Computing Just Right: **Application-Specific Arithmetic** with FloPoCo

Florent **de Dinechin**

florent.de.dinechin@insa-lvon.fr

Outline

Intro: arithmetic operators FloPoCo, the user point of view Example: fixed-point functions Example: multiplication and division by constants Example: FIR filters Example: IIR filters Example: Multimodal sound synthesis (WIP) Example: Low-precision logarithmic neuron Example: floating-point exponential Error analysis for dummies (and other proof assistants) Example: fixed-point sine/cosine Example: floating-point sums and sums of products The universal bit heap Conclusion

Bibliography

Florent de Dinechin Martin Kumm

Application-Specific Arithmetic

Computing Just Right for the Reconfigurable Computer and the Dark Silicon Era It is already the third year I announce this book, but this time should be the last one...

Also, you can find articles on all these subjects on the web page of FloPoCo:

http://flopoco.org/

D Springer

Intro: arithmetic operators

Intro: arithmetic operators

- An arithmetic operation is a *function* (in the mathematical sense)
 - few well-typed inputs and outputs
 - no memory or side effect (usually)
 - (even DSP filters are defined by a transfer function)

- An arithmetic operation is a *function* (in the mathematical sense)
 - few well-typed inputs and outputs
 - no memory or side effect (usually)
 - (even DSP filters are defined by a transfer function)
- An operator is the *implementation* of such a function
 - IEEE-754 FP standard: operator(x) = rounding(operation(x))
 - Let's use the same approach for fixed-point operators, and non-standard ones
- ightarrow Clean mathematic definition, even for floating-point arithmetic

- An arithmetic operation is a *function* (in the mathematical sense)
 - few well-typed inputs and outputs
 - no memory or side effect (usually)
 - (even DSP filters are defined by a transfer function)
- An operator is the *implementation* of such a function
 - IEEE-754 FP standard: operator(x) = rounding(operation(x))
 - Let's use the same approach for fixed-point operators, and non-standard ones
- ightarrow Clean mathematic definition, even for floating-point arithmetic

An operator, as a *circuit*...

... is a direct acyclic graph (DAG):

- easy to build and pipeline
- easy to test against its mathematical specification

• An arithmetic operation is a *function* (in the mathematical sense)

- few well-typed inputs and outputs
- no memory or side effect (usually)
 - (even DSP filters are defined by a transfer function)
- An operator is the *implementation* of such a function
 - IEEE-754 FP standard: operator(x) = rounding(operation(x))
 - Let's use the same approach for fixed-point operators, and non-standard ones
- ightarrow Clean mathematic definition, even for floating-point arithmetic

An operator, as a *circuit*...

- ... is a direct acyclic graph (DAG):
 - easy to build and pipeline
 - easy to test against its mathematical specification

And also, operators are small, no FPGA I/O problem, etc...

FloPoCo, the user point of view

Intro: arithmetic operators

FloPoCo, the user point of view

Conclusion

Here should come a demo

FloPoCo is freely available from

http://flopoco.org/

- Stable version 4.1.2: more operators
- git master version (will be 5.0): cleaner code, a few operators missing
 - used in these slides (mostly)
 - possible interface differences

Command line syntax

- a sequence of operator specifications
- each with many parameters
 - operator parameters (mandatory and optional)
 - global optional parameters: target frequency, target hardware, ...
- Output: synthesizable VHDL.

First something classical

A single precision floating-point adder

(8-bit exponent and 23-bit mantissa)

./flopoco FPAdd wE=8 wF=23

```
Final report:
|---Entity FPAdder_8_23_uid2_RightShifter
|---Entity IntAdder_27_f400_uid7
|---Entity LZCShifter_28_to_28_counting_32_uid14
|---Entity IntAdder_34_f400_uid17
Entity FPAdder_8_23_uid2
Output file: flopoco.vhdl
```

To probe further:

 ./flopoco FPAdd wE=11 wF=51 double precision
 ./flopoco FPAdd wE=9 wF=36 just right for you

F. de Dinechin Computing Just Right: Application-specific arithmetic

To get a larger but shorter-latency architectural variant:

./flopoco FPAdd wE=8 wF=23 dualpath=true

Here, dualpath is an optional performance option. (different VHDL, same function)

Classical floating-point, continued

A complete single-precision FPU in a single VHDL file:

./flopoco FPAdd wE=8 wF=23 FPMult wE=8 wF=23 FPDiv wE=8 wF=23 FPSqrt wE=8 wF=23

```
Final report:
   |---Entity FPAdder_8_23_uid2_RightShifter
   |---Entity IntAdder_27_f400_uid7
   |---Entity LZCShifter_28_to_28_counting_32_uid14
   ---Entity IntAdder_34_f400_uid17
  Entity FPAdder_8_23_uid2
  Entity Compressor_2_2
  Entity Compressor_3_2
       |---Entity IntAdder_49_f400_uid39
   |---Entity IntMultiplier_UsingDSP_24_24_48_unsigned_uid26
   |---Entity IntAdder_33_f400_uid47
  Entity FPMultiplier_8_23_8_23_8_23_uid24
  Entity FPDiv_8_23
  Entity FPSqrt_8_23
  Output file: flopoco.vhdl
           Computing Just Right: Application-specific arithmetic
F. de Dinechin
```

Damn lies

It was not a classical single-precision FPU

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

• exponent size w_E and mantissa size w_F can take arbitrary values

Damn lies

It was not a classical single-precision FPU

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

- exponent size w_E and mantissa size w_F can take arbitrary values
- \bullet 0, ∞ and NaN flagged in 2 explicit exception bits: exn
 - not as special exponent values
 - (as a consequence, two more exponent values available in FloPoCo)

Damn lies

It was not a classical single-precision FPU

FloPoCo floating-point format

Inspired and compatible with IEEE-754, except that

- exponent size w_E and mantissa size w_F can take arbitrary values
- \bullet 0, ∞ and NaN flagged in 2 explicit exception bits: exn
 - not as special exponent values
 - (as a consequence, two more exponent values available in FloPoCo)
- subnormal numbers are not supported
 - Adding 1 more exponent bit provides them all, and is much more area-efficient
 - However we lose $a-b==0 \iff a==b$
- Conversions operators from/to IEEE floating point available

Number formats in FloPoCo

- Integers and fixed-point numbers
- The previous floating-point format
- A few operators for IEEE floating-point format
- A few operators for posits
- Logarithm Number System (LNS) in older versions
- One Obscure Branch contains decimal arithmetic
- no Residue Number System (RNS) and other modular arithmetic waiting for them

... Plus good old binary fixed-point (integer) for quite a few operators

Fixed-point formats

 $X = \sum_{i=\ell}^{m} 2^{i} x_{i}$

m-1

 $X = -2^m x_m + \sum_{i=\ell}^m 2^i x_i$

Parameters for an unsigned (positive) fixed-point format

- *m* is the Most Significant Bit position, and determines the range
- $\bullet~\ell$ is the Least Significant Bit position, and determines the precision
- Both can be positive (to the left of the point) or negative (to the right)

Parameters for a fixed-point format in two's complement

bit weights
$$-2^5$$
 2^{-4}
s
bit position $m = 5 \ 4 \ 3 \ 2 \ 1 \ 0 \ -1 \ -2 \ -3 \ -4 = \ell$

Fixed-point formats: integers

Two's complement 10-bit integers

Fixed-point formats: fractional numbers

F. de Dinechin Computing Just Right: Application-specific arithmetic

... and this is why I don't like the Qi, f notation

Qi, f reads " a number with i integer bits and f fractional bits"

... so here

• I would have -7 integer bits?!?

• and do I have 26 or 19 fractional bits?

Also, how should each bit be named?

Typical interface to a fixed-point FloPoCo operator

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 msbOut=3 d=3

Typical interface to a fixed-point FloPoCo operator

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 msbOut=3 d=3

Computing Just Right makes interfaces simpler

Never output bits that do not hold useful information:

Output precision ($\ell_{out})$ specifies operator accuracy

- \bullet No need to compute more accurately than $2^{\ell_{out}}\colon$ we couldn't output it
- No sense in computing less accurately than $2^{\ell_{out}}$:

we don't want to output garbage bits

Correct rounding (à la IEEE-754) is the best we can do with machine numbers

Computing Just Right makes interfaces simpler

Never output bits that do not hold useful information:

Output precision ($\ell_{out})$ specifies operator accuracy

- \bullet No need to compute more accurately than $2^{\ell_{out}}\colon$ we couldn't output it
- No sense in computing less accurately than $2^{\ell_{out}}$:

we don't want to output garbage bits

Computing Just Right makes interfaces simpler

Never output bits that do not hold useful information:

Output precision ($\ell_{out})$ specifies operator accuracy

- \bullet No need to compute more accurately than $2^{\ell_{out}}\colon$ we couldn't output it
- No sense in computing less accurately than $2^{\ell_{out}}$:

we don't want to output garbage bits

It would be too simple, people would complain

Sometimes correct rounding is to expensive to implement, or just impossible to guarantee...

Two equivalent specifications:

- The output Y of the operator may be one of the two numbers surrounding f(X). When f(X) is a machine number, then Y = f(X).
- The difference between the output value Y and f(x) is strictly smaller than $2^{\ell_{out}}$.

It would be too simple, people would complain

Sometimes correct rounding is to expensive to implement, or just impossible to guarantee...

Two equivalent specifications:

- The output Y of the operator may be one of the two numbers surrounding f(X). When f(X) is a machine number, then Y = f(X).
- The difference between the output value Y and f(x) is strictly smaller than $2^{\ell_{out}}$.

Slightly less accurate than correct rounding, but still:

if you add one bit to the output, you double the accuracy.

Parenthesis: binary for theoretical physicists (and other signal people)

- $2^{10} \approx 10^3$ (kBytes are actually 1024 bytes).
- Another point of view : $10 \log_{10}(2) \approx 3$
- $\bullet\,$ In other words, 1 bit \approx 3 dB

I don't count signal/noise ratio in dB, I count accuracy in bits.

A combinatorial operator, with registers that produce its inputs and consume its outputs

Performance through pipelining

The same operator, pipelined into N = 4 stages: frequency can be multiplied by 4.

A more realistic example

./flopoco fpadd we=8 wf=23

A more realistic example

./flopoco frequency=200 fpadd we=8 wf=23

Adds 3 synchronization barriers:

- FloPoCo reports a pipeline depth of 3,
- meaning that there are 4 pipeline stages

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:

./flopoco frequency=300 FPAdd wE=8 wF=23

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:

./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

"Please pipeline this operator to work at 200MHz"

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:

./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

"Please pipeline this operator to work at 200MHz"

Not the choice made by other core generators...
Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:

./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

"Please pipeline this operator to work at 200MHz"

Not the choice made by other core generators...

... but better because *compositional* When you assemble components working at frequency f, you obtain a component working at frequency f.

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:

./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction "Please pipeline this operator to work at 200MHz"

Not the choice made by other core generators...

... but better because *compositional* When you assemble components working at frequency f, you obtain a component working at frequency f.

Remark: automatic pipeline framework improved from version 4 to (future) version 5, but all the operators need to be ported.

Examples of pipeline

./flopoco frequency=400 FPAdd wE=8 wF=23

```
Final report:
|---Entity FPAdder_8_23_uid2_RightShifter
| Pipeline depth = 1
|---Entity IntAdder_27_f400_uid7
| Pipeline depth = 1
|---Entity LZCShifter_28_to_28_counting_32_uid14
| Pipeline depth = 4
|---Entity IntAdder_34_f400_uid17
| Pipeline depth = 1
Entity FPAdder_8_23_uid2
Pipeline depth = 9
```

./flopoco frequency=200 FPAdd wE=8 wF=23

```
Final report:
(...)
Pipeline depth = 4
```

Of course the frequency depends on the target FPGA

```
./flopoco target=Zynq7000 frequency=200 FPAdd wE=8 wF=23
```

```
Final report:
(...)
Pipeline depth = 5
```

./flopoco target=VirtexUltrascalePlus frequency=200 FPAdd wE=8 wF=23

```
Final report:
(...)
Pipeline depth = 1
```

Altera and Xilinx targets supported in the stable branch (at various levels of accuracy, in various versions): Spartan3, Zynq7000, Virtex4, Virtex5, Virtex6, Kintex7, VirtexUltrascalePlus, StratixII, StratixIV, StratixIV, StratixV, CycloneII, CycloneII, CycloneIV, CycloneV.

We do our best but we know it's hopeless

The actual frequency obtained will depend on the whole application (placement, routing pressure etc)...

- best-effort philosophy,
- \bullet aiming to be accurate to 10% for an operator synthesized alone
- asking a higher frequency provides a deeper pipeline

We do our best but we know it's hopeless

The actual frequency obtained will depend on the whole application (placement, routing pressure etc)...

- best-effort philosophy,
- \bullet aiming to be accurate to 10% for an operator synthesized alone
- asking a higher frequency provides a deeper pipeline

And a big TODO: VLSI targets.

Also match the architecture to the target FPGA

Compare the VHDL produced with FloPoCo 4.1.2 for

flopoco target=Virtex4 IntConstDiv wIn=16 d=3

flopoco target=Virtex6 IntConstDiv wIn=16 d=3

Also match the architecture to the target FPGA

Compare the VHDL produced with FloPoCo 4.1.2 for

flopoco target=Virtex4 IntConstDiv wIn=16 d=3

flopoco target=Virtex6 IntConstDiv wIn=16 d=3

Also match the architecture to the target FPGA

Compare the VHDL produced with FloPoCo 4.1.2 for

flopoco target=Virtex4 IntConstDiv wIn=16 d=3

flopoco target=Virtex6 IntConstDiv wIn=16 d=3

Architecture specificities

- LUTs
- DSP blocks
- memory blocks

F. de Dinechin Computing Just Right: Application-specific arithmetic

Non-standard operators

• Correctly rounded divider by 3:

flopoco FPConstDiv wE=8 wF=23 d=3

• Floating-point exponential: flopoco FPExp wE=8 wF=23

• Multiplication of a 32-bit signed integer by the constant 1234567 (several algorithms, cleanup in progress, your mileage may vary):

flopoco IntIntKCM

flopoco IntConstMult

Full list in the documentation, or by typing just

flopoco

Sorry for the sometimes incomplete or inconsistent interface.

Don't trust us

TestBench generates a test bench for the operator preceding it on the command line

- flopoco FPExp wE=8 wF=23 TestBench n=10000 generates 10000 random tests
- flopoco IntConstDiv wIn=16 d=3 TestBench

generates an exhaustive test

And a few extras

Options generateFigures and dependecyGraph produce figures...

./flopoco frequency=200 dependencygraph=full fpadd we=8 wf=23

creates a dot dot/ directory containing this:

And a few extras

Options generateFigures and dependecyGraph produce figures...

./flopoco frequency=200 dependencygraph=full fpadd we=8 wf=23

creates a dot dot/ directory containing this:

Helper functions for encoding/decoding FP format, if you want to check the testbench...

fp2bin 9 36 3.1415926

Example: fixed-point functions

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Generic generator of fixed-point functions

The sine function

The sine function

Input format is in fixed point

Arbitrary choice in FloPoCo: the input domain will be [0,1) or [-1,1).

Discretization issues

Inputs and outputs in [0,1) (4-bit fixed-point) :

Possible fixes for corner-case discretization issues

F. de Dinechin Computing Just Right: Application-specific arithmetic

FixFunctionByTable

flopoco FixFunctionByTable f="sin(pi/2*x)" signedIn=0 lsbIn=-6 lsbOut=-6

Go check in the VHDL which solution is used... (Hint: remember that msbOut is computed.)

FixFunctionByTable, fixed

flopoco FixFunctionByTable f="63/64*sin(pi/2*x)" signedIn=0 lsbIn=-6 lsbOut=-6

Go check the VHDL...

Tables can hold functions that are arbitrarily ugly

flopoco FixFunctionByTable f="sin(pi/2/x)" signedIn=0 lsbIn=-16 lsbOut=-16

Tables scaling

The previous example was a 16-bit in, 16-bit out.

Tables scaling

The previous example was a 16-bit in, 16-bit out. (you just added 64 KLOC to your project)

Tables scaling

The previous example was a 16-bit in, 16-bit out. (you just added 64 KLOC to your project)

Practical sizes

- The generated VHDL: 2^{-1sbIn} lines of 1sbOut bits each
- LUT cost: 2^{-lsbIn-6} × lsbOut
- A table of $2^6 \times 6$ bits costs exactly 6 LUTs.

• A 20 Kb dual-port BlockRAM can hold two tables of $2^{10} \times 10$ bits.

Lossless Differential Table Compression

A good idea by Hsiao, generalized in FloPoCo to all sorts of tables.

Size $2^{w_A-s} \times w_H + 2^{w_A} \times w_L$ bits

FixFunctionByMultipartiteTable for 12 to 24 bits

• rule of thumb: cost grows as $2^{p/2} \times p$ instead of $2^p \times p$

• but requires the function to be continuous, derivable, and even monotonic

F. de Dinechin Computing Just Right: Application-specific arithmetic

One more trick: symmetry

We exploit symmetry to trade one table input bit for two rows of XOR gates...

A generic piecewise polynomial approximation method: FixFunctionByPiecewisePoly

- requires higher-order derivability, but scales to 64 bits.
- One more parameter: the *degree* of the polynomials, trades-off **memory** and **multipliers**

Conclusion

Try for yourself! All these methods have similar interface in FloPoCo.

- plain tabulation always works but scales poorly
 - also works when input and output sizes differ
 - but plain tables can often be compressed
 - and synthesis tools sometimes find yet more compression
- multipartite methods worth a try up to 20 bits
 - but somehow need same input and output sizes
- piecewise polynomials scale (at a cost) to 64 bits

Do not forget to be clever!

Use the maths of the function first if you can !

- symmetries in sine/cosine
- GeLU is designed to be ReLU + a small diff, tabulate only the small diff !

• etc.

Example: multiplication and division by constants

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion

FPGA-specific LUT-based methods

• Write x in radix
$$2^{\alpha}$$
: $x = \sum_{i=0}^{n} 2^{\alpha i} x_i$ with $0 \le x_i < 2^{\alpha}$
Ex: good old hexadecimal is $\alpha = 4$: $X = \overbrace{x_{11} x_{10} x_9 x_8 x_7 x_6 x_5 x_4 x_3 x_2 x_1 x_0}^{\alpha \text{ bits}}$
• then $Cx = \sum_{i=0}^{n} 2^{\alpha i} (Cx_i)$
• and tabulate the products Cx_i in α -input LUTs
• (also works if C is a real number like, say, $1/\log(2)$)

Extremely efficient for small n (input size) on LUT-based FPGAs.

An architecture for 6-input LUTs

Shift-and-add methods for integer constants

- $17x = 16x + x = (x \ll 4) + x$
- 15x = 16x x
- $7697x = 15x \ll 9 + 17x$
- very good recent ILP-based heuristics
- In FPGAs, take into account the size of each addition

(demo?)

Extremely efficient for some constants such as 17.

F. de Dinechin Computing Just Right: Application-specific arithmetic

(Booth recoding)

(open problem here)

Shift-and-add methods for integer constants

- $17x = 16x + x = (x \ll 4) + x$
- 15x = 16x x
- $7697x = 15x \ll 9 + 17x$
- very good recent ILP-based heuristics

• In FPGAs, take into account the size of each addition (demo?)

Extremely efficient for some constants such as 17.

FloPoCo offers both methods (and the exponential uses both).

(Booth recoding)

(open problem here)

Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

Floating-point multiplication by a rational constant

Motivation

divisions by 3 and by 9 in stencil applications

- $1/3 = 0.01010101010101010101010101010101010\cdots$
- $1/9 = 0.000111000111000111000111000111 \cdots$

Two specificities

- The binary representation of the constant is periodic
 - \longrightarrow specific optimisation of the shift-and-add approach
- Precision required for correct rounding

Computing periodicity

A lemma adapted from 19th century number theory

Let a/b be an irreductible rational such that

● a < b

• 2 divides neither a nor b (powers of two are a matter of exponent)

Then

- a/b has a purely periodic binary representation
- The period size s is the multiplicative order of 2 modulo b
 - (the smallest integer such that $2^s \mod b = 1$)
- The periodic pattern is the integer $p = \lfloor 2^s a/b \rfloor$

Computing periodicity

A lemma adapted from 19th century number theory

Let a/b be an irreductible rational such that

● a < b

• 2 divides neither a nor b (powers of two are a matter of exponent)

Then

- a/b has a purely periodic binary representation
- The period size s is the multiplicative order of 2 modulo b
 - (the smallest integer such that $2^s \mod b = 1$)
- The periodic pattern is the integer $p = \lfloor 2^s a/b \rfloor$

Example: 1/9

- b = 9; period size is s = 6 because $2^6 \mod 9 = 1$.
- The periodic pattern is $\lfloor 1 \times 2^6/9 \rfloor = 7$, which we write on 6 bits 000111, and we obtain that $1/9 = 0.(000111_2)^{\infty}$.

Optimal architecture for precision p_c

Correct rounding of a floating-point x by a rational a/b

A lemma adapted from the exclusion lemma of FP division

• Correct rounding on *n* bits needs $n + 1 + \lceil \log_2 b \rceil$ bits of the constant

In practice, it is for free if b is small.

			This work		previous SotA		
	constant	p	p _c	#FA	p _c	#FA	depth
	1/3	24	32	118	27	190	4
		53	64	317	56	368	5
	$ ho=01_2$	113	128	792	116	1026	6
	1/9	24	30	132	29	131	5
		53	60	356	58	408	6
	$p = 000111_2$	113	120	885	118	1116	7
Γł	he precisions chosen here are those of the IEEE754-2008 formate						

... But the FloPoCo code manages arbitrary a/b (including a > b).

And now for something completely different

Instead of specializing multiplication, let us try and specialize division.

Anybody here remembers how we compute divisions?

Anybody here remembers how we compute divisions?

- iteration body: Euclidean division of a 2-digit decimal number by 3
- The first digit is a remainder from previous iteration: its value is 0, 1 or 2
- Possible implementation as a look-up table that, for each value from 00 to 29, gives the quotient and the remainder of its division by 3.
- F. de Dinechin Computing Just Right: Application-specific arithmetic

Writing an integer x in radix 2^{α}

 $x = \sum_{i=0}^{n} 2^{\alpha i} x_i$

(split of the bits of x into chunks of α bits)

Writing an integer x in radix 2^{α}

 $x = \sum_{i=0}^{n} 2^{\alpha i} x_i$

(split of the bits of x into chunks of α bits)

Writing an integer x in radix 2^{α}

 $x = \sum_{i=0}^{n} 2^{\alpha i} x_i$

(split of the bits of x into chunks of α bits)

Writing an integer x in radix 2^{α}

 $x = \sum_{i=0}^{n} 2^{\alpha i} x_i$

(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha = 4$

F. de Dinechin Computing Just Right: Application-specific arithmetic

Writing an integer x in radix 2^{α}

 $x = \sum_{i=0}^{n} 2^{\alpha i} x_i$

(split of the bits of x into chunks of α bits)

Example: good old hexadecimal is $\alpha = 4$

F. de Dinechin Computing Just Right: Application-specific arithmetic

Writing an integer x in radix 2^{α}

 $x = \sum_{i=0}^{n} 2^{\alpha i} x_i$

(split of the bits of x into chunks of α bits)

And now for some mathematical obfuscation

procedure CONSTANTDIV(x, d) $r_k \leftarrow 0$ for i = k - 1 down to 0 do $y_i \leftarrow x_i + 2^{\alpha} r_{i+1}$ $(q_i, r_i) \leftarrow (\lfloor y_i/d \rfloor, y_i \mod d)$ end for return $q = \sum_{i=0}^k q_i \cdot 2^{-\alpha i}, r_0$ end procedure

(this + is a concatenation) (read from a table)

```
procedure CONSTANTDIV(x, d)

r_k \leftarrow 0

for i = k - 1 down to 0 do

y_i \leftarrow x_i + 2^{\alpha} r_{i+1}

(q_i, r_i) \leftarrow (\lfloor y_i/d \rfloor, y_i \mod d)

end for

return q = \sum_{i=0}^k q_i \cdot 2^{-\alpha i}, r_0

end procedure
```

(this + is a concatenation) (read from a table)

Each iteration

- consumes α bits of x, and a remainder of size $\gamma = \lceil \log_2 d \rceil$
- $\bullet\,$ produces $\alpha\,$ bits of ${\it q},$ and a remainder of size $\gamma\,$
- \bullet implemented as a table with $\alpha+\gamma$ bits in, $\alpha+\gamma$ bits out

(if you're convinced the decimal version works...)

- prove that we indeed compute the Euclidean division
- $\bullet\,$ prove that the result is indeed a radix-2 $^{\alpha}\,$ number

Sequential implementation

F. de Dinechin Computing Just Right: Application-specific arithmetic

Unrolled implementation

Logic-based version

For instance, assuming a 6-input LUTs (e.g. LUT6)

- A 6-bit in, 6-bit out consumes 6 LUT6
- Size of remainder is $\gamma = \log_2 d$
- If $d < 2^5$, very efficient architecture: $\alpha = 6 \gamma$
- The smaller *d*, the better
- Easy to pipeline (one register behind each LUT)

Dual-port RAM-based version?

For larger d?

(not really studied, waiting for the demand)

Synthesis results on Virtex-5 for combinatorial Euclidean division

		n = 32 bits	
constant	LUT6	(predicted)	latency
$d = 3 \ (\alpha = 4)$	47	(6*8=48)	7.14ns
$d=5~(\alpha=3)$	60	(6*11=66)	6.79ns
d=7~(lpha=3)	60	(6*11 = 66)	7.30ns
		n = 64 bits	
constant	LUT6	(predicted)	latency
$d=3~(\alpha=4)$	95	(6*16=96)	14.8ns
$d=5~(\alpha=3)$	125	(6*22=132)	13.8ns
$d = 7 \ (\alpha = 3)$	125	(6*22=132)	15.0ns

Synthesis results on Virtex-5 for combinatorial Euclidean division

		n = 32 bits	
constant	LUT6	(predicted)	latency
$d = 3 \ (\alpha = 4)$	47	(6*8=48)	7.14ns
$d = 5 \ (\alpha = 3)$	60	(6*11 = 66)	6.79ns
$d = 7 \ (\alpha = 3)$	60	(6*11 = 66)	7.30ns
		n = 64 bits	
constant	LUT6	(predicted)	latency
$d = 3 \ (\alpha = 4)$	95	(6*16=96)	14.8ns
$d = 5 \ (\alpha = 3)$	125	(6*22=132)	13.8ns
$d = 7 \ (\alpha = 3)$	125	(6*22=132)	15.0ns

Logic optimizer even finds something to chew: *don't care* lines in the tables.

Synthesis results on Virtex-5 for pipelined Euclidean division by 3

n = 32 bits			
FF + LUT6	performance		
33 Reg + 47 LUT	1 cycle @ 230 MHz		
58 Reg $+$ 62 LUT	2 cycles @ 410 MHz		
68 Reg + 72 LUT	3 cycles @ 527 MHz		
n = 64 bits			
FF+LUT6	performance		
122 Reg + 112 LUT	2 cycles @217 MHz		
168 Reg $+$ 198 LUT	5 cycles @ 410 MHz		
$172 \operatorname{Reg} + 188 \operatorname{LUT}$	7 cycles @ 527 MHz		

Floating-point version is cheap, too

• pre-normalisation and pre-rounding:

$$\left\lfloor \frac{2^{s+\epsilon}m}{d} \right\rceil = \left\lfloor \frac{2^{s+\epsilon}m}{d} + \frac{1}{2} \right\rfloor = \left\lfloor \frac{2^{s+\epsilon}m + d/2}{d} \right\rfloor$$

F. de Dinechin Computing Just Right: Application-specific arithmetic

Synthesis results on Virtex-5 for pipelined floating-point division by 3

single precision

FF + LUT6	performance
35 Reg + 69 LUT	1 cycle @ 217 MHz
105 Reg + 83 LUT	3 cycles @ 411 MHz
standard correctly	y rounded divider
1122 Reg $+$ 945 LUT	17 cycles @ 290 MHz

double precision

FF+LUT6	performance		
122 Reg $+$ 166 LUT	2 cycles @ 217 MHz		
$245 \ Reg + 250 \ LUT$	6 cycles @ 410 MHz		
using shift-and-add			
$282 \ Reg + 470 \ LUT$	5 cycles @ 307 MHz		

F. de Dinechin Computing Just Right: Application-specific arithmetic

Was it worth to spend so much time on division by 3?

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

Was it worth to spend so much time on division by 3?

(this slide intentionally left blank)

(three years later, Ugurdag et al spent more time on a parallel version)

Two weeks from the first intuition of the algorithm to complete pipelined FloPoCo implementation + paper submission.

Implementation time

- 10 minutes to obtain a testbench generator
- 1/2 day for the integer Euclidean division
- 20 mn for its flexible pipeline
- 1/2 day for the FP divider by 3
- and again 20 mn

This was advertising for the FloPoCo framework.

Example: FIR filters

Example: FIR filters

Finite Impulse Response filters

$$y(t) = \sum_{i=0}^{N-1} b_i x(t-i)$$

- the *b_i* are potentially real numbers (or almost: Matlab numbers)
- the x(t) and y(t) are discrete, fixed-point, low-precision signals

(the lower, the cheaper)

FIR filters, architectural view (abstract)

$$y(t) = \sum_{i=0}^{N-1} b_i x(t-i)$$

FIR filters, arithmetic view

$$y(t) = \sum_{i=0}^{N-1} b_i x(t-i)$$

The b_i are reals, therefore the exact result y may be an irrational.
FIR filters, arithmetic view

$$y(t) = \sum_{i=0}^{N-1} b_i x(t-i)$$

Naive approach: round the b_i and the products to the target precision.

FIR filters, arithmetic view

$$y(t) = \sum_{i=0}^{N-1} b_i x(t-i)$$

... but the accumulation of rounding errors makes the result inaccurate

FIR filters, arithmetic view

$$y(t) = \sum_{i=0}^{N-1} b_i x(t-i)$$

Proposed approach: last-bit-accurate architecture with respect to the exact result

• Output precision defines accuracy of the architecture

- Output precision defines accuracy of the architecture
- Accuracy defines the optimal precisions to be used internally

- Output precision defines accuracy of the architecture
- Accuracy defines the optimal precisions to be used internally No point in computing more, no point in computing less

Example of the accuracy/cost tradeoff

8-tap, 12 bit Root-Raised Cosine FIR filters

Naive,
$$p=12$$
 5.9 ns, 444 LUT $\overline{\epsilon}>2^{-9}$

$$y_1$$
 y_0 y_{-1} y_{-2} y_{-3} y_{-4} y_{-5} y_{-6} y_{-7} y_{-8} y_{-9} y_{-9}

Proposed,
$$p = 12$$
 4.4 ns, 564 LUT $\overline{\epsilon} < 2^{-12}$

Proposed,
$$p = 9$$
 4.12 ns, 380 LUT $\overline{\epsilon} < 2^{-9}$

Demo

- Coefficients entered as math. formulae
- FPGA-specific optimizations
- Frequency-directed pipeline
- Test-driven design
- \ldots and all the other operators

Compute Just Right: Determining msbo

$a_0 =$.00001001111111010001010101101
$a_1 =$.00101110110001000101001110000
$a_2 =$.11000001011011010001001100101
$a_3 =$.00110101000001001110111001111
$a_0 x_0$	***************************************
$+a_{1}x_{1}$	***************************************
$+a_{2}x_{2}$	***************************************
$+a_{3}x_{3}$	***************************************
<i>y</i> =	<u> </u>

The MSB of $a_i x_i$

• x_i bounded (fixed-point number)

• *a_i* known

$$msb_{a_ix_i} = \lceil \log_2(|a_i|val_{max}(x_i)) \rceil$$

The MSB of the sum

•
$$a_i x_i$$
 bounded
 $msb_o = msb_y = \lceil \log_2(\sum_{i=0}^{N-1} |a_i| val_{max}(x_i)) \rceil$

Compute Just Right: Determining the LSB

Supose we use perfect multipliers: $\varepsilon_{mult} < 2^{-p-1}$

Compute Just Right: Determining the LSB

Supose we use perfect multipliers:
$$\varepsilon_{mult} < 2^{-p-1}$$

• sum error: $\varepsilon_y = \sum_{i=0}^{N} \varepsilon_{mult} < N \cdot 2^{-p-1}$

Compute Just Right: Determining the LSB

Supose we use perfect multipliers: $\varepsilon_{mult} < 2^{-p-1}$ • sum error: $\varepsilon_{y_{total}} = \sum_{i=0}^{N} \varepsilon_{mult} + \varepsilon_{final_rounding} < N \cdot 2^{-p-g-1} + 2^{-p-1}$

Need for larger intermediary precision

- g guard bits
- such that errors accumulate in the guard bits

$$\Longrightarrow \mathbf{g} = \lceil \log_2(N) \rceil$$

Perfect constant multipliers in an FPGA

• basic FPGA computing element: look-up table (LUT)

Perfect constant multipliers in an FPGA

- basic FPGA computing element: look-up table (LUT)
- tabulate all the 2^{α} values of $\mathbf{a_i x_i}$
- ... correctly rounded to the output precision

Perfect constant multipliers in an FPGA

- basic FPGA computing element: look-up table (LUT)
- tabulate all the 2^{α} values of $\mathbf{a_i x_i}$
- ... correctly rounded to the output precision
- perfect fit for small sizes:

 α -input LUT + α -bit input \Longrightarrow 1 LUT/output bit

• but doesn't scale:

2 LUT/output bit for $(\alpha + 1)$ -bit inputs,... 2^k LUT/output bit for $(\alpha + k)$ -bit inputs

 $x_{i} = \begin{bmatrix} b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & b_{7} & b_{8} & b_{9} & b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} & b_{17} & b_{18} \end{bmatrix}$

 d_{i1} d_{i2} d_{i3}

$$x_i = \sum_{k=1}^n 2^{-k\alpha} d_{ik}$$
 where $d_{ik} \in \{0, ..., 2^{\alpha} - 1\}$

 $x_{i} = \begin{bmatrix} b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & b_{7} & b_{8} & b_{9} & b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} & b_{17} & b_{18} \end{bmatrix}$

 d_{i1} d_{i2} d_{i3}

$$x_{i} = \sum_{k=1}^{n} 2^{-k\alpha} d_{ik} \text{ where } d_{ik} \in \{0, ..., 2^{\alpha} - 1\}$$
$$\Longrightarrow \mathbf{a_{i}x_{i}} = \sum_{k=1}^{n} 2^{-k\alpha} a_{i} d_{ik}$$

k=1

$$x_i = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 & b_6 & b_7 & b_8 & b_9 & b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} & b_{17} & b_{18} \end{bmatrix}$$

 d_{i1} d_{i2} d_{i3}

$$x_{i} = \sum_{k=1}^{n} 2^{-k\alpha} d_{ik} \text{ where } d_{ik} \in \{0, ..., 2^{\alpha} - 1\}$$
$$\implies \mathbf{a_{i}x_{i}} = \sum_{k=1}^{n} 2^{-k\alpha} a_{i} d_{ik}$$

Each $a_i d_{ik}$ tabulated, 1 LUT/output bit

$$d_{i1}$$
 d_{i2} d_{i3}

$$x_{i} = \sum_{k=1}^{n} 2^{-k\alpha} d_{ik} \text{ where } d_{ik} \in \{0, ..., 2^{\alpha} - 1\}$$
$$\implies \mathbf{a_{i}x_{i}} = \sum_{k=1}^{n} 2^{-k\alpha} a_{i} d_{ik}$$

Each $a_i d_{ik}$ tabulated, 1 LUT/output bit How many output bits?

-

$$d_{i1}$$
 d_{i2} d_{i3}

$$x_{i} = \sum_{k=1}^{n} 2^{-k\alpha} d_{ik} \text{ where } d_{ik} \in \{0, ..., 2^{\alpha} - 1\}$$
$$\implies \mathbf{a_{i}x_{i}} = \sum_{k=1}^{n} 2^{-k\alpha} a_{i} d_{ik}$$

Each $a_i d_{ik}$ tabulated, 1 LUT/output bit How many output bits?

$$y = \sum_{i=0}^{N-1} \mathbf{a_i x_i}$$

$$y = \sum_{i=0}^{N-1} \mathbf{a}_i \mathbf{x}_i = \sum_{i=0}^{N-1} \sum_{k=1}^n 2^{-k\alpha} a_i d_{ik}$$

$$y = \sum_{i=0}^{N-1} \mathbf{a}_i \mathbf{x}_i = \sum_{i=0}^{N-1} \sum_{k=1}^n 2^{-k\alpha} a_i d_{ik}$$

- each $a_i d_{ik}$ is a perfect multiplier
- therefore $g = \lceil \log_2(N \cdot n) \rceil$

$$y = \sum_{i=0}^{N-1} \mathbf{a}_i \mathbf{x}_i = \sum_{i=0}^{N-1} \sum_{k=1}^n 2^{-k\alpha} \mathbf{a}_i \mathbf{d}_{ik}$$

- each $a_i d_{ik}$ is a perfect multiplier
- therefore $g = \lceil \log_2(N \cdot n) \rceil$

 $\ensuremath{\textit{Bit-heaps}}$ (generalization of $\ensuremath{\textit{bit}}$ $\ensuremath{\textit{arrays}})$ in FloPoCo

(see FPL 2013 article)

• 8-tap, 12-bit FIR filters

Work in progress

• Extension to IIRs done last year

- infinite accumulation of rounding errors: how many guard bits?
- link with a trusted library computing the worst-case peak gain of a filter

• Address the combinatorics of filter realizations

- Filter approximation from frequency response
 - Remez with an arithmetic focus

(with ENS-Lyon)

(with Paris VI)

(with Paris VI and ENS-Lyon)

Example: IIR filters

Example: IIR filters

Once upon a time in the green pastures of pure mathematics

 \ldots there lived a handsome filter named ${\cal H}$

¹This is a fairy tale, everybody knows Matlab does not compute with real numbers.

Once upon a time in the green pastures of pure mathematics

 \ldots there lived a handsome filter named ${\cal H}$

 ${\cal H}$ was linear and time-invariant.

He was born in the distant Frequency Domain from a frequency specification, which the Matlab fairies had transformed into a transfer function:

$$\mathcal{H}(z) = rac{\displaystyle\sum_{i=0}^{n_b} b_i z^{-i}}{\displaystyle1 + \displaystyle\sum_{i=1}^{n_a} a_i z^{-i}}, \quad orall z \in \mathbb{C}.$$

whose coefficients (a_i) and (b_i) were real numbers¹.

¹This is a fairy tale, everybody knows Matlab does not compute with real numbers. F. de Dinechin Computing Just Right: Application-specific arithmetic

And so \mathcal{H} converged beautifully

using its evaluation formula in the time domain

$$y(k) = \sum_{i=0}^{n_b} b_i u(k-i) - \sum_{i=1}^{n_a} a_i y(k-i)$$

as long as ${\mathcal H}$ remained safely linear and its poles safely within the unit circle.

And so \mathcal{H} converged beautifully

using its evaluation formula in the time domain

$$y(k) = \sum_{i=0}^{n_b} b_i u(k-i) - \sum_{i=1}^{n_a} a_i y(k-i)$$

as long as ${\cal H}$ remained safely linear and its poles safely within the unit circle.

But the fairies had warned \mathcal{H} :

Don't let your poles come close to the unit circle! And above all, remain linear!

But one day, $\mathcal H$ decided to travel far from home

Our hero decided to visit the land of Digital Circuits, a rough and arid country where ony binary fixed-point numbers could live.

But one day, $\mathcal H$ decided to travel far from home

Our hero decided to visit the land of Digital Circuits, a rough and arid country where ony binary fixed-point numbers could live.

 ${\cal H}$ thought he could feed on them, for a fixed-point number is also a real number.

But one day, $\mathcal H$ decided to travel far from home

Our hero decided to visit the land of Digital Circuits, a rough and arid country where ony binary fixed-point numbers could live.

 ${\mathcal H}$ thought he could feed on them, for a fixed-point number is also a real number.

But ${\cal H}$ also had to round his outputs, and this transformed him into a vile monster with a tilde.

$$u(k) \xrightarrow{\mathcal{H}} y(k) \qquad \qquad u(k) \xrightarrow{(0,\ell_X)} \widetilde{\mathcal{H}} \xrightarrow{(m_R,\ell_{out})} \widetilde{y}_{out}(k)$$
To become a Digital Circuit, an LTI filter had to be cursed with time-domain rounding

To become a Digital Circuit, an LTI filter had to be cursed with time-domain rounding

To become a Digital Circuit, an LTI filter had to be cursed with time-domain rounding

on its output

F. de Dinechin Computing Just Right: Application-specific arithmetic

To become a Digital Circuit, an LTI filter had to be cursed with time-domain rounding

• on its output

• and on its feedback loops if it was recursive

for without rounding, a product has more bits than each of its arguments.

To become a Digital Circuit, an LTI filter had to be cursed with time-domain rounding

• on its output

• and on its feedback loops if it was recursive

for without rounding, a product has more bits than each of its arguments. For performance, it was not uncommon to see time-domain rouding warts

all over the innards of a circuit...

Time-domain rounding is not linear, and for this reason

 \mathcal{H} was cut from his transfer function heritage!

Time-domain rounding is not linear, and for this reason

 \mathcal{H} was cut from his transfer function heritage!

Sometimes he would become an unstable digital circuit, in a way difficult to predict.

Time-domain rounding is not linear, and for this reason

 ${\cal H}$ was cut from his transfer function heritage!

Sometimes he would become an unstable digital circuit, in a way difficult to predict.

Sometimes he would even become a zombie with limit cycle oscillations,

howling in the night even when fed with a null signal.

Time-domain rounding is not linear, and for this reason

 ${\mathcal H}$ was cut from his transfer function heritage!

Sometimes he would become an unstable digital circuit, in a way difficult to predict.

Sometimes he would even become a zombie with limit cycle oscillations,

howling in the night even when fed with a null signal.

... when the good old witch FloPoCo heard his complaint. Looking at him, she said:

you're not that evil, you are just poorly specified.

 \ldots when the good old witch FloPoCo heard his complaint.

Looking at him, she said:

you're not that evil, you are just poorly specified.

And in a whip of her magical TikZ cursor, she designed him a new interface:

 \ldots when the good old witch FloPoCo heard his complaint.

Looking at him, she said:

you're not that evil, you are just poorly specified.

And in a whip of her magical TikZ cursor, she designed him a new interface:

These a_i and b_i were reals! The very real coefficients!

 $\ensuremath{\mathcal{H}}$ suddenly felt much lighter.

 \ldots when the good old witch FloPoCo heard his complaint.

Looking at him, she said:

you're not that evil, you are just poorly specified.

And in a whip of her magical TikZ cursor, she designed him a new interface:

These a_i and b_i were reals! The very real coefficients!

 $\ensuremath{\mathcal{H}}$ suddenly felt much lighter.

But... but...

F. de Dinechin Computing Just Right: Application-specific arithmetic

No, said FloPoCo, for I have, somewhere in my library, a spell that can compute it out of your coefficients.

No, said FloPoCo, for I have, somewhere in my library, a spell that can compute it out of your coefficients. (wait a moment, where is it? It was written by poor princess Anastasia Volkova during her captivity in the caves of the mighty sorcerers Lauter and Hilaire...)

No, said FloPoCo, for I have, somewhere in my library, a spell that can compute it out of your coefficients. (wait a moment, where is it? It was written by poor princess Anastasia Volkova during her captivity in the caves of the mighty sorcerers Lauter and Hilaire...) (I hope it still compiles...)

No, said FloPoCo, for I have, somewhere in my library, a spell that can compute it out of your coefficients. (wait a moment, where is it? It was written by poor princess Anastasia Volkova during her captivity in the caves of the mighty sorcerers Lauter and Hilaire...) (I hope it still compiles...) Ha, here you go:

Definition: Worst-Case Peak Gain $\langle\!\langle \mathcal{H} \rangle\!\rangle$ of a filter \mathcal{H}

$$\langle\!\langle \mathcal{H}
angle\!
angle = \max_{||u||_{\infty}=1}\!||y||_{\infty}$$

where $||u||_{\infty}$ is defined as $||u||_{\infty} = \max_{k} |u(k)|$.

Then of course,

$$m_R = \lceil \log_2 \langle\!\langle \mathcal{H}
angle
angle \rceil$$
 .

But how will this save me from diverging? cried ${\mathcal H}$

 \bullet Remember: you are $\mathcal H,$ answered the good witch

and ${\mathcal H}$ doesn't diverge in the pure mathematical world

But how will this save me from diverging? cried \mathcal{H}

 \bullet Remember: you are $\mathcal H,$ answered the good witch

and $\ensuremath{\mathcal{H}}$ doesn't diverge in the pure mathematical world

- Let me cast this spell on your architecture: $\widetilde{\mathcal{H}}$ shall return a result that is that of \mathcal{H} , rounded only once.
- Then, your alter ego $\widetilde{\mathcal{H}}$ won't diverge.

$$u(k) \xrightarrow{(0,\ell_X)} \mathcal{H} \xrightarrow{y(k)} \text{round} \xrightarrow{(m_R,\ell_{\text{out}})} \widetilde{y}(k)$$

But how will this save me from diverging? cried \mathcal{H}

 \bullet Remember: you are $\mathcal H,$ answered the good witch

and $\ensuremath{\mathcal{H}}$ doesn't diverge in the pure mathematical world

- Let me cast this spell on your architecture: $\widetilde{\mathcal{H}}$ shall return a result that is that of \mathcal{H} , rounded only once.
- Then, your alter ego $\widetilde{\mathcal{H}}$ won't diverge.

$$u(k) \xrightarrow{(0,\ell_X)} \mathcal{H} \xrightarrow{y(k)} \text{round} \xrightarrow{(m_R,\ell_{\text{out}})} \widetilde{y}(k)$$

And FloPoCo invoked his two most crafted gremlins, Istoan and de Dinechin, to code this spell, with the help of Princess Anastasia who had managed to escape her tormentors.

Actual architecture

Actual architecture

Another point of view: When $\ell_{ext} \to -\infty$ (which means: as the internal accuracy increase), at some point the computation shall become accurate enough for $\widetilde{\mathcal{H}}$ to converge.

Amplification of errors on the feedback loop

Here should come 3 pages of runes which end in the following figure:

• δ_r is the sum of all rounding errors

$$\delta_{\mathsf{r}}(k) = \widetilde{y}(k) - \left(\sum_{i=0}^{n_b} b_i u(k-i) - \sum_{i=1}^{n_a} a_i \widetilde{y}(k-i)\right)$$

• \mathcal{H}_{δ} is the virtual filter that captures the error amplification on the feedback loop:

$$\overline{\delta}_t = \langle\!\langle \mathcal{H}_\delta
angle\!
angle \, \overline{\delta}_r$$
 .

F. de Dinechin Computing Just Right: Application-specific arithmetic

Errors are captured, let us chain them in the basement

Rounding errors depend on the architecture

Example: An architecture optimized for LUT-based FPGAs:

• Split an input x into D chunks of α bits (e.g. $\alpha = 4$: hexadecimal).

$$x = \sum_{k=1}^{D} 2^{-k\alpha} d_k$$
 where $d_k \in \{0, ..., 2^{\alpha} - 1\}$

• Then *cx* becomes

$$cx = \sum_{k=1}^{D} 2^{-k\alpha} cd_k$$

• Remark: c is a real number here, no need to quantize it!

F. de Dinechin Computing Just Right: Application-specific arithmetic

A LUT-based architecture

The error is proportional to 2^{-g} , so can made as small as needed by increasing g.

Overall architecture

You're not evil, you're just poorly specified

- a_i and b_i : real numbers
 - high-precision numbers from Matlab
 - mathematical formulae such as sin(3*pi/8)
- ℓ_X and ℓ_{out} : integers denoting the weight of the least significant bits of the input and of the result.

Computing just right (TM)

 ℓ_{out} specifies output precision, but also output accuracy.

A demo?

• A small Butterworth filter

./flopoco generateFigures=1 FixIIR coeffb="0x1.7bdf4656ab602p-9:0x1.1ce774c100882p-7:0x1.1ce774c100882p-7:0x1.7bdf4656ab602p-9" coeffa="-0x1.2fe25628eb285p+1:0x1.edea40cd1955ep+0:-0x1.106c2ec3d0af8p-1" lsbIn=-12 lsbOut=-12 TestBench n=10000

• a radar filter submitted to Thibault a few years ago, with poles really close to 1

```
./flopoco generateFigures=1 FixIIR
coeffb="0x1.89ff611d6f472p-13:-0x1.2778afe6e1ac0p-11:0x1.89f1af73859fap-12:
0x1.89f1af73859fap-12:-0x1.2778afe6e1ac0p-11:0x1.89ff611d6f472p-13"
coeffa="-0x1.3f4f52485fe49p+2:0x1.3e9f8e35c8ca8p+3:-0x1.3df0b27610157p+3:
0x1.3d42bdb9d2329p+2:-0x1.fa89178710a2bp-1"
lsbIn=-12 lsbOut=-12
TestBench n=10000
```

Bit heaps for some 12-bit Butterworth filters

Sometimes I wonder if this is the right arithmetic for this problem.

F. de Dinechin Computing Just Right: Application-specific arithmetic

Everybody lived happily ever after...

• A point of view on filter design that is universal

- don't compute useless bits: output format specifies output accuracy
- complete error analysis (coefficient quantization + architectural rounding errors)
- error amplification captured by a safe implementation of the WCPG

Everybody lived happily ever after...

- A point of view on filter design that is universal
 - don't compute useless bits: output format specifies output accuracy
 - complete error analysis (coefficient quantization + architectural rounding errors)
 - error amplification captured by a safe implementation of the WCPG

- Also a magical cure for a few other filter diseases
 - If you input a 0 signal, the output converges to 0

 $(\pm 1 \text{ unit in the last place})$

Everybody lived happily ever after...

- A point of view on filter design that is universal
 - don't compute useless bits: output format specifies output accuracy
 - complete error analysis (coefficient quantization + architectural rounding errors)
 - error amplification captured by a safe implementation of the WCPG

- Also a magical cure for a few other filter diseases
 - If you input a 0 signal, the output converges to 0

 $(\pm 1 \text{ unit in the last place})$

• A finely tuned implementation that uses FPGA-specific arithmetic

This is just a basic block on the way to more interesting filter structures.

- implementation space: state space, SIF
- clean rule of the game: enables comparison of functionally equivalent architectures

(to be continued)

- Try me in FloPoCo v. 4.1.3 or later
- Read more on HAL or in IEEETC Towards Hardware IIR Filters Computing Just Right: Direct Form I Case Study

Later, they even learnt to take Fourier portals to the Frequency Domain

... with new magic to reliably design circuits that obey a frequency specification.

Definitive Curse 1

A digital circuit C is said to be faithful to a stable LTI filter \mathcal{H} iff the numerical difference between the fixed-point output $\widetilde{y}_{out}(k)$ of Cand the exact result y(k) of \mathcal{H} does not exceed one unit in the last place of $\widetilde{y}_{out}(k)$.

Definitive Curse 2

A Digital Circuit C is said to be faithful to a frequency specification iff there exists a stable LTI filter \mathcal{H} such that $1/\mathcal{H}$ respects the frequency specification, and $2/\mathcal{C}$ is faithful to \mathcal{H} .
Example: Multimodal sound synthesis (WIP)

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron Example: floating-point exponential Error analysis for dummies (and other proof assistants) Example: fixed-point sine/cosine Example: floating-point sums and sums of products The universal bit heap Conclusion

F. de Dinechin Computing Just Right: Application-specific arithmetic

Big picture

The part that I don't understand:

- finite element decomposition of a noisy object (e.g. a bell)
- physics simulation to get its resonnant frequencies with their attenuations

The part that I more or less understand:

- build a biquad filter for each frequency
- sum them all together to simulate the sound of the noisy object

The big picture in picture

https://ccrma.stanford.edu/~jos/filters/Decay_Time_Q_Periods.html

F. de Dinechin Computing Just Right: Application-specific arithmetic

Resonating filters with slow decay time have high WCPGs

From the bell model in the FAUST distribution:

i	a ₁	a ₂	$\langle\!\langle \mathcal{H} \rangle\!\rangle_i$	$\langle\!\langle \mathcal{H}_\delta angle_i$
0	-1.99510896	0.999985754	1.79e5	1.29e6
1	-1.99504113	0.999985695	1.79e5	1.27e6
2	-1.98264325	0.999980509	1.31e5	4.98e5
25	-1.85236752	0.999858916	1.81e4	2.40e4
47	-1.42887342	0.7367661	9.78	8.59
48	-0.351596594	0.0449641831	2.71	1.45

- For a bell actioned with a hammer, do we need to consider WCPG?
- ... and for a violin string?
- Audible zombies when using low precisions.

F. de Dinechin Computing Just Right: Application-specific arithmetic

• To build a FloPoCo operator that builds the hardware for all this.

Example: Low-precision logarithmic neuron

Example: Low-precision logarithmic neuron

Perceptron artificial neuron model

X: input vector, **W**: weight vector, *B*: bias, σ : activation function Output *A* of the neuron defined by:

$$A = \sigma(\mathbf{W} \cdot \mathbf{X} + B)$$

F. de Dinechin Computing Just Right: Application-specific arithmetic

What precision should a neuron use?

Current consensus

- 8-bit integers are good enough for weights and activations
 - (if higher precision is used for internal computations)
- 1-bit representations (binary and ternary networks)
 - require more layer and specific training
 - entail loss of application-level accuracy

Is there some space in between?

- data on 3 to 6 bits ?
- (incidentally, this would be a very good match to LUT-based FPGAs)

Proposed approach: use ad-hoc logarithmic formats

K. Usher, "The Dwarf in the Dirt",

Bones, 2009

Instead of encoding a real value X, encode its logarithm. Unfortunately log(X) is only defined for X > 0. To represent $X \in \mathbb{R}$, we will need

- a sign bit s_x for the sign of X,
- $L_X \approx \log(|X|)$ encoded in some signed fixed point format

• itself signed: $L_X \ge 0 \iff X \ge 1$

• a "is-zero" bit z_x (or a special encoding of X = 0 in one of the values of L_X) ${}^{lg}X = (s_X, z_X, L_X) = \begin{bmatrix} s_X \\ z_X \end{bmatrix} \begin{bmatrix} z_X \\ z_X \end{bmatrix} \begin{bmatrix} x_2 & x_1 \\ x_2 & x_1 \end{bmatrix} \begin{bmatrix} x_{-1} & x_{-2} \\ x_{-1} & z_{-2} \end{bmatrix}$ 2² 2¹ 2⁰ 2⁻¹ 2⁻² binary weight

"A kind of floating-point where you only have the exponent, and it is fractional"

The MSB and LSB of a LNS representation

Adding one bit to the LSB doubles the number of representable values, with the same range.

Adding one bit to the MSB increases the range, and also reduces the gap around zero.

LNS arithmetic

• Multiplication turns into addition

$$\log(X \times W) = \log(X) + \log(W)$$

• And it is exact! (fixed-point addition may overflow, but no rounding)

LNS arithmetic

• Multiplication turns into addition

$$\log(X\times W) = \log(X) + \log(W)$$

- And it is exact! (fixed-point addition may overflow, but no rounding)
- Division and square root similarly cheap (no use here)

LNS arithmetic

• Multiplication turns into addition

$$\log(X\times W) = \log(X) + \log(W)$$

- And it is exact! (fixed-point addition may overflow, but no rounding)
- Division and square root similarly cheap (no use here)
- Addition turns into a nightmare

$$\log(X+Y) = \log\left(X \times \left(1+\frac{Y}{X}\right)\right) = \log(X) + \log\left(1+b^{\log(Y)-\log(X)}\right)$$

- one subtraction to compute $Z = \log(Y) \log(X)$
- evaluation of the ugly function $\log(1 + b^Z)$
- another addition

F. de Dinechin Computing Just Right: Application-specific arithmetic

Reference ad-hoc linear domain implementation

Proposed design

Proposed design

Key ideas

- $\bullet\,$ Leverage LNS to replace $\times\,$ by $+\,$
- Dodge the complexity of accumulating in LNS
- Parametric design to experiment with application-level accuracy
- Merge linear to log conversion with activation function table
- Leverage FPGA LUT architecture to tabulate ugly functions

Cost of tabulating b^{-x} (or any function) in an FPGA

The FPGA basic logic element: an α -input Look-Up Table

- universal logic gate (any truth table of α bits)
- α ∈ {4, 5, 6} these days, depending on vendor and generation

Cost of tabulating b^{-x} (or any function) in an FPGA

The FPGA basic logic element: an α -input Look-Up Table

 $\xrightarrow{\alpha}$ LUT $\xrightarrow{1}$

- universal logic gate (any truth table of α bits)
- $\alpha \in \{4, 5, 6\}$ these days, depending on vendor and generation

Input size α is FPGA soft spot! For input sizes larger than α , cost grows exponentially.

Other advantages of plain tabulation

- As accurate as your output format allows
 - no approximation error
 - one single rounding error
- Output size can be larger than input size
 - cost grows only linearly with output size
 - this is what enables accurate summation
- It works for any function

- No reason why 2 should be the best b
- Activation: Gaussian ReLU or sigmoid for the same cost
- Oh, and it is simple to program and use.

Only condition: keep our data format really, really small!

F. de Dinechin Computing Just Right: Application-specific arithmetic

Weight distribution observations

- Looks like a normal distribution
- $|\mathcal{W}| \leq 1$
- |*X*| ≤ 1 ?

- If $|X| \leq 1 \implies \log(|X|) \leq 0$
 - •
 - We can decide that $L_X = \lfloor -\log(|X|)
 ceil$ instead of $L_X = \lfloor \log(|X|)
 ceil$
 - encoding L_X as an unsigned fixed-point number effectively saves 1 bit !
- How to ensure $X \leq 1$ and $W \leq 1$?
 - For the weights: it is OK without retraining (saturate the few large values to 1)
 - For the activations: just use ReLU1 (or any function that maxes at 1)

Every bit matters, and activation functions may help

Now $X \le 1!$ Also $X \ge 0$, we can drop s_X as well Now ${}^{\lg}X = (z_X, L_X)$ and ${}^{\lg}W = (s_W, z_W, L_W)$

Every bit matters, in particular zero bits

Now ${}^{\lg}X = (z_X, L_X)$ and ${}^{\lg}W = (s_W, z_W, L_W)$ What happens if we drop those bits z_X and z_W ?

• 0 is no longer representable

It should be very very bad, as zero is the most common value

both for weights and activations.

Yet another trick Let us call Z the largest possible value of L_X (which corresponds to the smallest representable value of $X = 2^{-L_X}$). If Z is rounded to 0 by the b^{-X} block, then the same holds for $Z + L_W$, $\forall L_W$ Then Z effectively represents a zero activation. (the same holds for weights)

So we do not care that we cannot represent zero, and we can drop both zero bits.

Summary of "every bit matters": ${}^{Ig}X$ and ${}^{Ig}W$

Logarithmic representation for inputs and product (here for MSB m=2 and LSB $\ell=-1$)

binary weight 2³ 2² 2¹ 2⁰ 2⁻¹

$${}^{\lg}W = -\lfloor \log_b |W| \rceil = \underbrace{w_2 \quad w_1 \quad w_0 \quad w_{-1}}_{q} \quad \underbrace{s_W}$$

$${}^{\lg}X = -\lfloor \log_b X \rceil = \underbrace{x_2 \quad x_1 \quad x_0 \quad x_{-1}}_{q}$$

$${}^{\lg}P = -\lfloor \log_b |P| \rceil = \underbrace{P_3 \quad P_2 \quad P_1 \quad P_0 \quad P_{-1}}_{q} \quad \underbrace{s_W}$$

Back to the design

Simulation setup

- pytorch to evaluate the classification accuracy
- FloPoCo to describe the architecture
- Vivado to synthesize our design and evaluate the area

Exhaustive exploration of the design space for MNIST,

then targetted experiments on a larger CIFAR10.

Accuracy experiments on MNIST

- Training standard (784, 300, 100, 10) MLP in full precision with pytorch: 98.03% accuracy on test set
- Conversion to LNS and evaluate accuracy on the test set again

Accuracy experiments on MNIST

Accuracy experiments on MNIST

Cost of the MNIST architecture

CIFAR10

Take a pre-trained network, and convert it to LNS VGG-like network layer architecture:

ayer index	layer type
(1)	LNSConv(3, 128) + ReLU1()
(2)	LNSConv(128, 128) + ReLU1()
(3)	MaxPool2d(2,2)
(4)	LNSConv(128, 256) + ReLU1()
(5)	LNSConv(256, 256) + ReLU1()
(6)	MaxPool2d(2,2)
(7)	LNSConv(256, 512) + ReLU1()
(8)	LNSConv(512, 512) + ReLU1()
(9)	MaxPool2d(2,2)
(10)	LNSConv(512, 1024) + ReLU1()
(11)	MaxPool2d(2,2)

Accuracy and synthesis results for parallel neurons							
benchmark	parameters $(m, \ell), (1, \ell')$	accuracy ratio	LUT cost	latency			
MNIST	(2, -1), (1, -6)	99.6	12491	10.3ns			
MNIST	(2, -1), (1, -7)	99.8	13790	10.9ns			
MNIST	6-bit linear	99.9	36658	10.2ns			
CIFAR10	6-bit linear	96.9	51910	13.0ns			
CIFAR10	(3, -1), (1, -10)	97.5	30632	12.8ns			
CIFAR10	(2, -2), (1, -10)*	98.5	28652	12.4ns			
CIFAR10	8-bit linear	99.8	83522	13.4ns			
* $L_{\rm X}$ on 5 bits. $L_{\rm W}$ on 6 bits. $L_{\rm P}$ on 7 bits. summation of 12-bit terms.							

Conclusion

Very small logarithmic encoding works for the weights and activations :

- more accurate than standard linear quantization with identical bit-width
- smaller on FPGA than standard linear implementation of similar accuracy

All this was without any form of retraining.

Retraining can only improve accuracy and/or save a few more bits.

All this was in base 2

There is absolutely no reason to think that it is the best base. Another base, another range/accuracy trade-off for the same format.

Example: floating-point exponential

Example: floating-point exponential

We want to obtain e^X as

$$e^X = 2^E \cdot 1.F$$

We want to obtain e^X as

$$e^X = 2^E \cdot 1.F$$

Compute

$$E \approx \left\lfloor \frac{X}{\log 2} \right\rfloor$$

F. de Dinechin Computing Just Right: Application-specific arithmetic

We want to obtain e^X as

$$e^X = 2^E \cdot 1.F$$

Compute

$$E \approx \left\lfloor \frac{X}{\log 2} \right\rfloor$$

then

$$Y \approx X - E \times \log 2$$
.

F. de Dinechin Computing Just Right: Application-specific arithmetic

We want to obtain e^X as

$$e^X = 2^E \cdot 1.F$$

Compute

$$E \approx \left\lfloor \frac{X}{\log 2} \right\rfloor$$

then

 $Y \approx X - E imes \log 2.$

Now

$$e^{X} = e^{E \log 2 + Y}$$
$$= e^{E \log 2} \cdot e^{Y}$$
$$= 2^{E} \cdot e^{Y}$$

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

Now we have to compute e^Y with $Y \in (-1/2, 1/2).$

F. de Dinechin Computing Just Right: Application-specific arithmetic

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

$$Y = A + Z$$
 with $Z < 2^{-k}$

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

$$e^{Y} = e^{A} \times e^{Z}$$

Tabulate e^A in a ROM

F. de Dinechin Computing Just Right: Application-specific arithmetic

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

$$e^{Y} = e^{A} \times e^{Z}$$

Evaluation of e^Z : $Z < 2^{-k}$, so

$$e^Z \approx 1 + Z + Z^2/2$$

F. de Dinechin Computing Just Right: Application-specific arithmetic

We want to obtain e^X as

$$e^X=2^E\cdot e^Y$$

 $e^Y=e^A\ imes e^Z$
Evaluation of $e^Z\colon\ Z<2^{-k}$, so
 $e^Zpprox 1+Z+Z^2/2$

Notice that
$$e^Z - 1 - Z \approx Z^2/2 < 2^{-2k}$$

F. de Dinechin Computing Just Right: Application-specific arithmetic

We want to obtain e^X as $e^X - 2^E \cdot e^Y$ $e^{Y} = e^{A} \times e^{Z}$ Evaluation of e^Z : $Z < 2^{-k}$, so $e^Z \approx 1 + Z + Z^2/2$ Notice that $e^{Z} - 1 - Z \approx Z^{2}/2 < 2^{-2k}$ Evaluate $e^{Z} - Z - 1$ somewhow (out of Z truncated to its higher bits only)

We want to obtain e^X as $e^X - 2^E \cdot e^Y$ $e^{Y} = e^{A} \times e^{Z}$ Evaluation of e^Z : $Z < 2^{-k}$, so $e^Z \approx 1 + Z + Z^2/2$ Notice that $e^Z - 1 - Z \approx Z^2/2 < 2^{-2k}$ Evaluate $e^{Z} - Z - 1$ somewhow (out of Z truncated to its higher bits only) then add Z to obtain $e^Z - 1$

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

$$e^{Y} = e^{A} \times e^{Z}$$

Also notice that

$$e^Z=1.$$
 $\overbrace{000...000}^{k-1 ext{ zeroes}}$ zzzz
Evaluate $e^A imes e^Z$ as $e^A\ +\ e^A imes (e^Z-1)$

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

$$e^{Y} = e^{A} \times e^{Z}$$

Also notice that

$$e^{Z} = 1.$$
 $\overbrace{000...000}^{k-1 \text{ zeroes}} zzzz$
Evaluate $e^{A} \times e^{Z}$ as
 $e^{A} + e^{A} \times (e^{Z} - 1)$

(before the product, truncate e^A to precision of $e^Z - 1$)

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

$$e^{Y} = e^{A} \times e^{Z}$$

And that's it, we have E and e^{Y}

F. de Dinechin Computing Just Right: Application-specific arithmetic

$$e^X = 2^E \cdot e^Y$$

$$e^{Y} = e^{A} \times e^{Z}$$

And that's it, we have E and e^{Y} (using only *fixed-point* computations)

F. de Dinechin Computing Just Right: Application-specific arithmetic

We want to obtain e^X as

$$e^X = 2^E \cdot e^Y$$

$$e^{Y} = e^{A} \times e^{Z}$$

And that's it, we have E and e^{Y} (using only *fixed-point* computations)

F. de Dinechin Computing Just Right: Application-specific arithmetic

Modern FPGAs also have

Modern FPGAs also have

• small multipliers with pre-adders and post-adders

Modern FPGAs also have

- small multipliers with pre-adders and post-adders
- ... and dual-ported small memories

Modern FPGAs also have

- small multipliers with pre-adders and post-adders
- ... and dual-ported small memories

Single-precision accurate exponential on Xilinx

- one block RAM (0.1% of the chip)
- one DSP block (0.1%)
- < 400 LUTs (0.1%, pprox one FP adder)

to compute one exponential per cycle at 500MHz (\sim one AVX512 core trashing on its 16 FP32 lanes)

F. de Dinechin Computing Just Right: Application-specific arithmetic

Modern FPGAs also have

- small multipliers with pre-adders and post-adders
- ... and dual-ported small memories

Single-precision accurate exponential on Xilinx

- one block RAM (0.1% of the chip)
- one DSP block (0.1%)
- ullet < 400 LUTs (0.1%, pprox one FP adder)

to compute one exponential per cycle at 500MHz (\sim one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k! (over-parameterization is cool)

F. de Dinechin Computing Just Right: Application-specific arithmetic

Error analysis for dummies (and other proof assistants)

Intro: arithmetic operators

FloPoCo, the user point of view

Example: fixed-point functions

Example: multiplication and division by constants

Example: FIR filters

Example: IIR filters

Example: Multimodal sound synthesis (WIP)

Example: Low-precision logarithmic neuron

Example: floating-point exponential

Error analysis for dummies (and other proof assistants)

Example: fixed-point sine/cosine

Example: floating-point sums and sums of products

The universal bit heap

Conclusion

Computing just right

"Error analysis" used to be the kind of things you do to ensure the operator works.

Computing just right

"Error analysis" used to be the kind of things you do to ensure the operator works. This is sooooo nineties.

Here, error analysis is for **optimization**.

(the fact that the operators work is an appreciable bonus)

The typical error analysis used to look like this:

- "This term contributes at most 1 ulp (unit in the last place) to the overall error"
- "This operation contributes at most one half-ulp to the error"

• ...

- "Altogether we have 6 ulps of error"
- "so if we add $\lceil \log_2(6) \rceil$ bits to all the datapath, it should be accurate enough.

And then I saw the light

G. Melquiond, the creator of Gappa (the proof assistant for the rest of us)

An error is a difference between a less accurate value and a more accurate value.

For instance, to bound some error, first write it $\delta_{AC} = A - C$, then

For instance, to bound some error, first write it $\delta_{AC} = A - C$, then

• look for some intermediate value B (more accurate than A but less accurate than C)

For instance, to bound some error, first write it $\delta_{AC} = A - C$, then

• look for some intermediate value B (more accurate than A but less accurate than C) • write A - C = A - B + B - C (4)

or
$$\delta_{AC} = \delta_{AB} + \delta_{BC}$$

For instance, to bound some error, first write it $\delta_{AC} = A - C$, then

• look for some intermediate value B (more accurate than A but less accurate than C) • write A - C = A - B + B - C (4)

or
$$\delta_{AC} = \delta_{AB} + \delta_{BC}$$

• By triangular inequality,

$$|\delta_{AC}| \le |\delta_{AB}| + |\delta_{BC}|$$

ullet Therefore, the error bounds (noted $\overline{\delta}=\max |\delta|$) verify

$$\overline{\delta}_{AC} = \overline{\delta}_{AB} + \overline{\delta}_{BC} \tag{5}$$

A divide-and-conquer method, to use when approximations and rounding errors pile up...

F. de Dinechin Computing Just Right: Application-specific arithmetic

F. de Dinechin Computing Just Right: Application-specific arithmetic

1

$$\delta_{ ext{total}} = M - e^{Y}$$

$$\delta_{\text{total}} = M - e^{Y}$$

= $M - e^{A}e^{Z}$ since $Y = A + Z$ exactly

$$\begin{split} \delta_{\text{total}} &= M - e^{Y} \\ &= M - e^{A}e^{Z} \quad \text{since } Y = A + Z \text{ exactly} \\ &= M - Te^{Z} + Te^{Z} - e^{A}e^{Z} \end{split}$$
A big mess of rounding errors piled over approximation

A big mess of rounding errors piled over approximation

Keep it parametric!

$$\delta_{\text{total}} = M - Te^Z + \delta_T$$

Where can we go from here?

$$\delta_{\text{total}} = M - Te^Z + \delta_T$$

Where can we go from here? Last addition is exact (that's fixed-point for you) so M = T + P, hence :

$$M - Te^{Z} = T + P - Te^{Z}$$

= T + P - T_{trunc}C + T_{trunc}C - Te^Z

$$\delta_{\text{total}} = M - Te^Z + \delta_T$$

Where can we go from here? Last addition is exact (that's fixed-point for you) so M = T + P, hence :

$$M - Te^{Z} = T + P - Te^{Z}$$

= T + P - T_{trunc}C + T_{trunc}C - Te^Z
$$||_{\delta_{P}}$$

$$\delta_{\text{total}} = M - Te^{Z} + \delta_{T}$$
Where can we go from here?
Last addition is exact (that's fixed-point for you) so
 $M = T + P$, hence :
 $M - Te^{Z} = T + P - Te^{Z}$
 $= T + \underbrace{P - T_{\text{trunc}}C}_{||} + T_{\text{trunc}}C - Te^{Z}$

The bound on δ_P depends on the technology used for the multiplier (at most $\overline{\delta}_P = 2^{-w_F - g}$) anyway it is under control

$$\delta_{\text{total}} = T + T_{\text{trunc}}C - Te^{Z} + \delta_{T} + \delta_{P}$$

Where can we go from here?

$$\delta_{\text{total}} = T + T_{\text{trunc}}C - Te^{Z} + \delta_{T} + \delta_{P}$$

Where can we go from here? This T_{trunc} is annoying, so let's get it out of the way

$$T + T_{\text{trunc}}C - Te^{Z} = T + \underbrace{T_{\text{trunc}}C - TC}_{||} + TC - Te^{Z}$$
$$|| \\ (T_{\text{trunc}} - T)C \\|| \\ \delta_{T_{\text{trunc}}}$$

$$\delta_{\text{total}} = T + T_{\text{trunc}}C - Te^{Z} + \delta_{T} + \delta_{P}$$

Where can we go from here? This T_{trunc} is annoying, so let's get it out of the way

$$T + T_{\text{trunc}}C - Te^{Z} = T + \underbrace{T_{\text{trunc}}C - TC}_{||} + TC - Te^{Z}$$
$$|| \\ (T_{\text{trunc}} - T)C \\|| \\ \delta_{T_{\text{trunc}}}$$

 $T_{\text{trunc}} - T < 2^{-w_F - g + k}$, then we need a bound on C; $C \approx e^Z - 1$ so Taylor is our friend again

You'll get your lunch only after I get to an approximation error

You'll get your lunch only after I get to an approximation error

You'll get your lunch only after I get to an approximation error

 δ_H includes the approximation error $H - h(Z_{trunc})$

Finally, scientific precision sabotaging

$$\delta_{\text{total}} = \delta_T + \delta_P + \delta_{T_{\text{trunc}}} + \delta_H + \delta_{Z_{\text{trunc}}}$$

hence

$$\overline{\delta}_{\mathsf{total}} = \overline{\delta}_{\mathcal{T}} + \overline{\delta}_{\mathcal{P}} + \overline{\delta}_{\mathcal{T}_{\mathsf{trunc}}} + \overline{\delta}_{\mathcal{H}} + \overline{\delta}_{\mathcal{Z}_{\mathsf{trunc}}}$$

- If any of these terms is much smaller than the others, useless bits are being computed
- I'll hack at the hardware to make this error worse!
 - by moving a parameter up or down,
 - maybe adding a truncation somewhere...

Finally, scientific precision sabotaging

$$\delta_{\text{total}} = \delta_T + \delta_P + \delta_{T_{\text{trunc}}} + \delta_H + \delta_{Z_{\text{trunc}}}$$

hence

$$\overline{\delta}_{\mathsf{total}} = \overline{\delta}_{\mathcal{T}} + \overline{\delta}_{\mathcal{P}} + \overline{\delta}_{\mathcal{T}_{\mathsf{trunc}}} + \overline{\delta}_{\mathcal{H}} + \overline{\delta}_{\mathcal{Z}_{\mathsf{trunc}}}$$

- If any of these terms is much smaller than the others, useless bits are being computed
- I'll hack at the hardware to make this error worse!
 - by moving a parameter up or down,
 - maybe adding a truncation somewhere...

Oh, yes, I will also make sure that $\overline{\delta}_{total}$ is small enough to guarantee last-bit accuracy.

- Error analysis for performance, not only for accuracy
- Straightforward engineering based on additions and multiplications
- Strict and accurate worst-case analysis (amenable to formal proof)
- Perfectly captures how an early rounding error is amplified in the algorithm

And for you floating-point people, there exists a relative-error version If A approximates B and B approximates C, then

$$\frac{A-C}{C} = \frac{A-B}{B} + \frac{B-C}{C} + \frac{A-B}{B} \times \frac{B-C}{C}$$
$$\varepsilon_{AC} = \varepsilon_{AB} + \varepsilon_{BC} + \varepsilon_{AB} \cdot \varepsilon_{BC}$$

or

(7)

Example: fixed-point sine/cosine

Example: fixed-point sine/cosine

Introduction

- Sine and cosine functions
 - fundamental in signal processing and signal processing applications like FFT, modulation/demodulation, frequency synthesizers, ...
- How to compute them ? In FloPoCo:
 - 1. the classical CORDIC algorithm, based on additions and shifts
 - 2. a method based on tables and multipliers, suited for modern FPGAs
 - 3. a generic polynomial approximation

Which is best on FPGAs?

• What is the cost of *w* bits of sine and cosine?

Which method is best on FPGAs?

A fair comparison of methods computing sine and cosine:

- same specification (the best possible one)
 - Fixed-point inputs and outputs compute $\sin(\pi x)$ and $\cos(\pi x)$ for $x \in [-1,1)$
 - Faithful rounding: all the produced bits are useful, no wasted resources
- same effort (the best possible one)
 - open-source implementations in FloPoCo
 - state-of-the-art?
- Computing just one, or both?
 - some applications need both sine and cosine (e. g. rotation)
 - some methods compute both

Textbook Stuff

• Decomposition of the exponential in two exponentials

$$\mathrm{e}^{i(a+b)}=\mathrm{e}^{ia} imes ~~\mathrm{e}^{ib}$$

• From complex to real

 $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$

• Decompose a rotation in smaller sub-rotations

$$\begin{cases} \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b) \\ \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \end{cases}$$

Argument Reduction

- based on the 3 MSBs of the input angle x
 - *s* **s**ign
 - q **q**uadrant
 - *o* **o**ctant
- remaining argument $y \in [0, 1/4)$

$$y' = \begin{cases} \frac{1}{4} - y & \text{if } o = 1\\ y & \text{otherwise.} \end{cases}$$

- compute $\cos(\pi y')$ and $\sin(\pi y')$
- reconstruction:

Illustration

sqo	Reconstruction	sqo	Reconstruction
000	$\int \sin(\pi X) = \sin(\pi Y')$	100	$\int \sin(\pi X) = -\sin(\pi Y')$
	$igcap \cos(\pi X) = \cos(\pi Y')$		$iggl(\cos(\pi X) = -\cos(\pi Y') iggr)$
001	$\int \sin(\pi X) = \cos(\pi Y')$	101	$\int \sin(\pi X) = -\cos(\pi Y')$
	$\int \cos(\pi X) = \sin(\pi Y')$		$\cos(\pi X) = -\sin(\pi Y')$
010	$\int \sin(\pi X) = \cos(\pi Y')$	110	$\int \sin(\pi X) = -\cos(\pi Y')$
	$\int \cos(\pi X) = -\sin(\pi Y')$		$\int \cos(\pi X) = \sin(\pi Y')$
011	$\int \sin(\pi X) = \sin(\pi Y')$	111	$\int \sin(\pi X) = -\sin(\pi Y')$
	$\cos(\pi X) = -\cos(\pi Y')$		$\cos(\pi X) = \cos(\pi Y')$

CORDIC Architecture

$$\begin{array}{rcl} c_0 & = & \frac{1}{\prod_{i=1}^n \sqrt{1+2^{-i}}} \\ s_0 & = & 0 \\ \alpha_0 & = & y \quad (\text{the reduced argument}) \end{array}$$

$$\begin{cases} d_i &= +1 \text{ if } \alpha_i > 0, \text{ otherwise } -1 \\ c_{i+1} &= c_i - 2^{-i} d_i s_i \\ s_{i+1} &= s_i + 2^{-i} d_i c_i \\ \alpha_{i+1} &= \alpha_i - d_i \arctan(2^{-i}) \\ \end{cases}$$

$$\begin{cases} c_{n \to \inf} &= \cos(y) \end{cases}$$

$$egin{array}{rcl} s_{n
ightarrow ext{inf}}&=& ext{sin}(y)\ lpha_{n
ightarrow ext{inf}}&=& ext{0} \end{array}$$

CORDIC Improvements

Reduced α -Datapath

- $\alpha_i < 2^{-i}$
- decrement the α-datapath by 1 bit per iteration
- benefits
 - saves space
 - saves latency

CORDIC Improvements

Reduced Iterations

 stop iterations when they can be replaced by a single rotation, with enough accuracy

 $\begin{cases} \sin(\alpha) \simeq \alpha \\ \cos(\alpha) \simeq 1 \end{cases}$

• half the iterations replaced by

$$\begin{cases} x_{i+1} = x_i + \alpha \cdot y_i \\ y_{i+1} = y_i - \alpha \cdot x_i \end{cases}$$

CORDIC Improvements

Reduced Iterations

 stop iterations when they can be replaced by a single rotation, with enough accuracy

 $\begin{cases} \sin(\alpha) \simeq \alpha \\ \cos(\alpha) \simeq 1 \end{cases}$

• half the iterations replaced by

$$\begin{cases} x_{i+1} = x_i + \alpha \cdot y_i \\ y_{i+1} = y_i - \alpha \cdot x_i \end{cases}$$

- only 2 multiplications
 - 2 DSPs for up to 32 bits
 - truncated multiplications for larger sizes

CORDIC Error Analysis

Goal: last-bit accuracy of the result

- the result is within 1**ulp** of the mathematical result
- **ulp** = weight of least significant bit

Intermediate precision

- approximations and roundings
 → computations on w+g bits internally
- $\bullet\,$ guard bits g

Error budget: total of 1 ulp

- $\frac{1}{2}$ **ulp** for the final rounding error
- $\frac{1}{4}$ **ulp** for the method error
- $\frac{1}{4}$ **ulp** for the rounding errors

CORDIC Error Analysis (1)

Analysis: method error (ε_{method})

- $\varepsilon_{\textit{method}}$ of the order of the value of $\alpha_{\textit{final}}$
- α_{final} can be bounded numerically

 \rightarrow number of iterations: smallest number for which $\varepsilon_{\it method} < 2^{-w-2}$

CORDIC Error Analysis (2)

Analysis: rounding errors (ε_{round}) on the α datapath

- correct rounding of $arctan(2^{-i})$ error bounded by 2^{-w-g-1}
- total error on the $\alpha\mbox{-datapath}:$

 $\textit{nb_-iter} \times 2^{-w-g-1}$

- on the sin() and cos() datapath
 - for each shift operation, error bounded by 2^{-w-g}
 - ${\scriptstyle \bullet}$ total error larger than on the $\alpha\text{-datapath}$
 - must be smaller than 2^{-w-2} : $\varepsilon \times 2^{-w-g} < 2^{-w-2}$
 - this gives g
 - $\varepsilon_{method} + \varepsilon_{round} < 2^{-w-1}$

F. de Dinechin Computing Just Right: Application-specific arithmetic

CORDIC Error Analysis (2)

Analysis: rounding errors (ε_{round}) on the α datapath

- correct rounding of $arctan(2^{-i})$ error bounded by 2^{-w-g-1}
- total error on the $\alpha\mbox{-datapath}:$

 $\textit{nb_-iter} \times 2^{-w-g-1}$

- on the sin() and cos() datapath
 - for each shift operation, error bounded by 2^{-w-g}
 - ${\scriptstyle \bullet}$ total error larger than on the $\alpha\text{-datapath}$
 - must be smaller than 2^{-w-2} : $\varepsilon \times 2^{-w-g} < 2^{-w-2}$
 - this gives g
 - $\varepsilon_{method} + \varepsilon_{round} < 2^{-w-1}$

F. de Dinechin Computing Just Right: Application-specific arithmetic

CORDIC Error Analysis (2)

Analysis: rounding errors (ε_{round}) on the α datapath

- correct rounding of $arctan(2^{-i})$ error bounded by 2^{-w-g-1}
- total error on the $\alpha\mbox{-datapath}:$

 $\textit{nb_-iter} \times 2^{-w-g-1}$

- on the sin() and cos() datapath
 - for each shift operation, error bounded by 2^{-w-g}
 - ${\scriptstyle \bullet}$ total error larger than on the $\alpha\text{-datapath}$
 - must be smaller than 2^{-w-2} : $\varepsilon \times 2^{-w-g} < 2^{-w-2}$
 - this gives g
 - $\varepsilon_{method} + \varepsilon_{round} < 2^{-w-1}$

F. de Dinechin Computing Just Right: Application-specific arithmetic

- angle split: y (the reduced angle) = $t + y_{red}$
 - t on a bits
 - y_{red} such that $y_{red} < 2^{-(a+2)}$
- store $sin(\pi t)$ and $cos(\pi t)$ in tables
- evaluate $sin(\pi y_{red})$ and $cos(\pi y_{red})$ using a Taylor polynomial approximation
 - need to compute first $z = y_{red} imes \pi$
 - $\sin(z) \approx z z^3/6$
 - $\cos(z) \approx 1 z^2/2$
- reconstruct the values of $sin(\pi y)$ and $cos(\pi y)$ using

$$\begin{cases} \sin(\pi(t+y_{red})) = \sin(\pi t)\cos(\pi y_{red}) + \cos(\pi t)\sin(\pi y_{red}) \\ \cos(\pi(t+y_{red})) = \cos(\pi t)\cos(\pi y_{red}) - \sin(\pi t)\sin(\pi y_{red}) \end{cases}$$

Algorithm

 $\left| s \right| q \mid o \mid t \mid y_{red}$

- angle split: y (the reduced angle) = $t + y_{red}$
 - t on a bits
 - y_{red} such that $y_{red} < 2^{-(a+2)}$
- store $sin(\pi t)$ and $cos(\pi t)$ in tables
- evaluate sin(πy_{red}) and cos(πy_{red}) using a Taylor polynomial approximation
 - need to compute first $z = y_{red} imes \pi$
 - $\sin(z) \approx z z^3/6$
 - $\cos(z) \approx 1 z^2/2$
- reconstruct the values of $sin(\pi y)$ and $cos(\pi y)$ using

$$\sin(\pi(t+y_{red})) = \sin(\pi t)\cos(\pi y_{red}) + \cos(\pi t)\sin(\pi y_{red})$$
$$\cos(\pi(t+y_{red})) = \cos(\pi t)\cos(\pi y_{red}) - \sin(\pi t)\sin(\pi y_{red})$$

- angle split: y (the reduced angle) = $t + y_{red}$
 - t on a bits
 - y_{red} such that $y_{red} < 2^{-(a+2)}$
- store $sin(\pi t)$ and $cos(\pi t)$ in tables
- evaluate sin(πy_{red}) and cos(πy_{red}) using a Taylor polynomial approximation
 - need to compute first $z = y_{red} imes \pi$
 - $\sin(z) \approx z z^3/6$
 - $\cos(z) \approx 1 z^2/2$
- reconstruct the values of $sin(\pi y)$ and $cos(\pi y)$ using

$$\sin(\pi(t+y_{red})) = \sin(\pi t)\cos(\pi y_{red}) + \cos(\pi t)\sin(\pi y_{red})$$
$$\cos(\pi(t+y_{red})) = \cos(\pi t)\cos(\pi y_{red}) - \sin(\pi t)\sin(\pi y_{red})$$

- angle split: y (the reduced angle) = $t + y_{red}$
 - t on a bits
 - y_{red} such that $y_{red} < 2^{-(a+2)}$
- store $sin(\pi t)$ and $cos(\pi t)$ in tables
- evaluate sin(πy_{red}) and cos(πy_{red}) using a Taylor polynomial approximation
 - need to compute first $z = y_{red} imes \pi$
 - $\sin(z) \approx z z^3/6$
 - $\cos(z) \approx 1 z^2/2$
- reconstruct the values of $sin(\pi y)$ and $cos(\pi y)$ using

$$\begin{cases} \sin(\pi(t+y_{red})) = \sin(\pi t)\cos(\pi y_{red}) + \cos(\pi t)\sin(\pi y_{red}) \\ \cos(\pi(t+y_{red})) = \cos(\pi t)\cos(\pi y_{red}) - \sin(\pi t)\sin(\pi y_{red}) \end{cases}$$

- angle split: y (the reduced angle) = $t + y_{red}$
 - t on a bits
 - y_{red} such that $y_{red} < 2^{-(a+2)}$
- store $sin(\pi t)$ and $cos(\pi t)$ in tables
- evaluate sin(πy_{red}) and cos(πy_{red}) using a Taylor polynomial approximation
 - need to compute first $z = y_{red} imes \pi$
 - $\sin(z) \approx z z^3/6$
 - $\cos(z) \approx 1 z^2/2$
- reconstruct the values of $sin(\pi y)$ and $cos(\pi y)$ using

$$\sin(\pi(t+y_{red})) = \sin(\pi t)\cos(\pi y_{red}) + \cos(\pi t)\sin(\pi y_{red})$$
$$\cos(\pi(t+y_{red})) = \cos(\pi t)\cos(\pi y_{red}) - \sin(\pi t)\sin(\pi y_{red})$$

Table- and DSP-based method

Algorithm

- angle split: y (the reduced angle) = $t + y_{red}$
 - t on a bits
 - y_{red} such that $y_{red} < 2^{-(a+2)}$
- store $sin(\pi t)$ and $cos(\pi t)$ in tables
- evaluate $sin(\pi y_{red})$ and $cos(\pi y_{red})$ using a Taylor polynomial approximation
 - need to compute first $z = y_{red} imes \pi$
 - $\sin(z) \approx z z^3/6$
 - $\cos(z) \approx 1 z^2/2$
- reconstruct the values of $sin(\pi y)$ and $cos(\pi y)$ using

$$\begin{cases} \sin(\pi(t+y_{red})) = \sin(\pi t)\cos(\pi y_{red}) + \cos(\pi t)\sin(\pi y_{red}) \\ \cos(\pi(t+y_{red})) = \cos(\pi t)\cos(\pi y_{red}) - \sin(\pi t)\sin(\pi y_{red}) \end{cases}$$

Table- and DSP-based method: Details

• approximating
$$y' = rac{1}{4} - y_{red}$$
 as $\neg y_{red}$

- choose a such that $\frac{z^4}{24} \leq 2^{-w-g}$
 - so that a degree-3 Taylor polynomial may be used
 - means that $4(a+2)-2 \ge w+g$
- truncated multiplications
- constant multiplication by π
- $z^2/2$
 - computed using a squarer
- $z^3/6$
 - read from a table for small precisions
 - computed with a dedicated architecture for larger precisions (based on a bit heap and divider by 3, see paper)

Table- and DSP-based method: Error Analysis

Error Analysis

- $\frac{1}{2}$ **ulp** lost per table
- 1**ulp** per truncation and truncated multiplier/squarer
- 1ulp for computing $\frac{1}{4} y_{red}$ (as $\neg y_{red}$)
- total of 15**ulp**, independent of the input width
- $\bullet \to \mathsf{gives} \; \mathbf{g}{=}\mathbf{4}$

Polynomial-based method

- using existing software (more details in the reference)
- based on polynomial approximation
- computes only one of the functions, depending on an input

Results - 16-bit Precision

Approach	latency	frequency	Reg. + LUTs	BRAM	DSP
CORDIC	18	478	969 + 1131	0	0
CORDIC	14	277	776 + 1086	0	0
CORDIC	7	194	418 + 1099	0	0
CORDIC	3	97	262 + 1221	0	0
Red. CORDIC	16	273	657 + 761	0	2
Red. CORDIC	13	368	625 + 719	0	2
Red. CORDIC	7	238	327 + 695	0	2
Red. CORDIC	4	238	106 + 713	0	2
SinAndCos	4	298	107 + 297	0	5
SinAndCos	3	114	168 + 650	0	2
SinOrCos (d=2)	9	251	136 + 183	1	2
SinOrCos (d=2)	5	115.3	87 + 164	1	2

Synthesis Results on Virtex5 FPGA, Using ISE 12.1

Results – Highest Frequency

Approach	latency	frequency	Reg. + LUTs	BRAM	DSP	
precision $= 16$ bits						
CORDIC	18	478	969 + 1131	0	0	
Red. CORDIC	13	368	625 + 719	0	2	
SinAndCos	4	298	107 + 297	0	5	
SinOrCos (d=2)	9	251	136 + 183	1	2	
precision $= 24$ bits						
CORDIC	28	439.9	1996 + 2144	0	0	
Red. CORDIC	20	273.4	1401 + 1446	0	4	
SinAndCos	5	262	197 + 441	3	7	
SinOrCos (d=2)	9	251	202 + 279	2	2	
precision $= 32$ bits						
CORDIC	37	403.5	3495 + 3591	0	0	
Red. CORDIC	24	256.8	2160 + 2234	0	4	
SinAndCos	10	253	535 + 789	3	9	
SinOrCos (d=3)	14	251	444 + 536	4	5	
precision $=$ 40 bits						
CORDIC	45	375	5070 + 5289	0	0	
Red. CORDIC	37	252	3695 + 3768	0	8	
SinAndCos (bit heap)	11	266	895 + 1644	3	12	
SinAndCos (table $z^3/6$)	8	232	500 + 949	4	12	
SinOrCos (d=3)	15	251	628 +725	4	8	
precision $=$ 48 bits						
SinAndCos (bit heap)	13	232	1322 + 2369	12	17	
SinOrCos	15	250	734 + 879	17	10	

Results – Options for $\frac{Z^3}{6}$

Approach	latency	frequency	Reg. $+$ LUTs	BRAM	DSP	
precision $=$ 40 bits						
CORDIC	45	375	5070 + 5289	0	0	
CORDIC	25	149	2948 + 5245	0	0	
Red. CORDIC	37	252	3695 + 3768	0	8	
Red. CORDIC	9	123	931 + 3339	0	8	
SinAndCos (bit heap)	11	266	895 + 1644	3	12	
SinAndCos (table $z^3/6$)	8	232	500 + 949	4	12	
SinAndCos (bit heap)	4	154	612 + 2826	0	12	
SinAndCos (table $z^3/6$)	4	156	395 + 2268	2	12	
SinOrCos (d=3)	15	251	628 +725	4	8	
SinOrCos (d=3)	9	132	376 +675	4	8	
precision $=$ 48 bits						
SinAndCos (bit heap)	13	232	1322 + 2369	12	17	
SinAndCos (bit heap)	6	132	972 + 2133	12	17	
SinOrCos	15	250	734 + 879	17	10	
SinOrCos	9	124	431 + 823	17	10	

Conclusions

- A wide range of open-source accurate implementations
 - CORDIC implementation on par with vendor-provided solutions
 - some tuning still needed on DSP-based methods
- SinAndCos method overall best
- Little point in using unrolled CORDIC for FPGAs

Approach	latency	area	
CORDIC 16 bits	30.3 ns	1034 LUTs	
SinAndCos 16 bits	15.0 ns	1211 LUTs	
CORDIC 24 bits	44.6 ns	2079 LUTs	
SinAndCos 24 bits	17.0 ns	2183 LUTs	
CORDIC 32 bits	62.1 ns	3513 LUTs	
SinAndCos 32 bits	19.4 ns	3539 LUTs	

Synthesis results for logic-only implementations

What is the cost of computing w bits of sine/cosine?

Example: floating-point sums and sums of products

Example: floating-point sums and sums of products

Summing a large number of floating-point terms fast and accurately

Crucial for:

• Scientific computations:

- dot-product, matrix-vector product, matrix-matrix product
- numerical integration

• Financial simulations:

• Monte-Carlo simulations

$$x = (-1)^S \times 1.f \times 2^e$$

where:

- S the sign of x
- f the **fraction** of x.
- e the **exponent** of x

$$x = (-1)^S \times 1.f \times 2^e$$

where:

- **S** the **sign** of x
- f the **fraction** of x.
- *e* the **exponent** of *x*
- e gives the dynamic range
 - IEEE-754 FP double precision, e_{min} =-1022 and $e_{max} = 1023$

$$x = (-1)^S \times 1.f \times 2^e$$

where:

- **S** the **sign** of x
- f the **fraction** of x.
- *e* the **exponent** of *x*
- e gives the dynamic range
 - IEEE-754 FP double precision, e_{min} =-1022 and $e_{max} = 1023$
- number of bits of f gives the **precision** p
 - IEEE-754 FP double precision, p=52

$$x = (-1)^S \times 1.f \times 2^e$$

where:

S - the sign of x

f - the **fraction** of x.

e - the **exponent** of x

Graphical representation:

Accuracy:

Exact Result	=	50.2017822265625
FP Acc	=	50.125
Fixed-Point Acc	=	50.20166015625

Closer look

Accumulator based on combinatorial floating-point adder

- very low frequency
- must pipeline for larger frequency

Closer look

Accumulator based on pipelined floating-point adder

- loop's critical path contains 2 shifters
- shifters are deeply pipelined
- produces k accumulation results
- these results have to be added somehow
 - adder tree
 - multiplexing mechanism on accumulation loop

Closer look

Accumulator based on proposed long accumulator

- no shifts on the loop's critical path
- returns the result of the accumulation in fixed point
- the alignment shifter pipeline depth does not concern the result

Accumulator Architecture

- the sum is kept as a large fixed-point number
- one alignment shift (size depends on $MaxMSB_X$ and LSB_A)
- the loop's critical path contains a fixed-point addition
- fixed-point addition is fast on current FPGAs

Fast Accumulator Design

The accumulator should run at a target frequency

• 64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains
still not enough ?

- 64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
 - cut large carry-propagation into chunks of k bits
 - critical path = k-bit addition
 - small cost: $\lfloor width_{accumulator}/k \rfloor$ registers

- 64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
 - cut large carry-propagation into chunks of k bits
 - critical path = k-bit addition
 - small cost: $\lfloor width_{accumulator}/k \rfloor$ registers

• shifters can be arbitrarily pipelined for a given frequency

An application tailored fixed-point accumulator for floating-point inputs

Ensuring that:

- 1. accumulator significand never needs to be shifted
- 2. it never overflows
- 3. provides a result as accurate as the application requires

Accumulator Parameters

The designer must provide values for these parameters.
Accumulator Parameters

MSB_A the weight of the MSB of the accumulator

• must to be larger than max. expected result

The designer must provide values for these parameters.

Accumulator Parameters

 MSB_A the weight of the MSB of the accumulator • must to be larger than max. expected result $Ma \times MSB_X$ the max. weight of the MSB of the summand

The designer must provide values for these parameters.

F. de Dinechin Computing Just Right: Application-specific arithmetic

Accumulator Parameters

MSB_A the weight of the MSB of the accumulator
must to be larger than max. expected result
MaxMSB_X the max. weight of the MSB of the summand
LSB_A weight of the LSB of the accumulator
determines the final accumulation accuracy

The designer must provide values for these parameters.

Application dictates parameter values

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

Application dictates parameter values

Two possibilities:

- **software profiling** + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

- MSB_A know an actual maximum + 10 bits safety margin
 - consider the number of terms to sum

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

- MSB_A know an actual maximum + 10 bits safety margin
 - consider the number of terms to sum

*MaxMSB*_X

• exploit input properties + safety margin

• worst case: $Ma \times MSB_X = MSB_A$

Application dictates parameter values

Two possibilities:

- **software profiling** + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

- MSB_A know an actual maximum + 10 bits safety margin
 - consider the number of terms to sum
- *MaxMSB*_X
 - B_X exploit input properties + safety margin
 - worst case: $Ma \times MSB_X = MSB_A$
 - LSB_A precision vs. performance
 - consider the desired final precision

Post-normalization unit, or not

• converts fixed-point accumulator format to floating-point

- pipelined unit may be shared by several accumulators
- less useful:
 - many applications do not need the running sum
 - better to do conversion in software, use FPGA to accelerate the computation

Performance results

Performance results

Relative error results

Accumulation of $FP(w_E = 7, w_F = 16)$ in unif. [0,1]

• LongAcc (
$$MSB_A = 20$$
, $LSB_A = -11$)

Accurate Sum-of-Products

Ideea

Accumulate exact results of all multiplications

1. Use exact multipliers:

- return all the bits of the exact product
- contain no rounding logic
- are cheaper to build
- 2. Feed the accumulator with exact multiplication results

Cost: Input shifter of accumulator is twice as large

Operator Performance

Operator Performance

The universal bit heap

The universal bit heap

So much VHDL to write, so few slaves to write it

FPGA arithmetic the way it should be:

- An infinite number of application-specific operators
- Each heavily parameterized (bit-size, performance, etc)
- Portable to any FPGA, and even ASIC

How to ensure **performance** across all this range?

- object-oriented abstraction of vendor-specific features
- ... not enough

I know how to optimize by hand each operator on each target

F. de Dinechin Computing Just Right: Application-specific arithmetic

I know how to optimize by hand each operator on each target ... But I don't want to do it.

F. de Dinechin Computing Just Right: Application-specific arithmetic

What is a bit heap?

- A data-structure
 - capturing bit-level descriptions of a wide class of operators
 - exposing bit-level parallelism and optimization opportunities
- An associated architecture generator

which can be optimized for each target

What is a bit heap?

- A data-structure
 - capturing bit-level descriptions of a wide class of operators

What is a bit heap?

• A data-structure

- capturing bit-level descriptions of a wide class of operators
- exposing bit-level parallelism and optimization opportunities

What is a bit heap?

- A data-structure
 - capturing bit-level descriptions of a wide class of operators
 - exposing bit-level parallelism and optimization opportunities
- An associated architecture generator

which can be optimized for each target

Operations as bit heaps

Weighted bits

• Integers or real numbers represented in binary fixed-point

$$X = \sum_{i=i_{\min}}^{i_{\max}} 2^i x_i$$

• 2^i : "weight" $\Longrightarrow X$ "sum of weighted bits"

Integer or fixed-point

$$\begin{aligned} XY &= \left(\sum_{i=i_{\min}}^{i_{\max}} 2^{i} x_{i}\right) \times \left(\sum_{j=j_{\min}}^{j_{\max}} 2^{j} y_{j}\right) \\ &= \sum_{i,j} 2^{i+j} x_{i} y_{j} \end{aligned}$$

Historical motivation for bit heaps

 $\sum_{i,j} 2^{i+j} x_i y_j$ expresses the bit-level parallelism of the problem

Historical motivation for bit heaps

$\sum_{i,j} 2^{i+j} x_i y_j$ expresses the bit-level parallelism of the problem

(freedom thanks to addition associativity and commutativity)

$$XY = \sum_{i,j} 2^{i+j} x_i y_j$$

$$A + XY = \sum_{i} 2^{i} a_{i} + \sum_{i,j} 2^{i+j} x_{i} y_{j}$$

$$x_{3}y_{1} x_{2}y_{1} x_{2}y_{0}$$

$$x_{3}y_{2} x_{2}y_{2} x_{1}y_{2} x_{1}y_{1} x_{1}y_{0}$$

$$x_{3}y_{3} x_{2}y_{3} x_{1}y_{3} x_{0}y_{3} x_{0}y_{2} x_{0}y_{1} x_{0}y_{0}$$

$$x_{3}y_{3} x_{2}y_{3} x_{1}y_{3} x_{0}y_{3} x_{0}y_{2} x_{0}y_{1} x_{0}y_{0}$$

$$a_{9} a_{8} a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}$$

$$A + XY = \sum_{w,h} 2^w b_{w,h}$$

$$A + XY = \sum_{w,h} 2^{w} b_{w,h}$$

$$a_{9} a_{8} a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{4}$$

When generating an architecture

consider only one big sum of weighted bits

- get rid of artificial sequentiality
- focus on true timing information

- (inside operators, and between operators) (e.g. critical path delay of each weighted bit)
- A global optimization instead of several local ones

(and solved by ILP)

Well beyond product

A bit heap is anything that can be developed as $\sum_{w,h} 2^w b_{w,h}$

- the sum of two bit heaps is obviously a bit heap
- the product of two bit heaps is also a bit heap

Well beyond product

A bit heap is anything that can be developed as $\sum_{w,h} 2^w b_{w,h}$

- the sum of two bit heaps is obviously a bit heap
- the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap ... where each $b_{w,h}$ is the AND of a few input bits. This includes sums of squares, FIR filters, etc

Well beyond product

A bit heap is anything that can be developed as $\sum_{w,h} 2^w b_{w,h}$

- the sum of two bit heaps is obviously a bit heap
- the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap ... where each $b_{w,h}$ is the AND of a few input bits. This includes sums of squares, FIR filters, etc

And then more

- A huge class of function may be *approximated* by polynomials
- The $b_{w,h}$ may be read from arbitrary look-up tables
- An operator may include several bit heaps

When you have a good hammer, you see nails everywhere

A sine/cosine architecture (HEART 2013)

When you have a good hammer, you see nails everywhere

A sine/cosine architecture (HEART 2013) with 5 bit heaps

A bit heap for $Z - Z^3/6$ in the previous architecture

Quite often you need to add a constant to a bit heap:

- Rounding bit
- Constant coefficient
- Sign extension for two's complement (generalizating a classical multiplier trick)

To replicate bit s from weight p to weight q

- add \overline{s} at weight p.
- then add 2^q 2^p to the constant bit vector (a string of 1's stretching from bit p to bit q)

This performs the sign extension both when s = 0 and s = 1.

All these constants may be pre-added, and only their sum added to the bit heap. *Managing signed number costs at most one line in the bit heap.*

Generating an architecture

Elementary case 1: the compressor

0000

00

A compressor replaces a column of bits

by its sum written in binary (on fewer bits)

• archetype: the *full adder* is a *3 to 2* compressor

Elementary case 1: the compressor

A compressor replaces a column of bits

```
by its sum written in binary (on fewer bits)
```


Elementary case 1: the compressor

A compressor replaces a column of bits

```
by its sum written in binary (on fewer bits)
```


Elementary case 2: the adder
An adder replaces two *n*-bit lines, and a carry
by a line of
$$n + 1$$
 bits

Architecture computing the value of a bit heap

1. Compression

- Tile the bit heap with compressors
 - use as many compressors in parallel as possible
 - this produces a new, smaller bit heap
 - ... in one LUT delay
- Start again on the compressed bit heap

Stop when bit heap height equal to two

•••••

Architecture computing the value of a bit heap

1. Compression

- Tile the bit heap with compressors
 - use as many compressors in parallel as possible
 - this produces a new, smaller bit heap
 - ... in one LUT delay
- Start again on the compressed bit heap Stop when bit heap height equal to two
- 2. Final fast addition
 - add the remaining two lines

•••••

Architecture computing the value of a bit heap

Both steps can be done in $\log n$ time and $n \log n$ area

F. de Dinechin Computing Just Right: Application-specific arithmetic

Bit heaps and DSP blocks

Elementary case: the DSP block?

- Xilinx DSP blocks compute **A** + **XY** (48+18x25)
- Altera DSP blocks compute **XY** (36x36)

```
or AB \pm CD (18x18+18x18) or ...
```

Really different architectures here

Bit heaps and DSP blocks

Elementary case: the DSP block?

- Xilinx DSP blocks compute **A** + **XY** (48+18×25)
- Altera DSP blocks compute XY (36×36)

or $AB \pm CD$ (18x18+18x18) or ...

Really different architectures here

Exemple: 53-bit truncated multiplier

F. de Dinechin Computing Just Right: Application-specific arithmetic

Reconciling bit heaps and DSP blocks

Instanciating DSP blocks is part of the compression

- merge operands from various sources in a DSP
- unused DSP adders may remove random bits from the heap

Current status

Benefits in terms of software engineering

- Reduction of FloPoCo code size
- Fewer obscure bugs hidden in obscure operators
- (I didn't say fewer bugs)

Benefits in terms of software engineering

- Reduction of FloPoCo code size
- Fewer obscure bugs hidden in obscure operators
- (I didn't say fewer bugs)

Benefits in terms of performance thanks to operator fusion

- Already a few examples
 - complex product, KCM multipliers, FIR and IIR filters, ...
- Still work in progress
 - M. Kumm replaced initial heuristics with ILP-based optimal algorithms
 - fuse in all the integer adder variants, rework the polynomial evaluator, ...

Progress in the BitHeap class benefits to many operators

Generate VHDL, test bench, and nice clickable SVG graphics

Future work, from short-term to hopeless

- Adapt all the remaining operators to take advantage of bit heaps
- Improve the compression heuristics

done, thanks to Martin Kumm

- Automate some of the algebraic optimisations done by hand so far
- Answer open questions like:

How many bits must flip to compute 16 bits of sin(x)?

Conclusion

Conclusion

Computing just right

In a processor

the choice is between

- an integer SUV, or
- a floating-point SUV.

Computing just right

In a processor

the choice is between

- an integer SUV, or
- a floating-point SUV.

In an FPGA

- If all I need is a bicycle, I have the possibility to build a bicycle
- (and I'm usually faster to destination)

Computing just right

In a processor

the choice is between

- an integer SUV, or
- a floating-point SUV.

In an FPGA

- If all I need is a bicycle, I have the possibility to build a bicycle
- (and I'm usually faster to destination)

Save routing! Save power! Don't move useless bits around!

Busy until retirement (1)

An almost virgin land

Most of the arithmetic literature addresses the construction of SUVs.

Busy until retirement (2)

Designing the flexible parameters was only half of the problem...

• (the easy half)

The difficult half is: how to use them?

• What precision is required at what point of a computation

The following people contributed to FloPoCo:

H.Abdoli, S. Banescu, L. Besème, A. Böttcher, N. Bonfante, N. Brunie, R. Bouarah, V. Capelle, M. Christ, C. (