
FPGAs Computing Just Right:
Application-Specific Arithmetic

Florent de Dinechin
e

x

√
x2+

y2+
z2

πx
sin

e x+
y

n∑
i=
0

x i

√
x log x

Outline (complete with advertizing and all)

Anti-introduction: the arithmetic you want in a processor
What they didn’t tell you about FPGA architectures
Some opportunities of hardware computing just right
A few FPGA success stories
Conclusion

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 2

Anti-introduction:
the arithmetic you want

in a processor

Anti-introduction: the arithmetic you want in a processor

What they didn’t tell you about FPGA architectures

Some opportunities of hardware computing just right

A few FPGA success stories

Conclusion

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 3

General-Purpose Processors and GPUs

The good arithmetic in a general-purpose processor is the most generally useful:
additions, multiplications, and then?

Should a processor include a divider? A square root?

Should a processor include elementary functions (exp, log sine/cosine)? Which?

Should a processor include decimal hardware?

Should a processor include an 8-bit tensor multiplier?

...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 4

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001
?

1
=0001
-101 1
00101

1?11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit

it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001

?

1
=0001
-101

1
00101

1?11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001

?1
=0001

-101 1
00101

1?11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001

?1
=0001

-101

1

00101
1?

11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001

?1
=0001

-101

1

00101

1?

11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001

?1
=0001

-101

1

00101

1?11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001

?1
=0001

-101

1

00101

1?11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001

?1
=0001

-101

1

00101

1?11

-101
=1101

10?

00101

101

=0000

-101

101

000

101

Just like decimal, but simpler

find the next quotient digit it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 5

Should a processor include a divider? (2)

Answer in 1993 is : YES (Oberman & Flynn, 1993)

... and this divider should be a fast one, because of Amdahl law:
Although division is not frequent, (...) a high latency divider can contribute an additional
0.50 CPI to a system executing SPECfp92

Digit recurrence algorithms

Generalizations of the paper-and-pencil algorithm

large radix: from 23 to 26

fancy internal number systems to speedup

digit-by-number product
subtraction
finding the next quotient digit

Heavier iterations, giving one digit (2 to 5 bits) per iteration.

A lot of research, worth one full book (Ercegovac and Lang, 1994)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 6

Should a processor include a divider? (2)

Answer in 1993 is : YES (Oberman & Flynn, 1993)
... and this divider should be a fast one, because of Amdahl law:

Although division is not frequent, (...) a high latency divider can contribute an additional
0.50 CPI to a system executing SPECfp92

Digit recurrence algorithms

Generalizations of the paper-and-pencil algorithm

large radix: from 23 to 26

fancy internal number systems to speedup

digit-by-number product
subtraction
finding the next quotient digit

Heavier iterations, giving one digit (2 to 5 bits) per iteration.

A lot of research, worth one full book (Ercegovac and Lang, 1994)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 6

Should a processor include a divider? (2)

Answer in 1993 is : YES (Oberman & Flynn, 1993)
... and this divider should be a fast one, because of Amdahl law:

Although division is not frequent, (...) a high latency divider can contribute an additional
0.50 CPI to a system executing SPECfp92

Digit recurrence algorithms

Generalizations of the paper-and-pencil algorithm

large radix: from 23 to 26

fancy internal number systems to speedup

digit-by-number product
subtraction
finding the next quotient digit

Heavier iterations, giving one digit (2 to 5 bits) per iteration.

A lot of research, worth one full book (Ercegovac and Lang, 1994)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 6

Should a processor include a divider? (3)

Answer in 2000 is : NO (Markstein)

The Itanium: a brand new, expensive processor... without a divide instruction.
Instead of a hardware divider,

a second FMA (fused multiply and add) is more generally useful
... and can even be used to compute divisions:

Multiplicative division algorithms

several algorithms
using a handful of multiplications

the freedom of software:

quick and dirty, or accurate but slow
high throughput or short latency
...

and with a second FMA,
BLAS and FFTs are 2x faster ! ... and two more books.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 7

Should a processor include a divider? (3)

Answer in 2000 is : NO (Markstein)
The Itanium: a brand new, expensive processor... without a divide instruction.
Instead of a hardware divider,

a second FMA (fused multiply and add) is more generally useful
... and can even be used to compute divisions:

Multiplicative division algorithms

several algorithms
using a handful of multiplications

the freedom of software:

quick and dirty, or accurate but slow
high throughput or short latency
...

and with a second FMA,
BLAS and FFTs are 2x faster ! ... and two more books.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 7

Should a processor include a divider? (4)

Answer in 2022 is : YES again (Bruguera, Arith 2018)

a double-precision divider in 11 cycles for ARM processors

thanks to a totally wasteful implementation

hardware: 20 fast 58-bit adders, 12 58-bit muxes, tables, and more ...
speculation all over the place:
compute many options in parallel, then discard them all except one

in a processor that is supposed to go in your smartphone?!?

We do this to reduce overal energy consumption!
There is this huge superscalar ARM core that consumes a lot,

we save energy if we can switch it off a few cycles earlier

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 8

Should a processor include a divider? (4)

Answer in 2022 is : YES again (Bruguera, Arith 2018)

a double-precision divider in 11 cycles for ARM processors

thanks to a totally wasteful implementation

hardware: 20 fast 58-bit adders, 12 58-bit muxes, tables, and more ...
speculation all over the place:
compute many options in parallel, then discard them all except one

in a processor that is supposed to go in your smartphone?!?

We do this to reduce overal energy consumption!
There is this huge superscalar ARM core that consumes a lot,

we save energy if we can switch it off a few cycles earlier

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 8

Should a processor include a divider? (4)

Answer in 2022 is : YES again (Bruguera, Arith 2018)

a double-precision divider in 11 cycles for ARM processors

thanks to a totally wasteful implementation

hardware: 20 fast 58-bit adders, 12 58-bit muxes, tables, and more ...
speculation all over the place:
compute many options in parallel, then discard them all except one

in a processor that is supposed to go in your smartphone?!?

We do this to reduce overal energy consumption!
There is this huge superscalar ARM core that consumes a lot,

we save energy if we can switch it off a few cycles earlier

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 8

A good example of dark silicon made useful

Dark silicon?

In current tech, you can no longer
use 100% of the transistors 100% of the time

without destroying your chip.

We just can’t dissipate the heat, and it gets worse with Moore’s Law.
“Dark silicon” is the percentage that must be off at a given time

(picture from a 2013 HiPEAC keynote by Doug Burger)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 9

Pleasant times to be an architect

One way out the dark silicon apocalypse (M.B. Taylor, 2012)

Hardware implementations of rare (but useful) operations:

when used, dramatically reduce the energy per operation
(compared to a software implementation that would take many more cycles)

when unused (i.e. most of the time), serve as radiator for the parts in use

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 10

Should a processor include elementary functions? (1)

Dura Amdahl lex, sed lex

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

Current performance of exp or log is 10 to 100 cycles,
to compare with 1 to 5 cycles for add and mult.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 11

Should a processor include elementary functions? (2)

Answer in 1976 is YES (Paul&Wilson)

... and the initial x87 floating-point coprocessor was designed with a basic set of elementary
functions

implemented in microcode

with some hardware assistance,
in particular the 80-bit floating-point format.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 12

Should a processor include elementary functions? (2)

Answer in 1976 is YES (Paul&Wilson)
... and the initial x87 floating-point coprocessor was designed with a basic set of elementary
functions

implemented in microcode

with some hardware assistance,
in particular the 80-bit floating-point format.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 12

Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)

Table-based algorithms

Moore’s Law means cheap memory

Fast algorithms thanks to huge (tens of Kbytes!) tables of pre-computed values

Software beats micro-code, which cannot afford such tables

None of the RISC processors designed in this period
even considers elementary functions support

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 13

Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)

Table-based algorithms

Moore’s Law means cheap memory

Fast algorithms thanks to huge (tens of Kbytes!) tables of pre-computed values

Software beats micro-code, which cannot afford such tables

None of the RISC processors designed in this period
even considers elementary functions support

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 13

Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)

Table-based algorithms

Moore’s Law means cheap memory

Fast algorithms thanks to huge (tens of Kbytes!) tables of pre-computed values

Software beats micro-code, which cannot afford such tables

None of the RISC processors designed in this period
even considers elementary functions support

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 13

Should a processor include elementary functions? (4)

Answer in 2022 is... sometimes?

A few low-precision hardware functions in NVidia GPUs (Oberman & Siu 2005)

The SpiNNaker-2 chip includes hardware exp and log (Mikaitis et al. 2018)

Intel AVX-512 includes all sort of fancy floating-point instructions to speed up
elementary function evaluation (Anderson et al. 2018)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 14

Should a processor include elementary functions? (4)

Answer in 2022 is... sometimes?

A few low-precision hardware functions in NVidia GPUs (Oberman & Siu 2005)

The SpiNNaker-2 chip includes hardware exp and log (Mikaitis et al. 2018)

Intel AVX-512 includes all sort of fancy floating-point instructions to speed up
elementary function evaluation (Anderson et al. 2018)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 14

I won’t answer the other questions here

✓ Should a processor include a divider and square root?

✓ Should a processor include elementary functions (exp, log sine/cosine)?

Should a processor include decimal hardware?

Should a processor include an FFT operator?

Should a processor include an AI accelerator?

...

Should a processor include a divider by 3? A multiplier by log(2) ?
no, of course.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 15

At this point of the talk...

... everybody is wondering when I start talking about FPGAs.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 16

One nice thing with FPGAs

On FPGAs, there is a simpler answer to all these questions

✓ divider? square root? Yes iff your application needs it

✓ elementary functions? Yes iff your application needs it

✓ FFT operator? Yes iff your application needs it

✓ multiplier by log(2)? By sin 17π
256 ? Yes iff your application needs it

...

In FPGAs, useful means: useful to one application.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 17

One nice thing with FPGAs

On FPGAs, there is a simpler answer to all these questions

✓ divider? square root? Yes iff your application needs it

✓ elementary functions? Yes iff your application needs it

✓ FFT operator? Yes iff your application needs it

✓ multiplier by log(2)? By sin 17π
256 ? Yes iff your application needs it

...

In FPGAs, useful means: useful to one application.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 17

One nice thing with FPGAs

On FPGAs, there is a simpler answer to all these questions

✓ divider? square root? Yes iff your application needs it

✓ elementary functions? Yes iff your application needs it

✓ FFT operator? Yes iff your application needs it

✓ multiplier by log(2)? By sin 17π
256 ? Yes iff your application needs it

...

In FPGAs, useful means: useful to one application.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 17

In an FPGA, you pay only for what you need

If your application is to simulate jfet,

... you want to build a floating-point unit with 13 adds, 31 mults, 2 divs, 2 exps,
and nothing more.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 18

Conclusion so far

FPGA arithmetic ̸= arithmetic for CPUs or GPGPUs

Application-specific arithmetic

All sorts of arithmetic operators that just wouldn’t make sense in a processor
can be useful in FPGAs.
This is what we are going to explore (and the object of the FloPoCo project).

This is a qualitative question, but there is a related quantitative question:

Computing just right

In a processor, data is 8, 16, 32 or 64 bits (at best).
In an FPGA, data formats may be tightly fitted to the requirements of the application:

if you need 17 bits, compute only 17 bits

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 19

Conclusion so far

FPGA arithmetic ̸= arithmetic for CPUs or GPGPUs

Application-specific arithmetic

All sorts of arithmetic operators that just wouldn’t make sense in a processor
can be useful in FPGAs.
This is what we are going to explore (and the object of the FloPoCo project).

This is a qualitative question, but there is a related quantitative question:

Computing just right

In a processor, data is 8, 16, 32 or 64 bits (at best).
In an FPGA, data formats may be tightly fitted to the requirements of the application:

if you need 17 bits, compute only 17 bits

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 19

Computing just right?

This is the pathetic logo of the FloPoCo project:

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i

√
x log x

(the proper term is probably allogory)

This is the kind of thing FloPoCo does −→
It is a floating-point exponential operator
where each wire, each component is

tailored to its context with love and care.

(not a very good logo either)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 20

Computing just right?

This is the pathetic logo of the FloPoCo project:

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i

√
x log x

(the proper term is probably allogory)

This is the kind of thing FloPoCo does −→
It is a floating-point exponential operator
where each wire, each component is

tailored to its context with love and care.

(not a very good logo either)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 20

Save power! Don’t move useless bits around!

In software, if your result is correct, it is probably wasteful

Did you really need single precision (8 decimal digits of accuracy) in Angry birds
considering that the trajectory was input using your fat fingers?

Plain common sense

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

Here we have more freedom when designing hardware

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 21

Save power! Don’t move useless bits around!

In software, if your result is correct, it is probably wasteful

Did you really need single precision (8 decimal digits of accuracy) in Angry birds
considering that the trajectory was input using your fat fingers?

Plain common sense

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

Here we have more freedom when designing hardware

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 21

Save power! Don’t move useless bits around!

In software, if your result is correct, it is probably wasteful

Did you really need single precision (8 decimal digits of accuracy) in Angry birds
considering that the trajectory was input using your fat fingers?

Plain common sense

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

Here we have more freedom when designing hardware

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 21

Save power! Don’t move useless bits around!

In software, if your result is correct, it is probably wasteful

Did you really need single precision (8 decimal digits of accuracy) in Angry birds
considering that the trajectory was input using your fat fingers?

Plain common sense

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

Here we have more freedom when designing hardware

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 21

What they didn’t tell you
about FPGA architectures

Anti-introduction: the arithmetic you want in a processor

What they didn’t tell you about FPGA architectures

Some opportunities of hardware computing just right

A few FPGA success stories

Conclusion

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 22

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels
switch boxes

tr
an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels
switch boxes

tr
an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels
switch boxes

tr
an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels
switch boxes

tr
an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels
switch boxes

tr
an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels
switch boxes

tr
an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels

switch boxes

tr
an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

Core FPGA structure

L
U
T

x0
x1
x2
x3

y

to emulate an arbitrary
logic function:
a Look-Up Table (LUT)
(arbitrary truth table)

one flip-flop

x0 x1 x2 x3 y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

R

By linking such cells
we may emulate
any finite-state machine
hence any sequential circuit.

How to link them?

routing channels
switch boxes tr

an
si
ti
on

fu
n
ct
io
n

st
at
e

re
gi
st
er

ck

ou
tp
u
t

fu
n
ct
io
n

SS ′
O

I

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 23

When reality kicks back

How many wires do we need per routing channel for random access to distant cells?
1990:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

How many wires do we need per routing channel for random access to distant cells?
1990:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

How many wires do we need per routing channel for random access to distant cells?
1993:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

How many wires do we need per routing channel for random access to distant cells?
1993:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

How many wires do we need per routing channel for random access to distant cells?
1994:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

1990:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

1994:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

1996:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

When reality kicks back

1999:

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24

“Customers buy logic, but they pay for routing” (M. Langhammer)

2001 (after which I quit counting):

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 25

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

you plan a city, with roads sized to avoid traffic jams at the time

then the city grows, and more people want to use the roads in the old center

so they get traffic-jammed.

Two examples of this process at work:

Los Angeles
since the 30s: one century of car-centered progress
ever-wider highways built in place of housing (see Roger Rabbit)
now: 2/3 of the area dedicated to cars (roads + parking lots)

Lyon
in the 70s: planned destruction of a Renaissance area

to make space for a highway
conservatism, opposition to progress −→ project cancellation
now: a car-free area, and UNESCO world heritage

The circuit variant of this curse is called Rent’s law.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 26

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

you plan a city, with roads sized to avoid traffic jams at the time

then the city grows, and more people want to use the roads in the old center

so they get traffic-jammed.

Two examples of this process at work:

Los Angeles
since the 30s: one century of car-centered progress
ever-wider highways built in place of housing (see Roger Rabbit)
now: 2/3 of the area dedicated to cars (roads + parking lots)

Lyon
in the 70s: planned destruction of a Renaissance area

to make space for a highway
conservatism, opposition to progress −→ project cancellation
now: a car-free area, and UNESCO world heritage

The circuit variant of this curse is called Rent’s law.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 26

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

you plan a city, with roads sized to avoid traffic jams at the time

then the city grows, and more people want to use the roads in the old center

so they get traffic-jammed.

Two examples of this process at work:

Los Angeles
since the 30s: one century of car-centered progress
ever-wider highways built in place of housing (see Roger Rabbit)
now: 2/3 of the area dedicated to cars (roads + parking lots)

Lyon
in the 70s: planned destruction of a Renaissance area

to make space for a highway
conservatism, opposition to progress −→ project cancellation
now: a car-free area, and UNESCO world heritage

The circuit variant of this curse is called Rent’s law.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 26

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

you plan a city, with roads sized to avoid traffic jams at the time

then the city grows, and more people want to use the roads in the old center

so they get traffic-jammed.

Two examples of this process at work:

Los Angeles
since the 30s: one century of car-centered progress
ever-wider highways built in place of housing (see Roger Rabbit)
now: 2/3 of the area dedicated to cars (roads + parking lots)

Lyon
in the 70s: planned destruction of a Renaissance area

to make space for a highway
conservatism, opposition to progress −→ project cancellation
now: a car-free area, and UNESCO world heritage

The circuit variant of this curse is called Rent’s law.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 26

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

you plan a city, with roads sized to avoid traffic jams at the time

then the city grows, and more people want to use the roads in the old center

so they get traffic-jammed.

Two examples of this process at work:

Los Angeles
since the 30s: one century of car-centered progress
ever-wider highways built in place of housing (see Roger Rabbit)
now: 2/3 of the area dedicated to cars (roads + parking lots)

Lyon
in the 70s: planned destruction of a Renaissance area

to make space for a highway
conservatism, opposition to progress −→ project cancellation
now: a car-free area, and UNESCO world heritage

The circuit variant of this curse is called Rent’s law.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 26

The curse of Los Angeles

... or, the fatality of traffic jams in an expanding city.

you plan a city, with roads sized to avoid traffic jams at the time

then the city grows, and more people want to use the roads in the old center

so they get traffic-jammed.

Two examples of this process at work:

Los Angeles
since the 30s: one century of car-centered progress
ever-wider highways built in place of housing (see Roger Rabbit)
now: 2/3 of the area dedicated to cars (roads + parking lots)

Lyon
in the 70s: planned destruction of a Renaissance area

to make space for a highway
conservatism, opposition to progress −→ project cancellation
now: a car-free area, and UNESCO world heritage

The circuit variant of this curse is called Rent’s law.
F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 26

Rent’s law

Yet another experimental law

In a circuit of diameter n (gates),
the number of wires crossing a diameter
is proportional to nr with 1 < r < 2.

more than proportional to n, the diameter,

not quite proportional to the area n2 of each half-circuit.

The value of r (Rent’s exponent) depends of the class of circuit.

FPGAs are designed for worst-case circuits, hence r close to 2...

Our city planners should take crash courses in complexity theory.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 27

Rent’s law

Yet another experimental law

In a circuit of diameter n (gates),
the number of wires crossing a diameter
is proportional to nr with 1 < r < 2.

more than proportional to n, the diameter,

not quite proportional to the area n2 of each half-circuit.

The value of r (Rent’s exponent) depends of the class of circuit.

FPGAs are designed for worst-case circuits, hence r close to 2...

Our city planners should take crash courses in complexity theory.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 27

Addressing Rent’s law

In cities: Transposed to FPGA:
Build highways of various widths heterogeneous routing
Build busses, metro, tramway increase compute granularity
Relocalize the economy relocalize computations

And for you, the user:
Use bicycles instead of SUVs compute just right

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 28

Current FPGAs (with all these solutions)

coarser cells, optimized for additions
(up to 2,000,000 6-input LUT)

small (24 bit) multipliers (“DSP blocks”)
(up to 3,000)

small (≈ 10 kBit) memories (up to 2,000)

many independent clock networks & PLLs

flexible input/outputs

... the Altera/Intel stratix IV FPGA

... and still, the price of routing

A circuit that would fit in 1 mm2 of ASIC silicon will only fit in a 50mm2 FPGA...

... and the configured FPGA will run at 1/10th the frequency of the ASIC

there are transistors on all the wires!

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 29

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

sliceslice

A “slice” (Virtex7)

See the LUT?

... the register?

L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

sliceslice

A “slice” (Virtex7)

See the LUT?

... the register?

L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

sliceslice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
RR yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

sliceslice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)

4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

sliceslice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)

2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

slice

slice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)

Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

slice

slice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

slice

slice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

slice

slice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

Back to Earth: The real ����XXXXXilinx AMD Configurable Logic Block

slice

slice

A “slice” (Virtex7)

See the LUT?

... the register?
L
U
T

y
R yr

y

Granularity increasing

6-input LUTs (and counting)
4 LUT/slice (and counting)
2 slices/CLB (and counting)
Ratio reg/LUT still equal to 1

All this keeps routing local

Support of frequent operations

addition: carry logic
(skips the slow routing)

shift registers (SRL)
etc...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 30

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)

10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

WRKB: The real ����XXXXAltera Intel Logic Array Block

ALM

LAB

You still see the LUTs
(4 inputs/LUT)

and the registers

Granularity increasing

4 LUT/ALM
(adaptive logic module)
10 ALM/LAB (logic array block)

(and here you see the routing!)

ratio LUT/reg still 1

specific addition logic.

Two teams solving the same problems
with mutual patent avoidance

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 31

The ����XXXXXilinx AMD configurable DSP block

A multiplier with pre-adders and post-adders (for complex mult, symmetric FIR filters, etc.)
F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 32

The ����XXXXAltera Intel variable-precision DSP block

same comment
(with 2 multipliers
for complex arithmetic
etc.)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 33

Some opportunities
of hardware computing just right

Anti-introduction: the arithmetic you want in a processor

What they didn’t tell you about FPGA architectures

Some opportunities of hardware computing just right

A few FPGA success stories

Conclusion

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 34

Opportunity #1: Over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 35

Opportunity #1: Over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 35

Opportunity #1: Over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 35

Opportunity #1: Over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 35

Opportunity #1: Over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 35

Over-parameterization is cool

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program

⊕ Direct benefit to end-users: freedom of choice

People used to publish “An exponential architecture for single-precision”,
standard is now “A family of exponential architectures for each precision”
Application-specific optimal, future-proof, etc.

⊕ It actually simplifies design of composite operators (e.g. the exponential)

No need to take any dramatic decision in the design phase:
You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then estimate cost and accuracy as a function of the parameters
Then find the optimal values of the parameters,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 36

Over-parameterization is cool

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program

⊕ Direct benefit to end-users: freedom of choice

People used to publish “An exponential architecture for single-precision”,
standard is now “A family of exponential architectures for each precision”
Application-specific optimal, future-proof, etc.

⊕ It actually simplifies design of composite operators (e.g. the exponential)

No need to take any dramatic decision in the design phase:
You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then estimate cost and accuracy as a function of the parameters
Then find the optimal values of the parameters,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 36

Over-parameterization is cool

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program

⊕ Direct benefit to end-users: freedom of choice

People used to publish “An exponential architecture for single-precision”,
standard is now “A family of exponential architectures for each precision”
Application-specific optimal, future-proof, etc.

⊕ It actually simplifies design of composite operators (e.g. the exponential)

No need to take any dramatic decision in the design phase:
You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then estimate cost and accuracy as a function of the parameters
Then find the optimal values of the parameters,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 36

Opportunity #2: Operator specialization

Ha, that’s something software people don’t get!

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 37

Opportunity #2: Operator specialization

Ha, that’s something software people don’t get!

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 37

Opportunity #2: Operator specialization

Ha, that’s something software people don’t get!

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 37

Opportunity #2: Operator specialization

Ha, that’s something software people don’t get!

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 37

Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

3F 2 D

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 38

Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

0 5

3F 2 D

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 38

Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

20 5

3F 2 D

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 38

Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

2

020 5

3F 2 D

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 38

Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

D2

020 5

3F 2 D

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 38

Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

F

0

D2

020 5

3F 2 D

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 38

Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.
Being unable to trust my reasoning, I learnt by heart the results of all the possible divisions

(adapted from E. Ionesco)

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 39

Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

Being unable to trust my reasoning, I learnt by heart the results of all the possible divisions
(adapted from E. Ionesco)

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 39

Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.
Being unable to trust my reasoning, I learnt by heart the results of all the possible divisions

(adapted from E. Ionesco)

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 39

Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.
Being unable to trust my reasoning, I learnt by heart the results of all the possible divisions

(adapted from E. Ionesco)

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 39

What, my taxpayer money is wasted on studies of division by 3?

We did it for the fun of it, but it turns out to be useful for

correctly rounded floating-point division by 3 and 9 (Jacobi, etc)

round-robin addressing with 3 banks of memory (need quotient and remainder)

...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 40

Opportunity #3: target-specific optimizations

reg

clk

rst
DivBy3

Xi

k

Ri
rr

Qi

k

(Xi ,Ri−1)

/6

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

/6

(Ri ,Qi)

Generalizing hexadecimal to radix 2k

... or, how over-parameterization allows for adaptation

to various values of 3, like D = 5, or 7, or 9

to a given FPGA

Perfect match to modern FPGAs

Unit of area: the LUT, with α input bits (here α = 6)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 41

Opportunity #3: target-specific optimizations

reg

clk

rst
DivBy3

Xi

k

Ri
rr

Qi

k

(Xi ,Ri−1)

/6

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

/6

(Ri ,Qi)

Generalizing hexadecimal to radix 2k

... or, how over-parameterization allows for adaptation

to various values of 3, like D = 5, or 7, or 9

to a given FPGA

Perfect match to modern FPGAs

Unit of area: the LUT, with α input bits (here α = 6)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 41

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 42

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 42

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 42

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 42

Opportunity #3: target-specific optimizations

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 42

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 43

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 43

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 43

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 43

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 43

Opportunity #5: Generic approximators (when tabulation won’t scale)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)

Polynomial Coefficient Table

× + × + × +
S2 S1

C0C1C2C3

X

A

α

w

Y

w − α
Ỹ3 Ỹ2

Ỹ3 = X

fi
n
a
l
ro
u
n
dP̃(Y)

R

The FloPoCo FixFunctionByPiecewisePoly operator

state-of-the-art polynomial approximation

each multiplier tailored with love and care

Also multipartite tables, filter approximators, and more to come.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 44

Opportunity #6: merged arithmetic in bit heaps

One data-structure to rule them all... and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

A very wide class of operators: multi-valued polynomials, and more

Captures the true bit-level parallelism, enables bit-level optimization opportunities

Bit-array compressor trees can be optimized for each target
... and optimally so for practical sizes, thanks to M. Kumm

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 45

Opportunity #6: merged arithmetic in bit heaps

One data-structure to rule them all...

and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

A very wide class of operators: multi-valued polynomials, and more

Captures the true bit-level parallelism, enables bit-level optimization opportunities

Bit-array compressor trees can be optimized for each target
... and optimally so for practical sizes, thanks to M. Kumm

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 45

Opportunity #6: merged arithmetic in bit heaps

One data-structure to rule them all... and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

A very wide class of operators: multi-valued polynomials, and more

Captures the true bit-level parallelism, enables bit-level optimization opportunities

Bit-array compressor trees can be optimized for each target
... and optimally so for practical sizes, thanks to M. Kumm

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 45

When you have a good hammer, you see nails everywhere

A sine/cosine architecture (Iştoan, HEART 2013):

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 46

When you have a good hammer, you see nails everywhere

A sine/cosine architecture (Iştoan, HEART 2013): 5 bit heaps

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 46

Bit heaps for some operators and filters

w=16 bits

Why are some people still insisting I should call these “bit arrays”?

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 47

A few FPGA success stories

Anti-introduction: the arithmetic you want in a processor

What they didn’t tell you about FPGA architectures

Some opportunities of hardware computing just right

A few FPGA success stories

Conclusion

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 48

Summary so far

How not to do scientific computing on FPGAs

In 2007, an Intel team proudly demonstrates
their 1994 flagship processor in a single FPGA

and it runs at 25MHz (1/3rd of the 1994 frequency).

It boots to Linux (terminal only) in 10mn

It will probably not accelerate your scientific code.

... jokes aside, this is a really nice paper.

Shih-Lien L. Lu, Peter Yiannacouras, Taeweon Suh, Rolf Kassa, Michael Konow.
An FPGA-Based Pentium RO in a Complete Desktop System
In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2007.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 49

Summary so far

How not to do scientific computing on FPGAs

In 2007, an Intel team proudly demonstrates
their 1994 flagship processor in a single FPGA

and it runs at 25MHz (1/3rd of the 1994 frequency).

It boots to Linux (terminal only) in 10mn

It will probably not accelerate your scientific code.

... jokes aside, this is a really nice paper.

Shih-Lien L. Lu, Peter Yiannacouras, Taeweon Suh, Rolf Kassa, Michael Konow.
An FPGA-Based Pentium RO in a Complete Desktop System
In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2007.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 49

A snapshot from Xilinx’ HPC page (when it was still Xilinx):

©Xilinx

You find the same keywords on Intel FPGA’s pages

and on Maxeler Technologies’ (a company providing computation acceleration service)

among others ...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 50

Monte Carlo simulation

uniform random bits are cheap as chips on FPGAs

LFSRs are a CPU thing
generalize them to several parallel shift registers
several random bits in parallel from a single state
high-quality randomness if you get the math right

David B. Thomas and Wayne Luk.
FPGA-Optimised High-Quality Uniform Random Number Generators
In ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2008.

FPGAs also much better at non-uniform (Gaussian etc) than
CPUs or GPUs

David B. Thomas, Lee Howes, and Wayne Luk.
A Comparison of CPUs, GPUs, FPGAs, and Massively Parallel
Processor Arrays for Random Number Generation
In ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2009.

All this was developped for antiscientific computing (high-speed trading), but still...

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 51

Signal processing

Mario Garrido, Konrad Möller, and Martin Kumm.
World’s Fastest FFT Architectures: Breaking the Barrier of 100 GS/s.
IEEE Transactions on Circuits and Systems I, 66(4):1507–1516, 2019.

Fully unrolled FFT (up to 256 points)

i.e. inputting 256 complex values per cycle, at 500 MHz
well above 10 TOp/s if you count all additions and multiplications

16-bit in/out, wider datapath inside

Look, Ma: no multiplier !

each multiplier expanded as an adder graph (and optimally so)
... leaving the 1800 DSP blocks free for other things.

about 1/5th of LUT + registers of the target device (Virtex UltraScale 190)

As previously, a good start is not to imitate the processor solution.

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 52

Artificial intelligence and machine learning

So many papers these days, here is one extreme:

Adrien Prost-Boucle, Alban Bourge, and Frédéric Pétrot.
High-efficiency convolutional ternary neural networks with custom adder trees and
weight compression.
ACM Transactions on Reconfigurable Technologies and Systems, 11(3), dec 2018.

Ternary logic: weight and activations ∈ {−1, 0, 1}
Specific network retraining

(and a few more layers to reach comparable accuracy)

All the weights fit in the FPGA RAM blocks

Embedded HPC on small FPGAs

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 53

FPGA-oriented machine learning

Maxime Christ, Florent de Dinechin, and Frédéric Pétrot.
Low-precision logarithmic arithmetic for neural network accelerators
Application-Specific Arrays and Processors, 2022.

∑B
Sin

bias

activation + log

Sout

LX
′
j

b−x

+

LXN LWN

sWN

b−x

+

LX 1 LW 1

sW 1

• • • • •

Logarithmic data on 4 to 6 bits

Tabulated b−x and activation+log

Every bit counts:

ReLU1 saves 2 sign bits

−4 −2 0 2 4

0

1

2

No need for special encoding of 0,

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 54

FPGA-oriented machine learning

Maxime Christ, Florent de Dinechin, and Frédéric Pétrot.
Low-precision logarithmic arithmetic for neural network accelerators
Application-Specific Arrays and Processors, 2022.

∑B
Sin

bias

activation + log

Sout

LX
′
j

b−x

+

LXN LWN

sWN

b−x

+

LX 1 LW 1

sW 1

• • • • •

Logarithmic data on 4 to 6 bits

Tabulated b−x and activation+log

Every bit counts:

ReLU1 saves 2 sign bits

−4 −2 0 2 4

0

1

2

No need for special encoding of 0,

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 54

Conclusion

Anti-introduction: the arithmetic you want in a processor

What they didn’t tell you about FPGA architectures

Some opportunities of hardware computing just right

A few FPGA success stories

Conclusion

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 55

A quote from the random generation paper (comparing CPU, GPU and FPGA):

∀X

The surprising result is that
each platform requires a different approach to random number generation

I hope you appreciate now that it is not surprising.

... and I invite you to suspect that this is true also for whatever you want to compute

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 56

A quote from the random generation paper (comparing CPU, GPU and FPGA):

∀X

The �����XXXXXsurprising result is that
each platform requires a different approach to random number generation

I hope you appreciate now that it is not surprising.

... and I invite you to suspect that this is true also for whatever you want to compute

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 56

A quote from the random generation paper (comparing CPU, GPU and FPGA):
∀X The �����XXXXXsurprising result is that
each platform requires a different approach to X

I hope you appreciate now that it is not surprising.

... and I invite you to suspect that this is true also for whatever you want to compute

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 56

	Anti-introduction: the arithmetic you want in a processor
	What they didn't tell you about FPGA architectures
	Some opportunities of hardware computing just right
	A few FPGA success stories
	Conclusion

