On a generalization of two results of Happel to commutative rings

Tony J. Puthenpurakal

Indian Institute of Technology Bombay

ICTP workshop May 8-12, 2023

Happel's results

Let Γ be a finite dimensional algebra over a field k. Happel proved that its bounded derived category $D^b(\mathsf{mod}(\Gamma))$ has Auslander-Reiten (AR) triangles if and only if Γ has finite global dimension. He also proved that $K^b(\mathsf{proj}\,\Gamma)$ the homotopy category of bounded complexes of finitely generated projective Γ -modules has right AR triangles if and only if Γ is a Gorenstein algebra.

Auslander's philosophy

Auslander philosophy is that concepts in the study of representation theory of Artin algebras have natural analogues in study of maximal Cohen-Macaulay modules over Cohen-Macaulay local rings (which are free on the punctured spectrum). We study natural analogues of Happel's results in the context of commutative Noetherian rings.

Our Generalization

Let (A, \mathfrak{m}) be a commutative Noetherian local ring of dimension d. Let $D_f^b(\operatorname{mod}(A))$ be the bounded derived category of complexes of finitely generated modules over A with finite length cohomology. Then it can be shown that $D_f^b(\operatorname{mod}(A))$ is a Hom-finite Krull-Schmidt triangulated category. Our generalization of first of Happel's results is the following:

Theorem 1

Let (A, \mathfrak{m}) be a commutative Noetherian local ring. The following conditions are equivalent:

- A is regular.

Our proof is not similar to Happel's.

Let $K_f^b(\operatorname{proj} A)$ be the subcategory of $K^b(\operatorname{proj} A)$ with finite length cohomology. By Happel's result if (A,\mathfrak{m}) is a zero-dimensional commutative Gorenstein ring then $K^b(\operatorname{proj} A)$ has AR-triangles. For higher dimensional Gorenstein rings we prove the following extension of one direction of Happel's result.

Theorem 2

Let (A, \mathfrak{m}) be a complete Gorenstein local ring. Then $K_f^b(\operatorname{proj} A)$ has AR-triangles.

We believe the converse to Theorem 2 is true. More precisely

Conjecture 3

Let (A, \mathfrak{m}) be a complete Noetherian local ring. If $K_f^b(\operatorname{proj} A)$ has AR-triangles then A is Gorenstein.

We prove Conjecture 3 under the following cases:

Theorem 4

Let (A, \mathfrak{m}) be a complete Noetherian local ring. Assume $K_f^b(\operatorname{proj} A)$ has AR-triangles. Then

- if A is Cohen-Macaulay then A is Gorenstein.
- \bigcirc if dim A < 1 then A is Gorenstein.

AR-triangles

Let $\mathcal C$ be a Krull-Schmidt triangulated category with shift functor \sum .

A triangle $N \xrightarrow{f} E \xrightarrow{g} M \xrightarrow{h} \sum N$ in C is called a *right AR-triangle* (ending at M) if

(RAR1) M, N are indecomposable.

(RAR2) $h \neq 0$.

(RAR3) If D is indecomposable then for every non-isomorphism

 $t \colon D \to M$ we have $h \circ t = 0$.

Dually, a triangle $\sum^{-1} M \xrightarrow{w} N \xrightarrow{f} E \xrightarrow{g} M$ in $\mathcal C$ is called a *left AR-triangle* (starting at N) if

(LAR1) M, N are indecomposable.

(LAR2) $w \neq 0$.

(LAR3) If D is indecomposable then for every non-isomorphism

 $t: N \to D$ we have $t \circ w = 0$.

We say C has AR-triangles if for any indecomposable $M \in C$ there exists a right AR-triangle ending at M and a left AR-triangle starting at M.

Serre-functors

Let (A, \mathfrak{m}) be a Noetherian local ring and let E be the injective hull of $k = A/\mathfrak{m}$. Set $(-)^{\vee} = \operatorname{Hom}_A(-, E)$. Let $\mathcal C$ be a Hom-finite A-triangulated Krull-Schmidt category. By a right Serre-functor on $\mathcal C$ we mean an additive functor $F \colon \mathcal C \to \mathcal C$ such that we have isomorphism

$$\eta_{C,D} \colon \operatorname{\mathsf{Hom}}_{\mathcal{C}}(C,D) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(D,F(C))^{\vee},$$

for any $C,D\in\mathcal{C}$ which are natural in C and D. If F is an equivalence then we call F to be a Serre functor. We will use the following result due to Reiten and Van den Bergh

Theorem 5

Let $\mathcal C$ be a Hom-finite A-linear triangulated Krull-Schmidt category. Then the following are equivalent

- O C has AR-triangles.
- C has a Serre-functor.

Krull-Schmidt property of $D_f^b(A)$

Lemma 6

Let (A, \mathfrak{m}) be a Noetherian local ring. Then $D_f^b(A)$ is a Hom-finite, triangulated Krull-Schmidt category.

Proof.

Clearly $D_f^b(A)$ is a triangulated category.

The category $D^b(A)$ has split idempotents. Using this fact it is easy to show that $D_f^b(A)$ has split idempotents.

Set $\mathcal{K} = \mathcal{K}^{-,b}(\operatorname{proj} A)$. Let $\mathbf{X}_{\bullet}, \mathbf{Y}_{\bullet}$ be bounded complexes in $D_f^b(A)$. Let \mathcal{F} be a minimal projective resolution of \mathbf{X}_{\bullet} . Then

$$\mathsf{Hom}_{\mathcal{D}^b(\mathcal{A})}(\mathsf{X}_{ullet},\mathsf{Y}_{ullet})\cong \mathsf{Hom}_{\mathcal{K}}(\mathcal{F},\mathsf{Y}_{ullet}).$$

Using this fact it can be easily shown that $\operatorname{Hom}_{D^b(A)}(\mathbf{X}_{\bullet},\mathbf{Y}_{\bullet})$ has finite length. Thus $D^b_f(A)$ is a Hom-finite category

Krull-Schmidt property of $D_f^b(A)$ (continued)

Let $\mathbf{X}_{\bullet} \in D_f^b(A)$. Let $c = h(\mathbf{X}_{\bullet}) = \sum_i H^i(\mathbf{X}_{\bullet})$. Then it is clear that \mathbf{X}_{\bullet} cannot be a direct sum of c+1 non-zero complexes in $D_f^b(A)$. Thus \mathbf{X}_{\bullet} is a finite direct sum of indecomposable objects in $D_f^b(A)$.

As $D_f^b(A)$ is Hom-finite with split-idempotents it follows that the endomorphism rings of indecomposable objects are local.

It follows that $D_f^b(A)$ is a Hom-finite Krull-Schmidt triangulated category.

Proof of First result (only forward implication)

Assume (A, \mathfrak{m}) is regular. Let E be the injective hull of A/\mathfrak{m} . Set

$$\mathcal{D}(-) = \mathcal{H}om_A(-, A)$$
 and $\mathcal{E}(-) = \mathcal{H}om_A(-, E)$.

Recall the equivalence from $D^{-,fg}(A)$ to $K^{-,b}(\operatorname{proj} A)$ $(K^{+,b}(\operatorname{Inj} A))$ is given by the projective (injective) resolution functor \mathbf{p} (i). Consider the functor F which is the following composite of A-linear functors:

$$K_f^b(\operatorname{proj} A) \xrightarrow{\mathcal{D}} K_f^b(\operatorname{proj} A) \xrightarrow{\mathcal{E}} K_f^b(\operatorname{Inj} A) \xrightarrow{\mathbf{p}} K_f^b(\operatorname{proj} A).$$

Theorem 7

- The functor F is dense.
- ② F is a Serre-functor, i.e., for $X_{\bullet}, Y_{\bullet} \in K_f^b(\operatorname{proj} A)$ we have a natural isomorphism

$$\eta_{\mathbf{X}_{\bullet},\mathbf{Y}_{\bullet}} \colon \operatorname{\mathsf{Hom}}_{\mathcal{K}}(\mathbf{X}_{\bullet},\mathbf{Y}_{\bullet}) \to \operatorname{\mathsf{Hom}}_{\mathcal{K}}(\mathbf{Y}_{\bullet},F(\mathbf{X}_{\bullet}))^{\vee}.$$

Proof of second theorem

Let (A, \mathfrak{m}) be a complete Gorenstein local ring of dimension d. Let \mathcal{S} be the category of finite length A-modules which also have finite projective dimension. As A is Gorenstein each element M in \mathcal{S} also has finite injective dimension. If $M \in \mathcal{S}$ then $M^{\vee} = \operatorname{Hom}_A(M, E) \in \mathcal{S}$. For each $M \in \mathcal{S}$ fix a minimal projective resolution \mathbf{P}_{\bullet}^M . Set $\mathbf{I}_{\bullet}^M = \mathcal{H}om_A(\mathbf{P}_{\bullet}^{M^{\vee}}, E)$ which is a minimal injective resolution of M. Set

$$\mathcal{F}_f = \mathsf{thick}(\{\mathbf{P}_{ullet}^M \mid M \in \mathcal{S}\}) \quad \mathsf{in} \ \mathcal{K}^b(\mathsf{proj}\,A)$$
 and

$$\mathcal{I}_f = \operatorname{thick}(\{\mathbf{I}_{ullet}^M \mid M \in \mathcal{S}\}) \quad \text{in } K^{b,fg}(\operatorname{Inj} A).$$

It is easily verified that $\mathcal{F}_f \subseteq K_f^b(\operatorname{proj} A)$ and $\mathcal{I}_f \subseteq K_f^b(E)$.

Proof of second theorem(contd)

Lemma 8

Consider the three equivalences

$$\mathcal{D} \colon K^b(\operatorname{proj} A) \to K^b(\operatorname{proj} A)^{op}, \ \mathcal{E} \colon K^b(\operatorname{proj} A) \to K^b(E)^{op} \ and$$

- $\mathbf{p} \colon K^{-,fg}(\operatorname{Inj} A) \to K^{-,fg}(\operatorname{proj} A)$. Then
 - **9** \mathcal{D} induces an equivalence $\mathcal{D}_r \colon \mathcal{F}_f o \mathcal{F}_f^{op}$.
 - $m{\varrho}$ \mathcal{E} induces an equivalence $\mathcal{E}_r \colon \mathcal{F}_f o \mathcal{I}_f^{\mathsf{op}}$.
 - **3 p** induces an equivalence $\mathbf{p}_r \colon \mathcal{I}_f \to \mathcal{F}_f$.

Consider $G \colon \mathcal{F}_f \to \mathcal{F}_f$ which is the composite of triangle equivalences

$$\mathcal{F}_f \xrightarrow{\mathcal{D}_r} \mathcal{F}_f^{op} \xrightarrow{\mathcal{E}_r^{op}} \mathcal{I}_f \xrightarrow{\mathbf{p}_r} \mathcal{F}_f.$$

Proof of second theorem(contd)

Remark

By A.Neeman's classification of thick subcategories of $K^b(\text{proj }A)$ it follows that $K_f^b(\text{proj }A)$ does not have proper thick subcategories. So $\mathcal{F}_f = K_f^b(\text{proj }A)$.

Proof.

Just as in proof of previous Theorem we have for

$$X_{ullet}, Y_{ullet} \in K_f^b(\operatorname{proj} A)$$
 an isomorphism

$$\eta_{\mathbf{X}_{\bullet},\mathbf{Y}_{\bullet}} \colon \operatorname{\mathsf{Hom}}_{\mathcal{F}_f}(\mathbf{X}_{\bullet},\mathbf{Y}_{\bullet}) o \operatorname{\mathsf{Hom}}_{\mathcal{F}}(\mathbf{Y}_{\bullet},G(\mathbf{X}_{\bullet}))^{\vee}.$$

It is easily verified that $\eta_{X_{\bullet},Y_{\bullet}}$ is natural in $X_{\bullet}Y_{\bullet}$. So G is a right Serre functor. We have shown G is an equivalence. In particular G is dense. So G is a Serre-functor. Thus, $K_f^b(\text{proj }A)$ has AR-triangles.

Proof of Theorem 1 ((ii) \implies (i))

Theorem 9

Let (A, \mathfrak{m}) be a Noetherian local ring. If $D_f^b(A)$ has AR-triangles then A is regular local.

Note $D_f^b(A) \cong K_f^{-,b}(\operatorname{proj} A)$. Let \mathbf{X}_{\bullet} be a minimal projective resolution of k. Then clearly \mathbf{X}_{\bullet} is indecomposable in $K_f^{-,b}(\operatorname{proj} A)$. We will use a result independently proved by Gulliksen and Schoeller, i.e., one can use the Tate process to yield a minimal resolution of k. The previous theorem follows from the following result:

Lemma 10

Let X_{\bullet} be a minimal resolution of k. If A is not regular then there does not exist a right AR-triangle in $K_f^{-,b}(\operatorname{proj} A)$ ending at X_{\bullet} .

15/23

Tate process

We describe Tate process for creating algebra resolution of A/I where I is an ideal in A. An associative algebra X_{\bullet} over A is called an *non-positive DG-algebra* over A if the following hypotheses are satisfied:

- **1** \mathbf{X}_{\bullet} is non-positively graded $\mathbf{X}_{\bullet} = \bigoplus_{n \leq 0} \mathbf{X}_{\bullet}^{n}$ with each \mathbf{X}_{\bullet}^{i} a finitely generated A-module and $\mathbf{X}_{\bullet}^{i} \mathbf{X}_{\bullet}^{j} \subseteq \mathbf{X}_{\bullet}^{i+j}$ for all $i, j \leq 0$.
- ② X_{\bullet} has a unit element $1 \in X_{\bullet}^{0}$ such that $X_{\bullet}^{0} = A1$.
- **3** X_{\bullet} is strictly skew-commutative; (for homogeneous element $x \in X_{\bullet}^{i}$ set |x| = i) For homogeneous elements x, y we have

 - ① $x^2 = 0$ if |x| is odd.
- **1** There exists a skew derivation $d: X_{\bullet} \to X_{\bullet}$ such that

 - $d^2 = 0.$
 - \bullet For x, y homogeneous,

$$d(xy) = d(x)y + (-1)^{|x|}xd(y).$$

Tate process continued

Next we recall Tate's process of killing cycles. Let \mathbf{X}_{\bullet} be a non-positive DG-algebra. Let $\rho < 0$ be a negative integer. Let $t \in Z^{\rho+1}(\mathbf{X}_{\bullet})$ be a cycle of degree $\rho + 1$.

If ρ is odd one can adjoin exterior variable to \mathbf{X}_{\bullet} . If ρ is even we add divided power variable to \mathbf{X}_{\bullet} . In the DG-algebra $\mathbf{X}_{\bullet} < T >$ the cycle t is killed.

By Tate process we can give construct a DG algebra resolution of A/I for any ideal I.

Problem Say I is an \mathfrak{m} -primary ideal and let \mathbf{X}_{\bullet} be the Koszul complex of I. Note $H^*(\mathbf{X}_{\bullet})$ has finite length. If t is a cycle in degree -1 and if $\mathbf{Y}_{\bullet} = X < T >$ with dT = t then note $H^*(\mathbf{Y}_{\bullet})$ need not have finite length. However note that $H^i(\mathbf{Y}_{\bullet})$ has finite length for all $i \in \mathbb{Z}$.

Good filtrations of DG-algebras

Let \mathbf{X}_{\bullet} be a non-positive DG-algebra over A. We assume \mathbf{X}_{\bullet}^{i} is a finitely generated free A-module for all $i \leq 0$ and $\ell(H^{*}(\mathbf{X}_{\bullet})^{n}) < \infty$ for all $n \in \mathbb{Z}$. By a good filtration $\mathcal{F} = \{\mathbf{F}_{\bullet}(i)\}_{i \geq 0}$ of \mathbf{X}_{\bullet} we mean

- **•** $\mathbf{F}_{\bullet}(i)$ is a sub-complex of \mathbf{X}_{\bullet} with $\mathbf{F}_{\bullet}(i)^n$ a direct summand of \mathbf{X}_{\bullet}^n for all n < 0.
- **2** $\mathbf{F}_{\bullet}(i) \subseteq \mathbf{F}_{\bullet}(i+1)$ for all $i \ge 0$ and $\bigcup_{i>0} \mathbf{F}_{\bullet}(i) = \mathbf{X}_{\bullet}$.
- **3** $\mathbf{F}_{\bullet}(i)^n$ is a direct summand of $\mathbf{F}_{\bullet}(i+1)^n$ for all $n \leq 0$.
- **1** There exists c depending on X_{\bullet} and \mathcal{F} such that

$$\mathbf{F}_{\bullet}(i)^{n}\mathbf{F}_{\bullet}(j)^{m}\subseteq \mathbf{F}_{\bullet}(i+j+c)^{n+m}.$$

⑤ $\ell(H^*(\mathbf{F}_{\bullet}(i)))$ < ∞ for all $i \ge 1$.

We say \mathcal{F} is a *proper* good filtration of X_{\bullet} if $F_{\bullet}(i) \neq X_{\bullet}$ for all i.

A Lemma on Good filtrations

Theorem 11

Let $\rho < 0$ be such that $H^i(\mathbf{X}_{\bullet}) = 0$ for $0 > i \ge \rho + 2$. Suppose $H^{\rho+1}(\mathbf{X}_{\bullet}) \ne 0$ and let $t \in Z^{\rho+1}(\mathbf{X}_{\bullet})$ be a cycle of degree $\rho + 1$ such that its residue class in $H^{\rho+1}(\mathbf{X}_{\bullet})$ is non-zero. Let $\mathbf{Z}_{\bullet} = \mathbf{X}_{\bullet} < T >$ with d(T) = t. Then \mathbf{Z}_{\bullet} also has a good filtration. Furthermore

- If the filtration on X_• is proper then the constructed filtration on Z_• is proper
- ② If ρ is even then regardless of filtration on X_{\bullet} the constructed filtration on Z_{\bullet} is proper.

Two Propositions

Let (A, \mathfrak{m}) be local Noetherian ring. First we show

Proposition 12

Let $\mathbf{U}_{\bullet} \in K_f^{-,b}(\operatorname{proj} A)$ be a minimal complex, i.e., $\partial(\mathbf{U}_{\bullet}) \subseteq \mathfrak{m} \mathbf{U}_{\bullet}$. Let $\mathbf{V}_{\bullet} \subseteq \mathbf{U}_{\bullet}$ be a sub-complex such that \mathbf{V}_{\bullet}^n is a direct summand of \mathbf{U}_{\bullet}^n for all $n \in \mathbb{Z}$. If $\mathbf{V}_{\bullet} \neq \mathbf{U}_{\bullet}$ then the inclusion $i \colon \mathbf{V}_{\bullet} \to \mathbf{U}_{\bullet}$ is not a retraction in $K_f^{-,b}(\operatorname{proj} A)$.

Next we prove the following result:

Proposition 13

Let $\mathbf{U}_{\bullet} \in K^{-,b}(\operatorname{proj} A)$. Let $\mathbf{V}_{\bullet} \subseteq \mathbf{U}_{\bullet}$ be a sub-complex such that \mathbf{V}_{\bullet}^{n} is a direct summand of \mathbf{U}_{\bullet}^{n} for all $n \in \mathbb{Z}$. Let $\mathbf{W}_{\bullet} \in K^{-,b}(\operatorname{proj} A)$ be such that $H^{n}(\mathbf{W}_{\bullet}) = 0$ for $n \leq m$. Suppose $\mathbf{V}_{\bullet}^{n} = \mathbf{U}_{\bullet}^{n}$ for all $n \geq m$. Let $g: \mathbf{U}_{\bullet} \to \mathbf{W}_{\bullet}$ be a chain map such that g restricted to \mathbf{V}_{\bullet} is null-homotopic. Then g is null-homotopic.

Proof of Lemma 10

Suppose if possible there exists a right AR-triangle ending at X_{\bullet} . Say we have an AR-triangle

$$\alpha \colon \mathbf{U}_{\bullet} \to \mathbf{K}_{\bullet} \to \mathbf{X}_{\bullet} \xrightarrow{g} \mathbf{U}_{\bullet}[1]$$

in $K_f^{-,b}(\operatorname{proj} A)$. Assume $H^i(\mathbf{U}_{\bullet}[1])=0$ for $i\geq -m$. We consider two cases:

Case (1): A is a complete intersection. Let $\mathbf{Y}_{\bullet 1}$ be the Koszul complex on a minimal set of generators of \mathfrak{m} . Let $\mathbf{Y}_{\bullet 2} = \mathbf{Y}_{\bullet 1} < \mathcal{T}_1, \ldots \mathcal{T}_r >$ be the DG-complex obtained by killing cycles in degree minus one of $\mathbf{Y}_{\bullet 1}$. Then Tate shows that $\mathbf{Y}_{\bullet 2}$ is a minimal resolution of k.

Let $\mathcal{F} = \{\mathbf{F}_{\bullet}(i)\}_{i\geq 0}$ be a proper good filtration of $\mathbf{Y}_{\bullet 2}$. We may assume that $\mathbf{F}_{\bullet}(i)^j = \mathbf{Y}_{\bullet 2}^{\ \ j}$ for $i\geq -m$ for all $i\geq i_0$. We have an inclusion $\phi_{i_0}\colon \mathbf{F}_{\bullet}(i_0)\to \mathbf{X}_{\bullet}=\mathbf{Y}_{\bullet 2}$. Then ϕ_{i_0} is not a retraction, by our earlier proposition. So $g\circ\phi_{i_0}=0$ in $K_f^{-,b}(\operatorname{proj} A)$ (as α is an AR-triangle in $K_f^{-,b}(\operatorname{proj} A)$).

Proof of Lemma 10 (continued)

By the second of our proposition for $i \geq i_0$ the null homotopy $g \circ \phi_i$ can be extended to a null homotopy $g \circ \phi_{i+1}$. Thus inductively we have defined homotopy on $\mathbf{F}_{\bullet}(i)$ for all $i \geq i_0$. But $\mathbf{X}_{\bullet} = \bigcup_{i \geq i_0} \mathbf{F}_{\bullet}(i)$. It follows that g is null-homotopic which is a contradiction.

Case (2): A is not a complete intersection.

Then $\mathbf{X}_{\bullet} = \bigcup_{i \geq 1} \mathbf{Y}_{\bullet i}$ where $\mathbf{Y}_{\bullet 1}$ is the Koszul complex on a minimal set of generators of \mathfrak{m} and for $i \geq 2$ the DG-complex $\mathbf{Y}_{\bullet i}$ is obtained by killing cycles of $\mathbf{Y}_{\bullet i-1}$ in degree -i+1. We note that $\mathbf{X}_{\bullet}^n = \mathbf{Y}_{\bullet i}^n$ for $n \geq -i$. It is known thatthat $\mathbf{Y}_{\bullet i} \neq \mathbf{X}_{\bullet}$ for all i.

Let $\mathcal{F} = \{\mathbf{F}_{\bullet}(i)\}_{i\geq 0}$ be a good filtration of $\mathbf{Y}_{\bullet m}$. We may assume that $\mathbf{F}_{\bullet}(i)^j = \mathbf{Y}_{\bullet m}^{\ \ \ \ \ \ \ \ }$ for $i\geq -m$ for all $i\geq i_0$. We have an inclusion $\phi_{i_0} : \mathbf{F}_{\bullet}(i_0) \to \mathbf{X}_{\bullet}$. Then clearly ϕ_{i_0} is not a retraction. So $g\circ\phi_{i_0}=0$ in $K_f^{-,b}(\operatorname{proj} A)$ (as α is an AR-triangle in $K_f^{-,b}(\operatorname{proj} A)$). Then as constructed above we can extend to a homotopy from $\mathbf{Y}_{\bullet m} \to \mathbf{U}_{\bullet}[1]$.

Proof of Lemma 10 (continued)

Now suppose the map $g: \mathbf{X}_{\bullet} \to \mathbf{U}_{\bullet}[1]$ when restricted to $\mathbf{Y}_{\bullet i}$ is null-homotopic for some $i \geq m$. Then by our earlier proposition we can extend the homotopy to $\mathbf{Y}_{\bullet i+1}$. As $\mathbf{X}_{\bullet} = \bigcup_{i \geq m} \mathbf{Y}_{\bullet i}$ we have that we have extended the homotopy to \mathbf{X}_{\bullet} . In particular g is null-homotopic which is a contradiction.