advanced Studies – Pisa

smartNIC as a possible solution (7)

Source: http://www.cs.cornell.edu/~mt822/docs/smartNICs_lecture.pdf

AND PHOTON

School of Advanced Studies – Pisa

smartNIC as a possible solution (8)

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE Strong of Advanced Studies – Fisa

smartNIC as a possible solution (9)

So, what is a smart NIC?

smartNIC as a possible solution (10)

So, what is a smart NIC?

smartNIC as a possible solution (11)

A Closer Look at the Hardware

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE Sant'Anna School of Advanced Studies – Pisa

Complementary solutions: Shared Virtual Memory for FPGA Accelerators

- A key enabler for the ever-increasing adoption of FPGA accelerators is the availability of frameworks allowing for the seamless coupling to generalpurpose host processors.
- Embedded FPGA+CPU systems still heavily rely on copy-based host-toaccelerator communication, which complicates application development.
- A hardware/software framework has been proposed for enabling transparent, shared virtual memory for FPGA accelerators in embedded SoCs.

Source: P. Vogel, A. Marongiu and L. Benini, "Exploring Shared Virtual Memory for FPGA Accelerators with a Configurable IOMMU," in IEEE Transactions on Computers, vol. 68, no. 4, pp. 510-525, 1 April 2019, doi: 10.1109/TC.2018.2879080.

36
Complementary solutions: Direct Path to CPU

Figure 2: L-NIC places packet data directly into a CPU register, eliminating intermediate overheads such as interconnect delay (PCIe), address translations (IOMMU, MMU, and VMM), memory (MEM) and cache accesses (LLC, L2C, and L1C).

Source: Stephen Ibanez, Muhammad Shahbaz, and Nick McKeown. 2019. The Case for a Network Fast Path to the CPU. In Proceedings of the Sth ACM Workshop on Hot Topics in Networks (HotNets '19). Association for Computing Machinery, New York, NY, USA, 52–59. https://doi.org/10.1145/3365609.3365851 37

Complimentary solutions: GPUDirect RDMA (NVIDIA)

 GPUDirect Remote Direct Memory Access (RDMA) is a technology introduced in Kepler-class GPUs and CUDA 5.0 that enables a direct path for data exchange between the GPU and a third-party peer device using standard features of PCI Express.

Source: https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

ENGINEERIN

Sant'Anna

5G Architecture

5G Architecture Functional Elements

AMF: Access & Mobility Management Function SMF: Session Management Function UPF: User Plane Function NEF: Network Exposure Function NRF: NF Repository Function NSSF: Network Slice Selection Function UDM: Unified Data Function AUSF: Authentication Server Function PCF: Policy Control Function

Source: ETSI TS 123 501 V15.2.0 (2018-06)5G;System Architecture for the 5G System (3GPP TS 23.501 version 15.2.0 Release 15)

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE School of Advanced Studies – Pise

40

5G Protocol Stack: User Plane

PDU Layer: IP, Ethernet, etc.

AND PHOTON

GTP-U	-	GTP-U
UDP	-	UDP
IP		IP
L2		L2
L1		L1
SMF	N4-U	UPF

DN	: Data Network	RLC	: Radio Link Control
gNB	: Next generation NodeB	SDAP	: Service Data Adaptation Protocol
GTP-U	: GPRS Tunneling Protocol User plane	SMF	: Session Management Function
MAC	: Medium Access Control	UE	: User Equipment
PDCP	: Packet Data Convergence Protocol	UPF	: User Plane Function
PDU	: Protocol Data Unit	Xn-U	: Xn User plane

Sant'Anna Source: https://www.netmanias.com/en/post/oneshot/14103/5g/5g-protocol-stack-user-plane-control_plane_ola Superiore Sant'Anna

5G Radio Protocol Architecture

Control Plane Protocol Stack

NG-RAN and Disaggreagated gNB

Source: ITU-T, Technical Report, "GSTR-TN5G Transport network support of IMT-2020/5G,

19 October 2018

ITU-T Series G Supplement 66 (09/2020) (G.Sup66), 5G wireless fronthaul requirements in a passive

Sant'Anoptical network context

School of Advanced Studies – Pisa

AND PHOTONIC

© 2023 Scuola Superiore Sant'Anna

5G Protocol Stack: User Plane

Sant'Anna

School of Advanced Studies - Pisa

Source: https://www.netmanias.com/en/post/oneshot/14103/5g/5g-protocol-stack-user-plane-control-plane

© 2023 Scuola Superiore Sant'Anna

Detailed Comparison of Option 7 Subsplit

Source: ITU-T Series G Supplement 66 (09/2020) (G.Sup66), 5G wireless fronthaul requirements in a passive Saroptical network context

School of Advanced Studies – Pisa

AND PHOTONIC

© 2023 Scuola Superiore Sant'Anna

Programmable Hardware Acceleration of 5G Functions

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE

Source: Justine Cris Borromeo, Koteswararao Kondepu, Nicola Andriolli, Luca Valcarenghi, "FPGA-accelerated SmartNIC Sa fet/supporting 5G virtualized Radio Access Network," Computer Networks, Volume 210, 2022, 108931, ISSN 1389-1286, © 2023 Scuola Superiore Sant'Anna https://doi.org/10.1016/j.comnet.2022.108931. 46

FFT/IFFT and **OFDM**

Sant'Anna

School of Advanced Studies – Pis

Number of subcarriers = FFT points

Open CL for Programmable Hardware and Software Integration

Source: F. Civerchia, M. Pelcat, L. Maggiani, K. Kondepu, P. Castoldi and L. Valcarenghi, "Is OpenCL Driven Reconfigurable Hardware Suitable for Virtualising 5G Infrastructure?," in IEEE Transactions on Network and Service Management, vol. 17, no. 2, pp. 849-863, June 2020, doi: 10.1109/TNSM.2020.2964392.

SmartNIC-based Implementation

49

SSSA 5G Testbed Setup

TELECOMMUNICATIONS, COMPUTER

School of Advanced Studies – Pisa

5G Testbed Setup Picture

Performance Evaluation for IFFT Implementation

- DU Low-PHY functions are offloaded onto a DE10-pro development board with Stratix 10 FPGA, two 8 GB DDR4 memory modules and PCIe v3.0 with 16 slots at 32 GB/s bandwidth
- The CPU-based implementation is executed in an Intel Core i7-7700K@4.2 GHz and based on Intel Advanced Vector Extension 2 (AVX2)
- The GPU-based implementation *clfft* and *cufft* is based on an NVIDIA Tesla T4 GPU featuring 320 NVIDIA Turing tensor cores,16 GB GDDR6 memory modules, and PCIe v3.0 with 16 slots

ant'Anna

Table 3

OpenCL optimization result on 128 OFDM symbols.

	Version 1	Version 2	Version 3	Version 4	Version 5
Processing time [µs]	34.37	23.5	23.45	21.4	15.43
Logic gate utilization	14%	25%	21%	19%	21%
DSP utilization	$<\!\!1\%$	5%	4%	3%	3%
Memory utilization	2%	2%	2%	3%	5%
RAM utilization	4%	6%	6%	7%	11%
Kernel frequency [MHz]	239.23	366.7	285.63	484.26	484.78

Table 4

FPGA resources and kernel operating frequency of Low-PHY layer functions with different IFFT points.

	128	256	512	1024	2048
Logic gate utilization	21%	26%	36%	51%	66%
DSP utilization	3%	3%	8%	14%	14%
Memory utilization	5%	6%	11%	15%	15%
RAM utilization	11%	13%	16%	23%	23%
Kernel frequency [MHz]	484.78	461.68	390.93	299.67	146.26

FPGA, CPU, and GPU Comparison: Processing Time

FPGA, CPU, and GPU Comparison: Energy Consumption

TELECOMMUNICATIONS, COMPUTER ENGINEERING, AND PHOTONICS INSTITUTE School of Advanced Studies – Pise

FPGA-based Implementation: Processing Time Contributions

Computing Continuum, Digital Continuum, Transcontinuum

- It seamlessly combines resources and services at the center of the network (*e.g.*, in Cloud datacenters), at its Edge, and *in-transit*, along the data path.
- Typically, data is first generated and pre-processed (*e.g.*, filtering, basic inference) on Edge devices, while Fog nodes further process partially aggregated data.

Source: Daniel Rosendo, Alexandru Costan, Patrick Valduriez, Gabriel Antoniu, Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature review, Journal of Parallel and Distributed Computing,

Volume 166, 2022, Pages 71-94, ISSN 0743-7315, https://doi.org/10.1016/j.jpdc.2022.04.004.

AND PHOTON

Sant'Anna

School of Advanced Studies – Pi

CLEVER Methodology

chool of Advanced Studies – Pis

57

Conclusions

- Overview of network function virtualisation
- Potential application of FPGA acceleration in 5G
 - LDPC
 - iFFT/FFT
- Short processing time and energy consumptions are achievable
- Bottleneck: data transfer
- Need for SmartNIC and direct data access solutions

Open positions

- https://www.santannapisa.it/en/institute/tecip
- https://www.santannapisa.it/en/training/international-phdcourse-emerging-digital-technologies

luca.valcarenghi@santannapisa.it

THANKS !!!

Sant'Anna

chool of Advanced Studies – Pis

AND PHOTONIC

Collaborative edge-cLoud continuum and Embedded AI for a Visionary industry of the future

https://www.cleverproject.eu/

EUROPEAN PARTNERSHIP KEY DIGITAL TECHNOLOGIES JOINT UNDERTAKING

https://www.youtube.com/@Clever-Project

CleveSocial

CLEVERproject_EU

https://www.facebook.com/profile.php?id=61552443714715