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Design and Path Loss Prediction Lesson Learned from Rekindle Interest
Implementation of AIN with Machine Learning AIN Towards Non-
Terrestrial Network
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* Seven (7) stations to monitor the
water quality across the Chini Lake

* Measuring various water quality
parameters; pH, turbidity, dissolved
oxygen, etc.
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Pusat Penyelidikan
Tasik Chini Research Centre




Critical Challenges Facing Water Quality Monitoring at
Chini Lake
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AIN Deployment
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LoRa Propagation Characterization using Hybrid Machine
Learning: Reliability, Coverage, and PL Limits

* Area types: Urban, rural, suburban (at UKM campus) and rural (at Lake Chini

and surrounding)
* LoRa performance metrics: (1) communication reliability, (2) coverage, and
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Measurement route/points at UKM, Bangi campus Measurement route at Lake Chini
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Measured PL vs. predicted PL plots from FSPL (baseline),

LNSPL, and Cloud-RF®-based models
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* None of the well-known PL models are suitable for
PL prediction in the study area under consideration

* Indicated the need for additional research to
address this issue and propose new models that fit
well in such harsh tropical areas

Accuracy evaluation in terms of different metrics

Model MSE __RMSE MAE MAAPE R R
FSPL 1458 3818 36 2804 054 536
LNSPL 189.74 13.78 10994 8.84 054 0.17
IT™ 743.97 2727 2431 1947 058 -2.25
Cost 231-Hata 888.55 29.81 27.03 2138 062 -2.88
ECC-33 386.94 19.67 16404 1279 063  -0.69
Modified ITM 57937 1671 1228 965 058 022
M°d'f'e:af:5t 231- 16047 1267 1007 818 062 0299
Modified ECC-33 | 141.23 11.88 962  7.82 063 0.383

Modified Cloud-RF® based models performance. (a) Actual vs.
predicted PL correlation. (b) Residuals vs. actual PL scatter plot

Still performing poorly



Propagation Characterization using Hybrid Machine Learning
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Propagation Characterization using Hybrid Machine Learning

Uniformly distributed

Measured vs. predicted PL from FSPL (baseline),

LNSPL, and the proposed model for training, testing,

and overall dataset
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Proposed PL model performance. (a) Actual
vs. predicted PL correlation scatter plots. (b)
Residuals vs. actual PL scatter plot with a 2D
histogram, showing the density of the
residuals spread across the range of actual PL.
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Propagation Characterization using Hybrid Machine
Learning

The proposed model outperforms other conventional PL models as it is more flexible and

provides the highest prediction accuracy, especially in rural and suburban areas.

Highest
prediction
accuracy

94%

Best
performance

91.8% ~__

Low error across all metrics

Set MSE RMSE MAE MAAPE R R 91.8%
Training 19.13 4.37 3.38 2.79 0.958 0.918/ 89.2%
Testing 21.76  4.67 3.87 3.24 0.945 0.892

Urban training 21.32 4.62 3.64 2.82 0.918 0.834

Urban testing 2215 471 3.84 3.01 0.885 0.779

Suburban training 17.16 4.14 3.18 2.69 0.96 0.92

Suburban testing 22.07 4.7 3.91 3.3 0.938 0.879

Rural campus training 22.9 4.79 3.73 3.11 0.935 0.871

Rural campus testing 21.81 4.67 3.84 3.25 0.921 0.847

Rural forest (Chini) training  26.56 5.15 4.15 3.07 0.939 0.877

‘Rural forest (Chini) testing 22.74 477 3.97 2.97 0.937 0.869

‘Rural lake (Chini) training 19.69 4.44 3.44 2.71 0.973 0.947

Rural lake (Chini) testing 19.5 4.42 3.68 2.97 0.971 0.941

Rural training 2237 473 369 298 0957 0915 / 21.5%
Rural testing 21.16 4.6 3.8 3.12 0.955 0.911

Rural all 2219 4.71 3.71 3.01 0.957 0.914

All %9.51 4.42 3.45 2.86 0.957 0.915' 13



Lesson Learned & Opportunities

High Gain Antenna

Limited availability & accessibility of helium
gas with high operation cost in remote areas

o
— B
DigitalOcean  «— = :nd User

Dashboard (Data
Visualization
and Processing)

Alternative solutions that do not heavily rely
on helium or explore more sustainable lifting
gases

Helikite balloon may be further stabilized
remotely by using an RC gondola

Increase the helium retention period by
coating the balloon surface with
nanomaterials or use other materials, such
as aerogel

Expanding the LAP system usage by adapting
other sensors onboard



LAP Communications in Rural & Underserved Area

[[] NTFPs[] Satellites[ ] Tower Masts
Low Cost

Low Delay Coverage

Deployment LOS

Mobility Endurance

(a) NTFPs, satellites, and tower masts.

B. E. Y. Belmekki and M. -S. Alouini, "Unleashing the Potential of Networked Tethered Flying Platforms:
Prospects, Challenges, and Applications," in IEEE Open Journal of Vehicular Technology, vol. 3, pp. 278-320,
2022



Key Takeways

The challenge to push wireless connectivity in tropical setting based on rural lake
forest and tough climate in Malaysia via AIN, a form of LAP-loT

Explore opportunity to introduce a path loss model for LPWAN communications,
based on combination of empirical and deterministic using Machine Learning

The implementation of AIN in rural area encountered with several challenges, such as

With the surging interest on NTN in 6G, will there be an opportunity to rekindle
interest of LAP for rural or sustainable development?

technical, practical and cost
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