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6G: more than communications
the 5G triangle was about communications

this triangle is about to be augmented in 6G

5workshop @ ICTP, November 20, 2023
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intelligence
learning



some initial steps towards semantics
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start making sense:
semantic plane filtering and

control for post-5G connectivity

start making sense:
semantic plane filtering and

control for post-5G connectivity

Petar PopovskiPetar Popovski

6G Wireless Summit @ Levi, Finland, March 24-26, 2019

Osvaldo SimeoneOsvaldo Simeone
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phonology

morphology

syntax

semantics

pragmatics

the five language 
domains

physical layer

packets

control 
information

communication 
systems

6G’s search for meaning

level A:
technical problem

of correct transmission

level B:
semantic problem

level C:
effectiveness problem

Shannon-
Weaver

semantic and 
goal-oriented 

communications

D. Gündüz, F. Chiariotti, K. Huang, A. E. Kalør, S. Kobus and P. Popovski, "Timely and Massive Communication in 6G: Pragmatics, 
Learning, and Inference," in IEEE BITS the Information Theory Magazine, doi: 10.1109/MBITS.2023.3322667, 2023.
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IoT integral part of cellular since 5G
IoT as a micro-tunnel between
the physical and digital world
• physical information → digital data
• data+algorithms → physical actions

data used in three principal ways
• learning and training of AI models
• inference and command actuation
• value storage and exchange
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Physical world

Learning

Inference

Value storage 
and exchange

Digital world: 
Data for humans or 

machines

Sensing Actuation

IoT IoT

P. Popovski, F. Chiariotti, V. Croisfelt, A. E. Kalør, I. Leyva-Mayorga, L. 
Marchegiani, S. R. Pandey, B. Soret, “Internet of Things (IoT) Connectivity 
in 6G: An Interplay of Time, Space, Intelligence, and Value”, available on 
ArXiv, https://arxiv.org/pdf/2111.05811.pdf, 2021.

workshop @ ICTP, November 20, 2023

https://arxiv.org/pdf/2111.05811.pdf


intelligence in 6G
how are the communication protocols affected
by the growing intelligence in the nodes?

• data representation and compression to be conveyed within a 
specific context of knowledge or side information
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src/
dest TXRX1 TXRX2

noiseprotocol
information

src/
dest

protocol
information

[*] P. Popovski, O. Simeone, F. Boccardi, D. Gündüz, and O. Sahin, "Semantic-Effectiveness Filtering and Control for Post-5G 
Wireless Connectivity", Journal of the Indian Institute of Science, invited paper, 2020.
[**] Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and K. Huang, "What is Semantic Communication? A View on 
Conveying Meaning in the Era of Machine Intelligence", Journal of Communications and Information Networks (JCIN), invited paper, 
accepted, 2021.
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§ perception of time by humans and machines
§ Tactile Internet or Internet of Senses

§ wireless connectivity augments
the natural time-space context

§ digital time gets intertwined with physical time
§ revisiting simultaneity, presence, causality

§ increased interest in various timing measures
§ latency, Age of Information and its derivatives

time in 6G: beyond latency

10
P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris, 
N. Pappas, and B. Soret, “A Perspective on Time towards 
Wireless 6G,” arXiv:2106.04314, June 2021.
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time in 6G: beyond latency

11workshop @ ICTP, November 20, 2023

5G was (is) much about latency and ultra-high reliability

the idea with low values (~1 ms) is to 
cut a low, predictable part of the latency buget
§ invest latency budget into other operations 
to mitigate communication failures
§ paradoxically, communication should work very well! (ultra-reliable)

computation compression core network 5
G

latency budget



§ latency performance historically characterized with packet delays
§ tracking applications and sense-compute-actuate cycles 

are not sensitive to packet delay, 
but to the freshness of the information at the receiver

latency vs. age

12

other timing measures:
§ freshness
§ value of information
§ interplay with 

intelligence and 
prediction

workshop @ ICTP, November 20, 2023



value in 6G
• enormous data amounts used in various inference and learning tasks
• privacy vs. economic value of data

• future IoT devices may become autonomous
sellers and buyers of data

13workshop @ ICTP, November 20, 2023

Physical world

ServicesComputation

Data marketIoT

Digital world

Platform
Pricing 

Data storage or 
value exchange

IoT

L. D. Nguyen, I. Leyva-Mayorga, A. N. Lewis and P. Popovski, "Modeling 
and Analysis of Data Trading on Blockchain-Based Market in IoT 
Networks," in IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6487-
6497, 15 April15, 2021



space in 6G: two aspects

E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti and E. de 
Carvalho, "Reconfigurable Intelligent Surfaces: A signal processing perspective with 
wireless applications," in IEEE Signal Processing Magazine, vol. 39, no. 2, pp. 135-
158, March 2022

controlling the propagation space
§ reconfigurable intelligent surfaces (RIS), metasurfaces 

general objective: cause constructive interference where desirable

14workshop @ ICTP, November 20, 2023



space in 6G: two aspects

bringing 6G into space

15workshop @ ICTP, November 20, 2023 14

Sensing

Collection of closely spaced tiny antenna elements over a large surface

Provides a high resolution image of the propagation environment

or even a combination between the two
§ RIS tracks predictable satellite
B. Matthiesen, E. Björnson, E. De Carvalho and P. Popovski, "Intelligent Reflecting 
Surface Operation under Predictable Receiver Mobility: A Continuous Time Propagation 
Model," in IEEE Wireless Communications Letters, 2020.

I. Leyva-Mayorga, B. Soret, M. Röpper, D. Wübben, A. Dekorsy, and P. 
Popovski, "LEO Small-Satellite Constellations for 5G and Beyond-5G 
Communications," in IEEE Access, vol. 8, pp. 184955-184964, 2020.
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the era of new space
Old Space

§ expensive rockets, expensive
satellites, long deployment times

§ national agencies and states
§ Inmarsat launch mass: 6100 kg

New Space
§ space miniaturization
§ space privatization
§ novel services based on space data
§ Starlink launch mass: 260 kg

they are small
few kg

they are cheap
commercial off-the-shelf components 
launched as secondary payloads

development times are short

SmallSat

17
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non-terrestrial networks and 3GPP

§ in 2018 3GPP jumped on the 
bandwagon of NewSpace

– Non-Terrestrial Networks (NTN) for the 
integration of satellite and terrestrial 
networks

– spaceborne (i.e., GEO, MEO, LEO) or 
airborne (i.e., UAS and HAPS) vehicles

M. Giordani and M. Zorzi, "Non-Terrestrial Networks in the 6G Era: Challenges and Opportunities," in IEEE Network, vol. 35, no. 2, pp. 
244-251, March/April 2021

18
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application scenarios
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§ 3D orbital-aerial-terrestrial networks
• offloading, backhauling, resilience
• counteracts densification

§ global connectivity
• worldwide connectivity (direct access)
• backhaul remote base stations

§ Internet of Things
• collect data
• provide intelligence as a service

§ Earth observation
• distributed sensors
• low latency propagation of results
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M.S. Abildgaard, C. Ren, I. Leyva-Mayorga, Č. Stefanović, B. Soret, and P. Popovski, “Arctic connectivity: A frugal approach 
to infrastructural development,” Arctic Journal, 2022.

global, resilient, low-cost internet access
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mobile device and satellites

21

MediaTek 6G Technology White Paper, "Satellite and Terrestrial Network Convergence," April 2023
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5G satellites for IoT 8
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Data 
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Fig. 2: User plane with NGSO: (a) satellite offloading (b) satellite backhauling.

Hence, cells serving a large number of users that continuously generate and consume data,

for example, in dense urban scenarios, may be forced to dedicate a low amount of resources

to the NPRACH and NPDCCH. As a result, the period between RAOs may become large.

D. Offload and backhaul architectures

We consider a 5G terrestrial network consisting of gNBs and a 5GC connected to the

data network. There is also a LEO satellite constellation consisting of N satellites organized

in several orbital planes. The satellites in the constellation are regenerative payloads inter-

connected via the ISL. The focus of the paper is on two main functionalities of a LEO

constellation in a 5G system: to offload the terrestrial network and to serve as a backhaul

(see Figure 2).

Offloading: A LEO constellation can be used for data offloading when the terrestrial network

is congested in very dense urban areas. Since we consider the regenerative satellite architec-

ture, where a full gNB is on-board of the satellite as payload, we consider the existence

of dual-UEs that can connect to the terrestrial or the satellite gNB. The offloading policies

should exploit the potential of the constellation to cover a wider area, but should also take into

account the different RTTs and channel configurations with respect to the terrestrial gNBs.

The satellite might download the traffic to the 5GC directly or use several other satellites

in the constellation to reach the downlink (DL) connection to the terrestrial network or the

final destination. Offloading traffic from the terrestrial system opens up the possibility of

November 11, 2020 DRAFT

offloading backhauling

B. Soret, I. Leyva-Mayorga, S. Cioni, and P. Popovski, "5G Satellite Networks for IoT: Offloading and Backhauling", 
International Journal of Satellite Communications and Networking, vol. 39, no. 4, pp. 431-444, Jul/Aug 2021.

22
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NTN IoT connectivity in Europe

23

3GPP compliant and proven implementations of:
§       5G NB-IoT NTN UE SW 
§       5G NB-IoT NTN NodeB SW

Pre-launch Feasibility and Validation Support
§       5G NB-IoT NTN Emulator
§       Feasibility Studies / Performance Validations

Feeder linkService link

NGSO

GEO

Terrestrial network

https://gatehousesatcom.com 

https://gatehousesatcom.com/
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satellite orbits
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MEO
Zone

LEO Zone
below 2000km

GPS
20350km

GEO/GSO
35786km

Sea Level (0km)
Self Propelled Jet Aircraft Flight Ceiling (37.6km)
Sputnik-1 (215km)
ISS (340km)
Starlink Phase 1 (550km)

Low Earth Orbit (LEO): Orbital period ≤ 128 min
Medium Earth Orbit (MEO): Between LEO and GSO

Geosynchronous Orbit (GSO): Orbital period 23h 56min 4s (1 sidereal day) 
Geostationary Orbit (GEO): circular GSO above Equator

High Earth Orbit (HEO): Beyond GSO
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LEO small satellite constellations
§ propagation latency of several ms 
§ Doppler spread can be very significant

I. Leyva-Mayorga, B. Soret, M. Röpper, D. Wübben, A. Dekorsy, and P. Popovski, "LEO Small-Satellite 
Constellations for 5G and Beyond-5G Communications," in IEEE Access, vol. 8, pp. 184955-184964, 2020.

26

cell types
§ Earth-moving cells 
follow the satellite as it orbits the Earth
§ quasi-Earth fixed cells 
fixed on the ground, tracked by satellite 
beams
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satellite constellations
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Coverage
No coverage
Rotation

Earth

Equator

Walker star

Earth

Equator

Walker delta

Earth

Equator

27 /  
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Mixed geometry

Orbital height Velocity Period

200 km 7.78 km/s 88.5 min
550 km 7.59 km/s 95.7 min

2000 km 6.90 km/s 127.2 min

Leyva-Mayorga, Soret, Matthiesen, Röper, Wübben, Dekorsy, Popovski, “NGSO constellation design for global connectivity”, in Non-
Geostationary Satellite Communications Systems, Lagunas, Chatzinotas, An, Beidas, Eds., IET, Jul. 2022, to appear.



inter-satellite networking

28
Leyva-Mayorga, Röper, Matthiesen, Dekorsy, Popovski, Soret, “Inter-Plane Inter-Satellite Connectivity in LEO Constellations: Beam Switching vs. 
Beam Steering,” Globecom 2021.

§ link types:
• Intra-Plane: same orbital plane
• Inter-Plane: different orbital planes, same orbital shell
• Inter-Orbit: different orbital altitudes

§ Free Space Optical (FSO) and RF interfaces
§ Intra-Plane: stable relative position → FSO
§ Inter-Plane / Inter-Orbit:

• high relative velocity
• short contact times

Latitude
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satellite-to-ground communication

29

§ LOS channel, low rank

§ distributed beamforming creates virtual array

§ problem: propagation delay
• Sat-to-Ground RTT: ≈ 4ms
• Sat-to-Sat: 50km intersatellite distance =̂ 0.17ms

§ exploit position knowledge → beamspace MIMO

§ AoA & AoD based precoding & linear equalization

§ perfect position knowledge:
99.8%of optimal beamforming

Röper, Matthiesen, Wübben, Popovski, Dekorsy, “Beamspace MIMO for Satellite Swarms,” WCNC 2022
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satellite-to-ground communication
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v
§ Reconfigurable Intelligent Surface (RIS) as second path
§ exploit predictable position of satellite
§ LEO Satellite: Doppler Shift -> multipath-> Doppler Spread
§ continuous time propagation model
§ optimal configuration: Power, Doppler Spread, Delay Spread
§ Pareto optimal lexicographic solution: ϕm,n(t) = 2πmod(fc(τ0(t) − τm.n(t) , 1)

• maximizes received power
• no Doppler spread
• small delay spread

−400 −200 0 200
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an
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[d
B] Isotropic RIS

Without RIS
Planar RIS, 45° tilt
Planar RIS, 0° tilt
Diffuse Reflector
Specular Reflector

10 ◦ 25◦ 50◦ 90◦ 50◦ 25◦ 10 ◦

−155 6dB

Matthiesen, Björnson, De Carvalho, Popovski, “Intelligent Reflecting Surface Operation under Predictable Receiver Mobility: A Continuous Time 
Propagation Model”, IEEE WCL 2021. 7 / 24

Height Sat: 1500 km 
Dist. Tx–RIS: ≈1 km
cf = 2GHz
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federated learning

32

clients
server

engineers 
& analysts

model
deployment

model
testing

federated
learning

rest of 
the world

admin

Source: Kairouz, et. al., “Advances and Open Problems in Federated Learning,” NOW Publishers, arXiv:1912.04977.

32 /  
24
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federated learning

33
Source: Kairouz, et. al., “Advances and Open Problems in Federated Learning,” NOW Publishers, arXiv:1912.04977.

§ privacy: raw training data remains local
§ non-IID: local dataset not representative of population distribution
§ unbalanced: varying amounts of local training data
§ massively distributed: #devices > # local data points
§ limited communication: random device participation

total population size 
devices selected for one round of training

total devices that participate in training one model 
number of rounds for model convergence

wall-clock training time

106–1010 devices
50 – 5000
105–107

500 – 10000
1 – 10 days

33 /  
24

table 1: order-of-magnitude sizes for typical cross-device federated learning applications.
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federated optimization

34

• distributed ML / optimization: data center
• K clients
• partition data set and distribute to clients
• distributed solution: heavy on communications

• federated optimization
• natural partition of data set: Dk
• nk = |Dk|
• K large, nk unbalanced

•centralized machine learning: solve
• n data points
• data set {xi, yi}ni=1
• f i cost function of ith point, e.g. quadratic

Federated Optimization

• Centralized machine learning: Solve minw2Rd
1
n

Pn
i=1 fi(w)

• n data points
• Data set {xi, yi}ni=1
• fi cost function of ith point (e.g., fi(w) = 1

2 (x
T
i w � yi)2)

• Distributed ML / optimization: Data center

• K clients
• Partition data set and distribute to clients
• Distributed solution: heavy on communications

• Federated Optimization

• Natural partition of data set: Dk
• nk = |Dk|

• K large, nk unbalanced

min
w2Rd

KX

k=1

nk

n
·
1

nk

X

i2Dk

fi(w) = min
w2Rd

KX

k=1

nk

n
Fk(w)

Konečný, McMahan, Ramage, “Federated Optimization: Distributed Optimization Beyond the Datacenter,” arXiv:1511.03575, 2015.
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Konečny, McMahan, Ramage, “Federated Optimization: Distributed Optimization Beyond the Datacenter,” arXiv:1511.03575, 2015. 



workshop @ ICTP, November 20, 2023

synchronous and asynchronous algorithms

35

McMahan, Moore, Ramage, Hampson, Aguera y Arcas, 
“Communication-efficient learning of deep networks from 
decentralized data,” AISTATS, 2017.

synchronous model
§ clients work in the same model
§ update after 

all clients have delivered 
§ waiting and latency

asynchronous model
§ ClientUpdate:

§ wait for task
§ run local SGD
§ return result and timestamp

§ clients work on 
different model versions

§ updates whenever results arrive

Xie, Koyejo, Gupta, “Asynchronous Federated 
Optimization,” OPT2020, arXiv:1903.03934, 2020.
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setup for federated learning with satellites

Federated Learning on Satellites

Parameter Server 

Bho Matthiesen: Low Earth Orbit Satellite Constellations 13 / 24

• privacy: raw training data remains local, 
but privacy is not the motivation

• non-IID: sometimes. 
• unbalanced: sometimes
• massively distributed: orders of magnitude lessdevices
• limited communication:

• deterministic device participation
• long delay, high transmission costs, limited energy
• no control over device availability

• control: devices ownedby operator

36
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two generic options
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3

Orbital velocity
⇡ 7.6 km/s

Wait a few hours Wait a few minutes

Parameter server
(PS)

Global model
Local updates Altitude

< 2000 km

Earth
(a)

Orbital velocity
⇡ 7.6 km/s

Direct update Direct update

Parameter server
(PS)

Global model
Local updates Altitude

< 2000 km

Earth
(b)

Fig. 1. FL in a satellite constellation (a) without and (b) with ISLs. In the former case, the satellites must wait until the next
pass to send their local update and to receive the updated global model. In the latter case, the satellites can update the models if
at least one of them has connection to the PS. In both cases, the connectivity of the satellites to the PS is predictable.

of the exact trajectories allows for highly specialized communication schemes to best support the

DML process. Instead, UAV networks require more flexible communication approaches that rely

on active control and optimization during the learning process.

System architectures for satellite-assisted training of ML models are presented in [4]. The

authors focus on the interaction of remotely located terrestrial devices with a cloud server, assisted

by LEO satellites. While this includes a scenario where ML training is conducted on a satellite,

the scope is on comparing different cloud-connectivity architectures. Instead, we consider the

interaction among satellites within a constellation to distributedly train a ML model. Indeed, while

satellite FL was first proposed in [11], this paper is the first top-level study on orchestrating FL

in satellite constellations. The communication and computation approach to satellite FL depends

crucially on the satellites’ communication capabilities, the constellation design, and the location

of the PS. We propose a classification of satellite FL based on these aspects and the resulting

connectivity patterns. We show that three classes are sufficient to cover all relevant satellite FL

scenarios. In addition, we also show that these three classes are necessary and significant, as the

technical challenges are very different for each. This is one of the key contributions of this paper.

We review the state-of-the-art within this framework, discuss promising solution approaches for

each scenario, and highlight open topics and future directions for research.

II. FUNDAMENTALS

A. Distributed machine learning

The traditional domain of DML training are data centers with homogeneous client nodes,

constant availability, and high bandwidth. This facilitates frequent synchronization between nodes

without inter-satellite links with inter-satellite links



§ single ground-station as server
§ no inter-satellite communication
§ data exchange during pass
§ run local SGD during offline time
§ time between contacts

o orbital period: ≈ 90 min to 128 min
o behind horizon: ⪅ 12 h

§ distinctive features
§ “not learning” not an option
§ full client participation

§ synchronous learning: 
§ 1 - 2 orbital periods per global epoch
§ asynchronous learning

workshop @ ICTP, November 20, 2023

ground-assisted federated learning

38

Ground-Assisted Federated Learning

• Single ground-station as server

• No inter-satellite communication

• Data exchange during pass

• Run local SGD during o✏ine time

• Time between contacts

• Orbital period: ⇡ 90min to 128min
• Behind horizon: / 12 h

Assessment:

• “Not learning” not an option

! Full client participation

• Synchronous learning: 1 - 2 orbital

periods per global epoch

! Asynchronous learning

Razmi, Matthiesen, Dekorsy, Popovski, “Ground-Assisted Federated Learning in LEO Satellite Constellations,” IEEE WCL, 2022.

Bho Matthiesen: Low Earth Orbit Satellite Constellations 15 / 24

Razmi, Matthiesen, Dekorsy, Popovski, “Ground-Assisted Federated Learning in LEO Satellite Constellations,” IEEE WCL, 2022. 
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FedSat: asynchronous FedAvg

39

idea:
§ GS at North pole, single orbital shell → symmetric
§ cyclic contact sequence: 1→2→3→···→K→1→... 
§ FedAvg update rule:
§ “Unroll” FedAvg: Incremental update rule

algorithm:
§ satellite k transmits weight update 
§ GS updates global model
§ GS sends wi+1 to satellite k

convergence:
• established (Nedić et. al. 2001): single orbital shell, arbitrary GS location
• open: multiple orbital shells

FedSat: Asynchronous FedAvg

Idea:

• GS at North pole, single orbital shell ! Symmetrical

• Cyclic contact sequence: 1! 2! 3! · · ·! K ! 1! . . .
• FedAvg update rule: wt+1 =

PK
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nk
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• “Unroll” FedAvg: Incremental update rule
• Satellite k visits at ti1 , ti2 , . . .
• At ti2 : wi2+1 = wi2 �
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n (wk

i1
�wk

i2
)

• After K iterations: Same as wt+1 of FedAvg

Algorithm:

• Satellite k transmits weight update �wk = nk(wk
i1 �wk

i2)
• GS updates global model wi+1  wi �

1
n�wk

• GS sends wi+1 to Satellite k

Convergence:

• Established (Nedić et. al. 2001): Single orbital shell, arbitrary GS location

• Open: Multiple orbital shells

Equator

Earth

Walker delta

Razmi, Matthiesen, Dekorsy, Popovski, “Ground-Assisted Federated Learning in LEO Satellite Constellations,” IEEE WCL, 2022.
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Bremen

Top view
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Fig. 2. Illustration of a 80°: 40/5/1 Walker star and a 60°: 40/5/1 Walker delta constellation, both at an altitude of 500 km. The
frontal view is for an observer in the equatorial plane at 0° longitude and the top view from the polar plane towards the North
pole with 0° longitude pointing down.

Instead, inter-orbit links connect satellites across orbital planes and are more heterogeneous in

nature. As shown in Fig. 2, in Walker star constellations, satellites from adjacent orbital planes

travel in similar directions and can maintain communication links with time-varying distance.

However, the same constellation also contains satellites traveling in nearly-opposite directions,

i.e., with high relative velocity that leads to transmission impairments and short contact times [5].

III. A CLASSIFICATION OF SATELLITE FL SCENARIOS

Connectivity between clients and PS is primarily determined by orbital mechanics and the

satellites’ communication capabilities. Combined with the reality of satellite constellations being

owned and operated by a single entity, the spatio-temporal scope of FL is significantly altered

from stochastic towards deterministic and predictable client availability. Another aspect is that,

in satellite FL, the number of clients participating in the learning process is orders of magnitude

smaller compared to conventional FL, resulting in each client having a relatively larger share

of the available data and playing a more influential role in the learning process. Therefore, it
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Top-1 accuracy for a GS in Bremen with Non-IID CIFAR data 

FedSat: Numerical Results

Top-1 accuracy for a GS in Bremen with Non-IID CIFAR data:
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previous assumptions:
§ data exchange during pass
§ run local SGD during offline time
§ → is it possible during pass?

algorithm:
§ after delivering model update:
§ next pass long enough for computation?
§ Yes: receive model at next visit, work online 
§ No: receive model now, work offline

result:
§ reduces model staleness
§ improves convergence

workshop @ ICTP, November 20, 2023

scheduling for FedSat
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Ground-Assisted Federated Learning

• Single ground-station as server

• No inter-satellite communication

• Data exchange during pass

• Run local SGD during o✏ine time

• Time between contacts

• Orbital period: ⇡ 90min to 128min
• Behind horizon: / 12 h

Assessment:

• “Not learning” not an option

! Full client participation

• Synchronous learning: 1 - 2 orbital

periods per global epoch

! Asynchronous learning

Razmi, Matthiesen, Dekorsy, Popovski, “Ground-Assisted Federated Learning in LEO Satellite Constellations,” IEEE WCL, 2022.
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Razmi, Matthiesen, Dekorsy, Popovski, “Scheduling for Ground-
Assisted Federated Learning in LEO Satellite Constellations,” 
EUSIPCO, 2022. 
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Top-1 accuracy for a GS in Bremen with Non-IID CIFAR data 
Scheduling & FedSat: Numerical Results

Top-1 accuracy for a GS in Bremen with Non-IID CIFAR data:
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Intra-Plane Inter-Satellite Links (ISLs):
§ connects adjacent satellites within orbital plane
§ stable relative position

idea:
§ one satellite per orbit connects to PS (GS, MEO, GEO)
§ multi-hop intra-orbit routing
§ predictive routing determines sink satellite (per orbit)

Razmi, Matthiesen, Dekorsy, Popovski, “On-Board Federated Learning for Dense LEO Constellations,” IEEE ICC, 2022. 
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Fig. 5. Spatio-temporal graph models for FL in satellite constellations for different connectivity patterns. Three snapshots of the
time graph are displayed for each scenario. Client clusters are denoted as Ci, while the PS is labeled as P .

IV. SPORADIC DIRECT CONNECTION TO PS

In the sporadic connectivity scenario, the clients have long offline periods between comparably

short intervals of connectivity towards the PS. This is usually the case when satellites have no

ISLs or the learning process is orchestrated by a single GS (cf. Fig. 3). Directly applying a

synchronous FL algorithm, e.g., FedAvg, would result in a very slow convergence. To illustrate,

consider running FedAvg under full client participation in a network with connectivity pattern

as in Fig. 3, with a single satellite per orbit and connectivity towards a GS. Recall that the

FedAvg algorithm operates synchronously, i.e., it waits for all selected clients to return their

model update before aggregating the updates into a new global model. Assuming learning starts

at t = 0 in Fig. 3, each client obtains the initial version of the global model from the PS upon

its first connection opportunity. It then starts computing a local update and transmits it at the

second contact to the PS. The PS waits until all updates are received before updating the model.

Hence, the clients have to wait at least until their third connection to the PS before receiving the

first iteration of the global model. Referring to Fig. 3, it can be observed that, even without C5,

this first global iteration of FedAvg will take over nine hours to complete due to C4.

This problem can be somewhat alleviated by client scheduling at the PS. For example, consider

the second connectivity pattern in Fig. 3 and assume a new training iteration starts at t ⇡ 3 h,

when C2 connects to the PS to deliver its update. Further assume that the satellites require

approximately 30 min for local computation. The scheduler must make a choice among several

“sub-optimal” options. Either it schedules C3 to C5, which will lead to the next global iteration

being finished around t ⇡ 4 h. This will leave C1 and C2 idle. The scheduler can also include

Near-persistent direct 
connection to PS 

Multi-hop connection to 
PS via inter-cluster 

connectivity

B. Matthiesen, N. Razmi, I. Leyva-Mayorga, A. Dekorsy, and P. Popovski, "Federated Learning in Satellite Constellations", in IEEE 
Network Magazine, accepted, 2023.



algorithm:
§ parameter distribution:

workshop @ ICTP, November 20, 2023

federated learning with inter-satellite links

45

v

time: tnow

PS



algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
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49

v

time: tnow + Tc,p

PS



algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL

workshop @ ICTP, November 20, 2023

federated learning with inter-satellite links

50

v

time: tnow + 2Tc,p

PS



algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL

workshop @ ICTP, November 20, 2023

federated learning with inter-satellite links

51

v

time: tnow + 4Tc,p

PS



algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
§ aggregation

o after computation, send update to sink satellite over shortest 
path
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
§ aggregation

o after computation, send update to sink satellite over shortest 
path
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
§ aggregation

o after computation, send update to sink satellite over shortest 
path

o sink satellite
o wait for all the results
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
§ aggregation

o after computation, send update to sink satellite over shortest 
path

o sink satellite
o wait for all the results
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
§ aggregation

o after computation, send update to sink satellite over shortest 
path

o sink satellite
o wait for all the results
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
§ aggregation

o after computation, send update to sink satellite over shortest 
path

o sink satellite
o wait for all the results
o forward to the PS on the ground
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algorithm:
§ parameter distribution:

o 1 satellite per orbit: get weight from PS
o estimate constellation state at time tend, 

based on expected times for 
communication, processing, and learning

o select the satellite with the best connection at tend
o distribute parameters and 

selected sink satellite through ISL
§ computation: every satellite updates weights
§ aggregation

o after computation, send update to sink satellite over shortest path
o sink satellite

o wait for all the results
o forward to the PS on the ground

result
§ short (or no) offline period per orbit
§ synchronous federated learning (FedAvg)
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central aggregation:
§ PS receives all weights 𝑤!"#$

§ computes new global weights 𝒘!"# = ∑$
%!
%
𝒘!"#
𝒊

§ commmunication effort scales as Ο '"

(
per orbit
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central aggregation:
§ PS receives all weights 𝑤!"#$

§ computes new global weights 𝒘!"# = ∑$
%!
%
𝒘!"#
𝒊

§ commmunication effort scales as Ο '"

(
per orbit

incremental aggregation:
§ satellite i collects incoming weights in
§ transmits 𝒘!"#

$,*+! = 𝑛,𝒘!"#
𝒊 + ∑𝒘

§ PS receives one weight per orbit
§ PS computes a single update based on all received weights
§ exactly K transmissions per orbit
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Incremental Aggregation

Central aggregation:

• PS receives all weights wi
t+1

• Computes new global weights: wt+1 =
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FedAvg with ISL FedSat FedAsync ⌘ = 0.01
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(a) PS located in a GS in Bremen, Germany. No inter-satellite
connectivity.
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(b) PS located in a satellite in equatorial orbit at 2000 km
altitude.

Fig. 6. FL in a 80°: 40/5/1 Walker star constellation. Top-1 accuracy as a function of the (simulated) wall clock time for
training a ResNet-18 with non-IID CIFAR-10 data. Training is conducted in batches of size 100 with a learning rate ⌘ = 0.1.
Computation of a local model update at the satellites is assumed to require 1 min.

FedSat outperforms these algorithms even in scenarios with multiple orbital shells and non-IID

data distribution. Still, properly addressing varying participation rates algorithmically remains

an open topic for future research. Further open topics are combining asynchronous FL with the

intra-cluster communication techniques discussed for the near-persistent connectivity scenario,

and hierarchical asynchronous FL to facilitate aggregation through multiple GS.

B. Predictive Scheduling for FedSat

A major impairment to convergence speed in asynchronous FL is model staleness, i.e., local

updates delivered to the PS can be based on significantly outdated versions of the current global

model. Gradient steps computed on such an outdated version of the global model parameters

are potentially misaligned with the current gradient and, thus, do not necessarily improve the

objective function. A straightforward scheduling solution to address this issue relies on the

predictable movement of satellites [14]. The idea, for each satellite during its contact to the PS,

is to estimate whether a local training iteration can be completed during the next contact. If this

is the case, the satellite does not retrieve the global model and remains idle while being offline.

Upon the next contact, it will obtain the current global model and complete a local iteration while

PS located in a GS in Bremen, Germany. No inter-
satellite connectivity.

ResNet-18 with 
non-IID CIFAR-10 
data. 

PS located in a satellite in equatorial orbit at 2000 km 
altitude. 
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revival of satellite connectivity 
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federated learning in space

satellite constellations

towards 6G

satellite edge computing
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global intelligence and edge computing
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data source
an IoT device on ground, a satellite, or  gateway

edge infrastructure
gateways and/or satellites

computing resources
mobile terminals, gateways, satellites, or the cloud
assumed to have the algorithms/program

destination
mobile terminal, satellite, or cloud

Cloud 
server

≈ 120 ms 
propagation delay
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traditional-style mobile edge computing (MEC)
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1. upload task 2. processing 3. return result
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1. segmentation: partition the data
2. allocation: segment-to-satellite allocation
3. scatter: transmission of the segments 
4. processing: each satellite in parallel 
5. gather: send the result to the destination

scatter and gather: limited by the connectivity

orbital planes
Ring topology with stable links
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optimization objectives
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aimed for feasibility, efficiency, or stability
minimize latency
  or
Minimize energy consumption
subject to real-time constraints

feasibility: real-time constraints per task

stability: real-time constraints per resource
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very high-definition Earth observation 

68

data source: 
one satellite

computing resources:
at each satellite in the orbit

algorithm: 
lossy compression 

destination: 
gateway

I. Leyva-Mayorga, M.M. Gost, M. Moretti, A. Pérez-Neira, M.Á. Vázquez, P. Popovski, and B. Soret,
“Satellite edge computing for real-time and very-high resolution Earth observation,” IEEE Trans. Commun., 2023. 
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Earth observation: scanning over K frames 
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Ground track frame period (GTFP) 
Period between consecutive frames
to avoid pixel overlap and coverage holes
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Improved system capacity with global minimum energy consumption

Capacity 
[images per frame]

12.33⨉
2.05⨉



§ rekindled interest in satellite connectivity
§ diversified players and equipment

§ predictable satellite connectivity requires 
rethinking of distributed algorithms

§ we have built the case for federated learning that operates 
under predictable satellite connectivity

§ plethora of new research problems
§ distributed algorithms, satellite IoT, edge computing with satellites
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conclusion and outlook
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