

The Detector Data Acquisition System of the European Spallation Source

Prof. Richard Hall-Wilton

FBK-SD director

Projects that I have worked on ...

WARNING:

The Disneyland Resort contains chemicals known to the state of California to cause cancer and birth defects or other reproductive harm. Proposition 65, California Health & Safety Code Section 25249.6 et seq.

Caveat Emptor

... the contents of this talk are reflections from personal experience ...

What am I going to talk about ...

- You have been learning about: Systems-on-Chip Based on FPGA for Scientific Instrumentation and Reconfigurable Computing • Detailed courses on how to perform a very particular and valuable technical skill

• Here, I am going to give a bird's eye view of how a large data acquisition system might look, utilising these skills you have been looking at ...

• Am going to go through - with very broad strokes and very little detail - what needs to be taken into account in the design of the data acquisition system

• Like everyone, I will show this from my own experience - of the detector data acquisition system for the European Spallation Source ...

Basic Principles of Neutron Detectors

- Need to produce a measurable electric signal
- Not possible to directly detect slow neutrons energy is too low
- Need to use nuclear reactions to convert neutrons into charged particles
- Then indirectly detect the charged particles in a charged particle detector
- Amplify, digitise, process as needed.
- Store data on disk

What is your end goal?

- "horses for courses"
- Data acquisition is about being able to extract the information from the sensors to be able to carry out the measurements of interest as simply and **best** as possible • Optimisation can be done for performance, cost, simplicity, off-the-shelf, size, energy usage, ...

Instrumentation

What camera you use has a big impact on the quality of photos that you get out of it ...

Bleeding edge Instrumentation enables novel and future science

What is the aim of the European Spallation Source?

Neutrons

1932: Chadwick discovers "a radiation with the more peculiar properties", the neutron.

Applications of Neutron Science

Charge neutral

Deeply penetrating

Li motion in fuel cells

Help build electric cars

S=1/2 spin

Directly probe magnetism

Solve the puzzle of High-Tc superconductivity

Efficient high speed trains

Probing length scales and dynamics

EUROPEAN SPALLATION SOURCE

Nuclear scattering

Sensitive to light elements and isotopes

Active sites in proteins

Better drugs

Urate oxide

Neutron Science Pushes the Boundaries

New States

EUROPEAN SPALLATION SOURCE

ESS intensity allows studies of:

- Complex materials
- Weak signals
- Important details
- Time dependent phenomena

Visions for the coming decade ...

The European Spallation Source: view to the Southwest in 2025

Malmö $(309\ 000)$

(113 500)

Lund

Science City – a new part of town

Max IV – a national research facility, under construction, opened in 2016

EUROPEAN SPALLATION SOURCE

$(1\ 200\ 000)$

MAX IV

Science City

ESS

The ESS Site

• Schedule: 10 years until initial operations start

ESS Construction - October 2020

TRANK -PO

Helium-3 Crisis

EUROPEAN SPALLATION SOURCE

....an appropriate initia reaction ...

Schedule ...

EUROPEAN SPALLATION SOURCE

• 10 years until first neutrons ...

19

Instruments and their Requirements

Instrument Desig

- Instrument Design is about selecting the
- Phase space here primarily means flux (wavelength
- Remember that as the neutron energy is diffractive scattering to determine neutron
- Remember Liouville's theorem:
 - Phase space density is constant for cc
- It implies that high resolution measurem

- Very generically, this can be divided into elastic and inelastic categories
 - elastic: gives information on where atoms are
 - inelastic: gives information on what atoms do (ie move)
- This is measuring the cross sections:

elastic

• cross section / scattering probability into a solid angle, as a function of wavelength, scattering angle and aximuthal angle

• double differential cross section / scattering probability into a solid angle, as a function of wavelength, scattered wavelength scattering angle and aximuthal angle

inelastic

 $\frac{d^2\sigma}{d\Omega dF}(\lambda_{in},\lambda_{sc},2\theta,\psi)$

Science Drivers for the Reference Instrument Suite from the Technical Design Report

Multi-Purpose Imaging	Cold Chopper Spectro
General-Purpose SANS	Bispectral Chopper Sp
Broadband SANS	Thermal Chopper Spe
Surface Scattering	Cold Crystal-Analyser Spectrometer
Horizontal Reflectometer 🥵 💋 👗	Vibrational Spectrosco
Vertical Reflectometer	Backscattering Spectro
Thermal Powder Diffractometer	High-Resolution Spin-
Bispectral Power Diffractometer 🧲 👗 🔋 六	Wide-Angle Spin-Echo
Pulsed Monochromatic Powder Diffractometer	Fundamental & Partic
Materials Science Diffractometer	life sciences
Extreme Conditions Instrument	soft condensed matter
Single-Crystal Magnetism Diffractometer	chemistry of materials
Macromolecular Diffractometer	energy research

archeology & heritage conservation

fundamental & particle physics

NSS Project scope: 15 neutron instruments + test beamline + support labs

EUROPEAN SPALLATION SOURCE

+Data Acquistion on Monitoring from the Facility (Accelerator, Target, ...

Source BrightnESS

Requirements Challenge for Detectors for ESS: beyond detector present state-of-the art

Rate Requirements

factor by which requirements exceed state-of-the-art

> Instantaneous Rate Capability (log)

Resolution and Area Requirements

The farther the box from the (1,1) reference point, the bigger the challenge for detectors.

Typical Detector Requirements

- Size: from 0.25m² up to 30m²
- Position resolution: 100um 10mm
- Time Resolution: <1us
- Rate and DAQ requirements very much defined by the instrument and data topology
- Can be >MHz/channel instantaneous in some cases
- Average rates much lower
- Every instrument is very much a bespoke individual design ...
- For a good user experience ...
- ... It's important to design the detector to the individual detector
- ... it's important to make sure that the DAQ can cope with the, and has a homogeneous look and feel

Instrument Control System Design

- Need a modular system to cope with diversity in design
- Use EPICS as the control system for the DAQ
- Use accelerator timing system: only
- 1 timing system needed for the facility
- Can access monitoring & diagnostic data across the facility data
- High rate & high number of channels = high data volume
- Use a dedicated data interface
- Unify the data where you actually want to utilise it
- Use FPGAs only where performance needed ...

Collaborations

Share Victory. Share Defeat. Everyone should play to their strengths

ESS Partners on Detectors

EUROPEAN SPALLATION SOURCE

INTERNATIONAL COLLABORATION FOR THE DEVELOPMENT OF NEUTRON DETECTORS

Detectors for ESS Instruments

Instrument	Neutron Converter	Detector Type	Gas Gain	Number of Channels	Front-End Type/ASIC
CSPEC	10B4C	MWPC	ca. 10	ca.20k	VMM3A
TREX	10B4C	MWPC	ca. 10	ca. 15k	VMM3A
ESTIA	10B4C	MWPC	ca. 10	ca. 6k	VMM3A
FREIA	10B4C	MWPC	ca. 10	ca. 4k	VMM3A
NMX	Gd	GEM	ca. 1000	ca. 15k	VMM3A
DREAM	10B4C	MWPC	<100	400k	CDT/CIPIX
MAGIC	10B4C	MWPC	<100	165k	CDT/CIPIX
HEIMDAL	10B4C	MWPC	<100	250k	CDT/CIPIX
LOKI	10B4C	Straws	>1000	5k	Discrete Preamp/ CAEN R5560
BIFROST	3He	Tube	>1000	ca. 100	Discrete Preamp/ CAEN R5560
VESPA	3He	Tube	>1000	ca. 100	Discrete Preamp/ CAEN R5560
MIRACLES	3He	Tube	>1000	ca. 100	Discrete Preamp/ CAEN R5560
SKADI	6Li	Scintillator	N/A	25000	IDEAS/IDE3465
ODIN	6Li	Various	N/A	ca. 1M	TIMEPIX4
BEER	10B4C	MWPC	>100	40	Delay Line + Custom FPGA
Beam Monitors	Various	MWPC/GEM/IC	1-100	50	Discrete Preamp / ADC OHWR FMC- ADC-100m14b4Cha
TestBeam Line	10B4C	MWPC	ca. 10	ca. 1k	VMM3A

- Step change # channels cf. current instruments
- From 100's to 10k's
- Need for using ASICs to handle large channel count at moderate cost
- Different detector partners means a variety of choices for front-end
- Key requirement for DAQ system is to be able to integrate a multiplicity of detector types and approaches
- Unify the "look and feel" within the electronics DAQ

Instrument	Neutron Converter	Detector Type	Gas Gain	Number of Channels	Front-End Type/ASIC	De
CSPEC	10B4C	MWPC	ca. 10	ca.20k	VMM3A	
TREX	10B4C	MWPC	ca. 10	ca. 15k	VMM3A	
ESTIA	10B4C	MWPC	ca. 10	ca. 6k	VMM3A	
FREIA	10B4C	MWPC	ca. 10	ca. 4k	VMM3A	-
NMX	Gd	GEM	ca. 1000	ca. 15k	VMM3A	
DREAM	10B4C	MWPC	<100	400k	CDT/CIPIX	
MAGIC	10B4C	MWPC	<100	165k	CDT/CIPIX	Ha
HEIMDAL	10B4C	MWPC	<100	250k	CDT/CIPIX	INS
LOKI	10B4C	Straws	>1000	5k	Discrete Preamp/ CAEN R5560	•
BIFROST	ЗНе	Tube	>1000	ca. 100	Discrete Preamp/ CAEN R5560	
VESPA	ЗНе	Tube	>1000	ca. 100	Discrete Preamp/ CAEN R5560	•
MIRACLES	3He	Tube	>1000	ca. 100	Discrete Preamp/ CAEN R5560	•
SKADI	6Li	Scintillator	N/A	25000	IDEAS/IDE3465	
ODIN	6Li	Various	N/A	ca. 1M	TIMEPIX4	
BEER	10B4C	MWPC	>100	40	Delay Line + Custom FPGA	
Beam Monitors	Various	MWPC/GEM/IC	1-100	50	Discrete Preamp / ADC OHWR FMC-ADC-100m14b4Cha	
TestBeam Line	10B4C	MWPC	ca. 10	ca. 1k	VMM3A	

tectors for ESS Instruments

EUROPEAN SPALLATION SOURCE

ave managed to settle on 3 main front ends for 13/16 struments:

- CAEN R5560 for detectors using charge division (He-3 PSDs and Boron Straws). 4 instruments.
- CIPIX for diffraction detectors using CDT Jalousie detectors. 3 instruments.
- VMM3A for Boron wire detectors (MultiGrid, MultiBlade and GEM detectors). 6 instruments.

Detector Electronics Integration Models

Data

Data: Calculation, Simulation, Prototype Data

- As you have heard, simulation is a very powerful tool
- ... but the computer will always lie to you ...
- Data from prototype tests is golden
- Lack of ability to trigger independently on the neutron means some degree of arbitrariness in defining the measurement
- Checking that your measured data is correct is complicated
- Additionally, always try and calculate analytically or "back of envelope" what your expectation is
- (Or at least upper and lower limits)
- Use all 3 of these **together** to understand the performance of your prototypes
- Expect "features" and non-agreement and investigate them
- Iterative

Simulation

Analytical Calculation

Data from prototypes

Definitions and Standards

Detector Rate and Data Rate

Important to define what is meant by rate when it is quoted:

- Global time-averaged incident/detection rate: the total number of neutrons per second entering/recorded by the entire detector
- Local time-averaged incident/detection rate: the total number of neutrons per second entering/recorded in a detector pixel, channel or unit
- Global peak incident/detection rate: the highest instantaneous neutron incident/detection rate on the whole detector
- Local peak incident/detection rate: the highest instantaneous neutron incident/detection rate on the brightest detector pixel, channel or unit
- *I. Stefanescu et al., JINST12 (2016) P01019
- Any DAQ system is vulnerable to • "flooding" at any point in the system
- Important to with realistic data as much • as possible
- Pattern & quantity •

Readout Architecture is described in BrightnESS Deliverable D4.1: https://dx.doi.org/10.17199/BRIGHTNESS.D4.1

EUROPEAN SPALLATION SOURCE

River Network

Diffraction

Sizes probed = "atomic structures" = 0.1 nm - 10 nm

Detectors are tools

Therefore the detector should be designed to give you the most appropriate measurement of scattering angle for a instrument class "horses for courses"

Selecting phase space ...

<u>Pre- and post sample λ distribution (McStas)</u>

What does data look like? **Neutron Diffraction**

Powder Diffraction

Data is sparse and peaky

Protein Diffraction

What does data look like? Reflectometry, Small Angle Scattering, Spectroscopy

Reflectometry

Different types of instruments have very different data characteristics

Scientific Results from CRISP: Scattering from Fe/Si Supermirror

<u>Results</u>

635

Detector Data Acquisition System

Data Acquisition Chain for ESS Instruments

Most detectors for instruments are provided by in-kind partners

The integration of the DAQ for the instruments is done at the backend readout electronics

- Upstream the DAQ looks different for different instruments.
- In general ESS instruments have a very high number of channels • However there was a desire to reduce the number of integrations: 3 main types.
- Downstream, there is a compute layer (the EFU: event formation unit) to form the events
- Aim is to do whatever can be done in standard PCs is done (i.e. reduce development effort in the electronics).
- Integration includes facility time (ICS timing) and slow control (EPICS)

Maintenance:

Integration needs to be as simple as possible to reduce level of effort needed.

Detector Electronics

- Standardised Instrument Data Acquisition at the Electronics Backend: All instruments will use the "Master Module" using a commercial FPGA dev board (VCU118)
- Front-ends handled using 12 data rings of "assistor" boards
- Facility ("accelerator") timing distributed to the front-end via the rings

Readout Architecture is described in BrightnESS Deliverable D4.1: https://dx.doi.org/10.17199/BRIGHTNESS.D4.1

Master Module

ESS Readout Architecture (VMM Implementation)

Steven Alcock, Detector Group, 25th March 2022

detector readout with VMM

brightness

Readout chain NMX

ICS EPICS Slow Control Integration 1/2

- A very simple UDP-based Ethernet protocol has been implemented on the backend Master for configuration and monitoring of the entire readout system.
- UDP was selected instead of TCP for ease of firmware implementation. A Master-Slave configuration is adopted whereby the EPICS IOC is the Master, and every command must be acknowledged by the backend Master (which is actually the slave in this context). In other words, link reliability is achieved in the application layer of the stack.
- Each Instrument will have a dedicated IOC and a dedicated backend Master, provisioning a 32-bit address space for each readout system.
- The backend Master forwards read/write requests to the relevant register based on the address.
- To reduce cabling and simplify grounding, read/write requests to registers on front end nodes are sent over the same 8B/10B fibre used for timing distribution.
- ICS have implemented a baseline IOC which handles generic read/write requests, and are actively working on Instrument-specific functionality.

ICS EPICS Slow Control Integration 2/2

Register Space	Base Address	Range
Ring 0	0x0000_0000	256M
Ring 1	0x1000_0000	256M
Ring 2	0x2000_0000	256M
Ring 3	0x3000_0000	256M
Ring 4	0x4000_0000	256M
Ring 5	0x5000_0000	256M
Ring 6	0x6000_0000	256M
Ring 7	0x7000_0000	256M
Ring 8	0x8000_0000	256M
Ring 9	0x9000_0000	256M
Ring 10	0xA000_0000	256M
Ring 11	0xB000_0000	256M
Ring Config	0xC000_0000	4K
Board Config	0xC000_1000	4K
DMSC Config	0xC000_2000	4K
Timing Config	0xC000_3000	4K
100 G Config	0xC000_4000	8K

DMSC Neutron Event Integration 1/2

- The standardised "front end assistor" (FEA) firmware makes the ESS clock and timestamp available to the rest of the Instrument-specific "front end electronics" (FEE), which is responsible for detector data acquisition and signal processing.
- Timestamped neutron event data is transmitted over the 8B/10B fibre links to the backend Master.
- Each fibre ring can support approximately 10 Gbps: a 12-ring system can theoretically egress approximately 120 Gbps.
- The backend Master aggregates this data into jumbo frames associated with the current 14 Hz ESS accelerator pulse time, and these jumbo frames are then sent to the DMSC Event Formation Unit via UDP packets over one or two 100 Gb Ethernet links.

DMSC Neutron Event Integration 2/2

VMM Integration

- The VMM3A is the primary choice of ASIC for the MultiBlade, MultiGrid and NMX detectors in order to satisfy high channel count requirements.
- Significant development (the VMM Hybrid) already undertaken by CERN RD51 to read out and control this ASIC, but targeting the SRS readout system.
- Best solution in terms of design-reuse is to implement the FEA logic on a separate FPGA board – a so-called "Assistor Board":
- The current assistor board is a commercial off-the-shelf Xilinx development board (the KC705).
- The SRS FEC firmware has been ported to the KC705, allowing the VMM hybrid to be controlled and read out using existing firmware. A new interface has been written to the ESS assistor logic.
- This work does not preclude the use of custom solutions in the future with smaller size/weight/power/cost.

Front-End Integration for ESS Instruments

•

٠

•

٠

for Detector Readout, Scott Kolya et.al. 2017

Front End Electronics: VMM3A ASIC

brightness

- VMM3a is the 4th version of an ASIC developed by Brookhaven National lab for the ATLAS New Small Wheel upgrade at CERN
- ASIC developed to read out Micro Pattern Gaseous detectors (MPGD) •
- ASIC is high rate, sub-ns time resolution
- RD51 VMM3A hybrid common ESS-CERN project: successful integration of the VMM3a ASIC into the CERN Scalable Readout System (SRS) during BrightnESS
- 7.3 Mhits/s per VMM3a ASIC
- Per single VMM3a channel 4 Mhits/s
- Works well also for wire-based gaseous detectors

J4 option AUX powe

VMM Integration

VMM Integration

Remote View Bookmarks Help

🦂 Connect 🐠 🚮

VMM

VMM

- Data seen from VMM input channel through to data egress from Master Module
- Through data rings
- End-end data in electronics

9	Ľ	1		s	end	l Ctr	l-Al	t-De	el										
	-	Ap	plic	atio	ns	Pla	aces	S	Wir	esha	ark N	letv	vork	Ana	alyz	er			
															-				
	Fil	e	Edit	V	'iew	G	0	Сар	ture	A	naly	ze	Sta	atist	ics	Te	lepł	nony	Тос
	(Ð	۲		1		6	ſ	F	1	0101	×		Z	(2	6		> %
		1+							_					_					Eve
	FI	iller:		ram	e			_							_				Exp
	N	0.		Tin	ne			Sou	irce		_				Des	tina	tior	1	
			1	0.0	000	0000	90 1	192.	. 168	.1.	5			1	.92.	168	.1.	100	
			2	0.0	000	0614	45 1	192	. 168	.1.	2			1	.92.	168	.1.	100	
			3 (0.0	006	3509	90 1	192	. 168	.1.	2			1	192.	168	.1.	100	
			4	0.0	000	5100	52 1	192	168	.1.	2			1	192.	168	.1.	100	
			5	0.0	012	0/20 11/	27 1	192	169	.1.	2			1	192.	169	1	100	
			7	0.0	010	3683	23 1	192	168	1	2			1	192.	169	1	100	
			8	0.0	019	5302	35 1	192	168	1	5			1	92.	168	1	100	
			9	0.0	025	8748	34 1	192	. 168	.1.	2			1	192.	168	.1.	100	
			10	0.0	026	0762	22 1	192	. 168	.1.	5			1	192.	168	.1.	100	
			11	0.0	032	3865	50 1	192	. 168	.1.	2			1	.92.	168	.1.	100	
,			12	0.0	032	4192	28 1	192	. 168	.1.	5			1	192.	168	.1.	100	
			13	Θ.Θ	038	8980	97 1	192	168	. 1.	2				92	168	. 1.	100	
۰.		-				. L					/ 7.9								
	1	Fra	ame	1:	899	2 0	yte	s o	n w	1re	(71	930) D1	ts)	, 8	992	by 00.	tes	capt = \
		Eur	ern	et	II,	Sr toc	c:	ve:	00:00	90: n 4	0:00	0:0	107	0e:	⊎⊃: :0 1	5	(10	00:0), 01
		LICE	ern ar D	iet.	ara	m D	rot	oco	1 0	Src	, SI Dor	τ: +•	hct	:.10	90.1	101	(19	+ Do	0.1. rt.
		FSG	RH	lead	lyra Ier		100	.000	ι,	SIC	FUI	ι.	DCU	.р (095	<i>, ,</i>	05	L FU	
		Rea	adou	it	1.	Ri	na	5.	FEN	1.	VMM	l: 1	I. C	:H:5	6.	Tim	e 1	6140	7392
. 1		Rea	dou	it	2,	Ri	ng	5,	FEN	1,	VMM	1: 0), c	:H:4	5,	Tim	e 1	6140	7392
1º	•	Rea	dou	ıt	З,	Ri	ng	5,	FEN	1,	VMM	1: 1	ί, α	:H:5	i9,	Tim	e 1	6140	7392
/	•	Rea	dou	It	4,	Ri	ng	5,	FEN	1,	VMM	1: 1	ι, α	:H:6	iΘ,	Tim	e 1	6140	7392
1	•	Rea	dou	It	5,	Ri	ng	5,	FEN	1,	VMM	1: 0), C	:H:4	7,	Tim	e 1	6140	7392
	•	Rea	idou	t	6,	Ri	ng	5,	FEN	1,	VMM	1: 1	ι, α	CH:6	i3,	Tim	e 1	6140	7392
X		Rea	idou	It	7,	Ri	ng	5,	FEN	1,	VMM	1: 0), C	:H:4	9,	Tim	e 1	6140	7392
		Rea	idou	It	8,	Ri	ng	5,	FEN	1,	VMM	1: 0), (:H:5	51,	Tim	e 1	6140	7392
00		Rea	idou	it	9,	Ri	ng	5,	FEN	1,	VMM	1: 0), (:H:5	i3,	Tim	e 1	6140	7392
		Rea	dou	t	10,	R1	ng	5,	FEN	1,	VMM	1: 0), (:H:5	5,	Tim Ti	e 1	6140	7392
		Rea	aou	+	11, 12	K1	ng	э, 5	FEN	1, 1	VMM	1: 0 1. 7	, C	.н:5 10-е	07, :0	11M	e 1	6140	/392
1		Rea	uou idou	it.	12, 13	RI	ng	5, 5	FEN	1, 1	VINIM	1: 0 • 6	, C	.н.э С:п:Э	,9, 1	⊥⊥II Tim	с 1 6 1	6140	7392 7307
-		Rea	dou	it it	14	Ri	na	5,	FEN	1,	VMM	1. C), C	:н.с :н.е	,, ,,	Tim	с 1 е 1	6140	7392
		Rea	adou	it	15.	Ri	na	5.	FEN	1.	VMM	1: 1	i. c	:н:	ο.	Tim	e 1	6140	7392
		Rea	dou	it	16,	Ri	ng	5,	FEN	1,	VMM	1: 1	ι, ο	н:	1,	Tim	e 1	6140	7392
	•	Rea	dou	ıt	17,	Ri	ng	5,	FEN	1,	VMM	l: 1	ί, α	:Н:	2,	Tim	e 1	6140	7392
[•	Rea	idou	ıt	18,	Ri	ng	5,	FEN	1,	VMM	l: 1	ι, ο	:Н:	З,	Tim	e 1	6140	7392
	•	Rea	dou	t	19,	Ri	ng	5,	FEN	1,	VMM	l: 1	ι, α	:Н:	4,	Tim	e 1	6140	7392
	•	Rea	idou	It	20,	Ri	ng	5,	FEN	1,	VMM	l: 1	ι, α	Η:	5,	Tim	e 1	6140	7392
	0.04	90	Θ/	٦f	72	f٦	f٦	30	00	05	05	00	00	05	68	00	45	00	2.
	00	10	23	12	00	00	00	00	05	11	0f	22	c0	a8	01	05	c0	a8	#
	002	20	01	64	23	27	23	28	22	fe	00	00	00	00	45	53	53	48	. d#
	003	30	f6 fc	22	05	02	42	d0	34	60	33	78	60	00	42	d0	34	60	•"•
	004	+⊎ 50	27	7T 68	00 82	00	53 67	20 00	91	00 80	00 00	01 68	14 01	00 38	42 05	00 01	54 14	00	'h
	000	50	42	dØ	34	60	27	68	82	00	67	00	90	80	00	72	00	2d	в.4
	00	70	05	01	14	00	42	d0	34	60	27	68	82	00	67	00	83	80	
	0	1	File:	"/tr	mp/\	wire	sha	rk_p	capi	ng_	p4p1		Pa	icke	ts: 4	100	Dis	playe	d: 40
	L.		2-	ste	vena	lcoc	<@c	Igro	-vmn	n4:~/	/q		1	Calcu	lato	1			
			_					1.1					- 1 L			-			

🚄 *p3p1 [Wireshark 1.10.14 (... 🛛 🚄 VMM3a.pcapng [Wireshark 1.... 🛛 🍌 Vivado Lab Edition 2019.1

*p4p1 [Wireshark 1.10.14

Engineering the whole system ... It's not just digital or only about data transport and manipulation ...

MultiBlade

ca. 1-2m services path from VMM3As to Assistor crate Detector rack ca. 15-20m distant

Backend Readout Electronics

SYZLADU

CSPEC [

MultiGrid dete

Aim: Testing h detector on LE

Status: 2x2 day test in N Vessel ready Coatings, Blade (Preparation for g Successful mock

Aim: final so for construct

2021-10-1 PRES

MultiGrid Electronics Box

EMI shielding on top of 2x VMM hybrids

Principle

Sensitive part of detector will be surrounded by Faraday cage

i.e. Faraday cage encompasses from voltage supply (in rack) through detector sensitive element, through to Front End ASIC From Substation

For NMX this Faraday cage encompasses the detector module, As this is the metallic object that surrounds readout plane Therefore this should be isolated from

Therefore this should be isolated from robot/support

It is always wise to forsee bonding points at all isolated points - as it may be necessary to connect later

Details of NMX grounding will be drawn up Autumn this year

Note 1: This detector-corresponding part is supplied by its own UPS and therefore galvanically separated from the cabinet.

Note 2: The detector-complex is isolated from everything except the PB/FB connectors shown.

Figure 9 Principle drawing of earthing and bonding in a generic zone. ZEP in orange frame.

NB Caveat: indicative. This diagram is not uptodate. New version coming

NB all networks, & similar will be optically decoupled

Rack electronics

The standard detector rack is considered part of the readout back-end.

The rack environment will be monitored for e.g. humidity and temperature by use of a commercial-off-the-shelf system. Beckhoff terminals (3U–6U) are used to read and control detector parameters.

Prototype Rack exists in Utgard and ^{parameters.} it is starting to be populated to determine configuration Example for LOKI

The ESS readout back-end provides a common interface for detector front-ends including controls and time distribution.

Six (6) horizontal units of space in the lower frame are reserved for the double-converting Uninterruptable Power Supply (UPS) which will be grounded through the mains input and supply floating ground for all downchain detector electronics.

Switches/patch panels to provide access to networks for timing distribution, event data, and controls. Only routed in via optical fibre.

Server to act as controls interface and to host the PCIe Event Receiver (EVR) and an interface board ("IFB300") to provide timing signal to ESS back-end readout system.

Up to eight (8) horizontal units in the upper frame will host the multichannel Low and High Voltage system, supplying e.g. bias for the detector(s).

A Power Distribution Unit (PDU) will take input from the UPS and feed power to all other detector components.

Some Final Thoughts ...

Mood Message for the Development so far ...

EUROPEAN SPALLATION SOURCE

• Development time is long: typically 10 years from

• Solve challenges one at a time, and remain calm

Time from first proposal of a neutron source to operation at full specification

trend not unique to neutrons

Similar trends noted previously for Power Reactors, HEP, civil infrastructure, etc ...

2030
Collaborations for Construction Phase

Big projects are very very difficult •Berlin airport ... •Every military contract ... •Your local hospital ...

It's not going to be smooth don't worry about this months crisis ...

this

EUROPEAN SPALLATION SOURCE

Focus on the goal and the vision and work towards

Timeline for detectors (schedule from 2012)

- •Here is the timeline for a thermal chopper spectrometer with one concept for detector technology
- •note: 10 years from concept to (potential) utilisation
- •note: neither the proof of concept nor construction phases dominate the timeline, but rather the numerous prototyping and demonstration phases in between
 - Design friction: Only review decisions made if you really really need to
 - I have seen many systems redesigned without any need to ... wasted effort.
 - Get it working keep it working and then only then improve it 74

An aside on Project Management ...

- You <u>must</u> to use "waterfall" project management
- (Gantt charts, etc).
- Most appropriate for "*known*" builds
- eg house...
- Focuses on immediate issues and critical path • Use it to make sure that decisions are made, and interfaces understood and to understand progress
- However, detectors are very much a hi-tech item … • ... agile technique much better reflects actual work
- methodology
- You don't know what exactly you will achieve during R&D • Be aware that this might better reflect day-day work
- 3rd method: "successive principle".
- Focus on the goal, and work back from these.
- Use non-experts to evaluate schedule given by experts ...
- Making progress and getting things done is complex in big projects ...

EUROPEAN SPALLATION SOURCE

• From "the mythical man month"

w many women are assigned. Many software tasks have t for measuring the size of a job is a dangerous and deceptive myth. It aracteristic because of the sequential nature of debugging. implies that men and months are interchangeable. Men and months are interchangeable commodities only when a task can be partitioned among many workers with no communica. tion among them (Fig. 2.1). This is true of reaping wheat or picking cotton; it is not even approximately true of systems programming Months Men Fig. 2.1 Time versus number of workers-perfectly partitionable tail Men .2 Time versus number of workers—unpartitionable task

The added burden of communication is made up of two p

• From "the mythical man month"

Teamwork ...

- A pleasant working atmosphere ...
- A working culture that is open to diversity
- Creativity ...

EUROPEAN SPALLATION SOURCE

78

Thoughts ...

- Detector & DAQ development takes time
- Very difficult to go from concept to beam line in less than a decade
- e.g. Multi Grid started 2009/10. On ESS instrument ca. 2024/25
- Detector development time >> Instrument construction time
- This should be our aspiration level for a (every?) decade ... :

EUROPEAN SPALLATION SOURCE

Summary

- Every DAQ system has different requirements: "horses for courses"
- Used ESS as an example for how a data acquisition system is designed
- What do you actually want to do with the DAQ system?
- What is important?
- Optimise your time. Recycle what you can
- You will underestimate the amount of time for changes (NRE).
- Only change what you need to.
- Don't be afraid to take off the shelf solutions.
- What can go wrong?
- Remember: typically 10 years concept to implementation
- Don't forget all the engineering factors ... not just data transport ...

 Make sure that you define what you want to measure clearly and unambigiously

Publish what you do: too many of the best results remain forgotten and are redone 3-10 years later

- It's all about people ...
- ... and how they work with each other

BrightnESS is funded by the European Un Research and Innovation Horizon 2020, u

Thanks!

www.fbk.eu