DTN Architecture

Samo Grasic, PhD (<u>samo@grasic.net</u>) Interplanetary Networking Special Interest Group Link to the NASA's Interplanetary Overlay Network course

Internet Network Protocol Stack

- Layered
- Every layer preforms the function at that layer
- Relying on services of the layer below
- Providing services to the layer above

Application
Transport
Network
Data Link
Physical

Data encapsulation

Internet Routing

- Individual networks connected into internetwork (AS)
- Data Can get from a source to a destination
- Network topology changes slowly
- Round trips cheap, low packet loss
- IP Addresses organized into tree structure
- Provides scalability, Issues with mobility

The DTN Model

- One layer higher in the protocol stack
- Bundle Protocol analogue to the IP
- Convergence Layer (underlying stack)

Refer to Delay and Disruption-Tolerant Networks (DTNs) A Tutorial - Version 3.2

End-to-End IP, PEPs, and DTN

Convergence layers

- Stacking of protocols, encapsulation
- Any form of communication (WiFi, Ethernet, IPv6, RS-232, USB Sticks, smoke signals, etc.)

Structure of a Bundle

Sequence of blocks:

- Primary block
- Zero or more extension blocks
- Payload block
- Variable-length fields (SDNV, CBOR)

Bundle "header"			
Primary block	Extension block	Extension block	Payload block
Contains: • Source and destination EIDs • Time to live • Processing flags • Class of service • Etc.	For example: Block integrity b Block confident Extended class o Bundle age Others	iality block (BCB)	 For example: CFDP file data segment RAMS message DTPC aggregate An entire file Others

Endpoint IDs

- The source and destination of bundle are endpoints
- BP endpoint IDs are names , not addresses (no topological significances),
- No hints about the route, flat namespace
- Two name schemes defined:
 - DTN: dtn://namenode.organization/service
 - IPN: ipn://nodenumber.servicenumber
- IPN defined to reduce transmission overhead

Security

- Built into the Bundle Protocol (but not every implementation)
- Every block of a bundle can be signed by a Bundle Integrity Block (BIB) enabling detection of tampering with block data. When there a BIB for the Primary block, which identifies the source node, the authenticity of the bundle can be verified.
- Bundle in Bundle Encapsulation can be used as defense against traffic analysis

Routing/Forwarding in DTN

- Replication-based routing (congestion, wasteful, scalabiliy)
 - Epideminc
 - PRoPHET
 - MaxProp
 - RAPID
 - SprayAndWait
 - Buble Rap (social based)
- Forwarding-based routing
 - DTLSR (link state)
 - Contact Graph Routing (scheduled)

DTN and time

- What time to use in space (earth time, lunar time,..)
- Important for TTL of bundles
- Every bundle gets a timestamp
- If time is not available?
 - Primary block is immutable
 - BP uses time extension block to keep track of time
 - Important to use sequence nr.

Open challenges in DTN

- BPv7 vs BPv6
- Governance (IPN naming)
- API
 - ION Inter-process comm.
 - D3DTN IP socket
 - Files
- Flat name space, hard to aggregate IPNs
- Scalability?
- Inter-Regional-Routing (BGP) missing
- Standardization of bundle payloads
- Missing features in implementations

Structure of a typical DTN node

- Application/Service
- Bundle agent (storage, forwarding alg.)
- Convergence layer adapters
 - Ingress (incoming links)
 - Egress (exit links)
 - Support for asymmetrical links

Bundle Protocol Implementations

Feature/Stack	Subfeature	ION ION- Core	IONE	HDTN	uD3TN	DTNME	BPLib/CFS	Unibo	IBR
BPv6		Y	Y	Υ	Y	Υ	Υ	Ν	Υ
	TCPCLv3	Y	Y	Υ	Υ	Y		Ν	Υ
	UDPCL	Υ	Υ	Υ	Ν	Υ		Ν	Υ
	LTPv1	Υ	Υ	Υ	Ν	Y		Ν	Ν
	BPSEC	Υ	Υ	Ν	Ν	Ν		Ν	Υ
	Custody BPv6	Υ	Υ	Υ	Ν	Y		Ν	
BPv7		Y	Υ	Υ	Υ	Υ	Υ	Υ	Ν
	TCPCLv3	Y	Y	Υ	Υ	Y		Υ	Ν
	TCPCLv4	Υ	Y	Υ	Ν	Υ		Ν	Ν
	UDPCL	Υ	Y	Υ	Ν	Y		Ν	Ν
	LTPv1	Y	Υ	Υ	Ν	Y		Υ	Ν
	BPSEC	Y	Y	Y	Ν	Ν		N	Ν
	Custody (with BIBE)	Y	Y	Ν		Y		N	Ν
	RTP	N	Ν	Υ	Ν			Ν	Ν
CGR, SABR		Y	Υ	Υ	Ν	Ν		Υ	Υ
CCSDS SPP		Ν	N	N	Υ	Ν		N	N
Bundle Streaming Service Protocol		Y	Y	Ν	Ν	Ν		Ν	Ν
Asynchronous Message Service		Y	Y	Ν	Ν	Ν		Ν	N
IPv6 (for CLAs)		N	Υ	N	Υ	Ν		Υ	Υ
IPND		Υ	Y	N	Ν	N		N	Y
CFDP		Υ	Y	Ν	Ν	Y		Ν	N
Primary Language		С	С	C++	С	C++	С	C++	C++

ION Bundle Protocol Implementation

- Closest to the "reference" implementation
- Developed for actual space flight environments (runs on int. space station)
 - Link constrains
 - Processor constrains (economical use of resources)
 - Operation constrains (reliability, static mem allc)

Contact Graph Routing (CGR)

*OWLT-OneWayLightTime

*Contact Volume