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Happel’s results

Let Γ be a finite dimensional algebra over a field k .

Happel proved that its bounded derived category Db(mod(Γ)) has

Auslander-Reiten (AR) triangles if and only if Γ has finite global dimension.

He also proved that Kb(proj Γ) the homotopy category of bounded

complexes of finitely generated projective Γ-modules has right AR triangles

if and only if Γ is a Gorenstein algebra.
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Auslander’s philosophy

Auslander philosophy is that concepts in the study of representation theory

of Artin algebras have natural analogues in study of maximal

Cohen-Macaulay modules over Cohen-Macaulay local rings (which are free

on the punctured spectrum). We study natural analogues of Happel’s

results in the context of commutative Noetherian rings.
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Our Generalization

Let (A,m) be a commutative Noetherian local ring of dimension d . Let

Db
f (mod(A)) be the bounded derived category of complexes of finitely

generated modules over A with finite length cohomology. Then it can be

shown that Db
f (mod(A)) is a Hom-finite Krull-Schmidt triangulated

category. Our generalization of first of Happel’s results is the following:

Theorem 1

Let (A,m) be a commutative Noetherian local ring. The following

conditions are equivalent:

(i) A is regular.

(ii) Db
f (mod(A)) has AR-triangles.

Our proof is not similar to Happel’s.
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Let Kb
f (projA) be the subcategory of Kb(projA) with finite length

cohomology. By Happel’s result if (A,m) is a zero-dimensional

commutative Gorenstein ring then Kb(projA) has AR-triangles. For higher

dimensional Gorenstein rings we prove the following extension of one

direction of Happel’s result.

Theorem 2

Let (A,m) be a complete Gorenstein local ring. Then Kb
f (projA) has

AR-triangles.
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We believe the converse to Theorem 2 is true. More precisely

Conjecture 3

Let (A,m) be a complete Noetherian local ring. If

Kb
f (projA) has AR-triangles then A is Gorenstein.

We prove Conjecture 3 under the following cases:

Theorem 4

Let (A,m) be a complete Noetherian local ring. Assume

Kb
f (projA) has AR-triangles. Then

(1) if A is Cohen-Macaulay then A is Gorenstein.

(2) if dimA ≤ 1 then A is Gorenstein.
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AR-triangles

Let C be a Krull-Schmidt triangulated category with shift functor
∑

.

A triangle N
f−→ E

g−→ M
h−→

∑
N in C is called a right AR-triangle (ending

at M) if

(RAR1) M,N are indecomposable.

(RAR2) h ̸= 0.

(RAR3) If D is indecomposable then for every non-isomorphism

t : D → M we have h ◦ t = 0.

Dually, a triangle
∑−1M

w−→ N
f−→ E

g−→ M in C is called a left AR-triangle

(starting at N) if

(LAR1) M,N are indecomposable.

(LAR2) w ̸= 0.

(LAR3) If D is indecomposable then for every non-isomorphism

t : N → D we have t ◦ w = 0.

We say C has AR-triangles if for any indecomposable M ∈ C there exists a

right AR-triangle ending at M and a left AR-triangle starting at M.
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Serre-functors

Let (A,m) be a Noetherian local ring and let E be the injective hull of

k = A/m. Set (−)∨ = HomA(−,E ). Let C be a Hom-finite A-triangulated

Krull-Schmidt category. By a right Serre-functor on C we mean an additive

functor F : C → C such that we have isomorphism

ηC ,D : HomC(C ,D) → HomC(D,F (C ))∨,

for any C ,D ∈ C which are natural in C and D. If F is an equivalence

then we call F to be a Serre functor. We will use the following result due

to Reiten and Van den Bergh

Theorem 5

Let C be a Hom-finite A-linear triangulated Krull-Schmidt category. Then

the following are equivalent

(i) C has AR-triangles.

(ii) C has a Serre-functor.
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Krull-Schmidt property of Db
f (A)

Lemma 6

Let (A,m) be a Noetherian local ring. Then Db
f (A) is a Hom-finite,

triangulated Krull-Schmidt category.

Proof.

Clearly Db
f (A) is a triangulated category.

The category Db(A) has split idempotents. Using this fact it is easy to

show that Db
f (A) has split idempotents.

Set K = K−,b(projA). Let X•,Y• be bounded complexes in Db
f (A). Let F

be a minimal projective resolution of X•. Then

HomDb(A)(X•,Y•) ∼= HomK(F ,Y•).

Using this fact it can be easily shown that HomDb(A)(X•,Y•) has finite

length. Thus Db
f (A) is a Hom-finite category
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Krull-Schmidt property of Db
f (A) (continued)

Let X• ∈ Db
f (A). Let c = h(X•) =

∑
i H

i (X•). Then it is clear that X•
cannot be a direct sum of c + 1 non-zero complexes in Db

f (A). Thus X• is

a finite direct sum of indecomposable objects in Db
f (A).

As Db
f (A) is Hom-finite with split-idempotents it follows that the

endomorphism rings of indecomposable objects are local.

It follows that Db
f (A) is a Hom-finite Krull-Schmidt triangulated category.
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Proof of First result (only forward implication)

Assume (A,m) is regular. Let E be the injective hull of A/m. Set

D(−) = HomA(−,A) and E(−) = HomA(−,E ).

Recall the equivalence from D−,fg (A) to K−,b(projA) (K+,b(InjA))is

given by the projective ( injective) resolution functor p (i). Consider the

functor F which is the following composite of A-linear functors:

Kb
f (projA)

D−→ Kb
f (projA)

E−→ Kb
f (InjA)

p−→ Kb
f (projA).

Theorem 7

1 The functor F is dense.

2 F is a Serre-functor, i.e., for X•,Y• ∈ Kb
f (projA) we have a natural

isomorphism

ηX•,Y• : HomK(X•,Y•) → HomK(Y•,F (X•))
∨.
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Proof of second theorem

Let (A,m) be a complete Gorenstein local ring of dimension d . Let S be

the category of finite length A-modules which also have finite projective

dimension. As A is Gorenstein each element M in S also has finite

injective dimension. If M ∈ S then M∨ = HomA(M,E ) ∈ S.
For each M ∈ S fix a minimal projective resolution PM

• . Set

IM• = HomA(P
M∨
• ,E ) which is a minimal injective resolution of M. Set

Ff = thick({PM
• | M ∈ S}) in Kb(projA)and

If = thick({IM• | M ∈ S}) in Kb,fg (InjA).

It is easily verified that Ff ⊆ Kb
f (projA) and If ⊆ Kb

f (E ).
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Proof of second theorem(contd)

Lemma 8

Consider the three equivalences

D : Kb(projA) → Kb(projA)op, E : Kb(projA) → Kb(E )op and

p : K−,fg (InjA) → K−,fg (projA). Then

(1) D induces an equivalence Dr : Ff → Fop
f .

(2) E induces an equivalence Er : Ff → Iop
f .

(3) p induces an equivalence pr : If → Ff .

Consider G : Ff → Ff which is the composite of triangle equivalences

Ff
Dr−→ Fop

f

Eop
r−−→ If

pr−→ Ff .
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Proof of second theorem(contd)

Remark

By A.Neeman’s classification of thick subcategories of Kb(projA) it

follows that Kb
f (projA) does not have proper thick subcategories. So

Ff = Kb
f (projA).

Proof.

Just as in proof of previous Theorem we have for

X•,Y• ∈ Kb
f (projA) an isomorphism

ηX•,Y• : HomFf
(X•,Y•) → HomF (Y•,G (X•))

∨.

It is easily verified that ηX•,Y• is natural in X•Y•. So G is a right Serre

functor. We have shown G is an equivalence. In particular G is dense. So

G is a Serre-functor. Thus, Kb
f (projA) has AR-triangles.
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Proof of Theorem 1 ( (ii) =⇒ (i))

Theorem 9

Let (A,m) be a Noetherian local ring. If Db
f (A) has AR-triangles then A is

regular local.

Note Db
f (A)

∼= K−,b
f (projA). Let X• be a minimal projective resolution of

k . Then clearly X• is indecomposable in K−,b
f (projA). We will use a result

independently proved by Gulliksen and Schoeller, i.e., one can use the Tate

process to yield a minimal resolution of k . The previous theorem follows

from the following result:

Lemma 10

Let X• be a minimal resolution of k. If A is not regular then there does

not exist a right AR-triangle in K−,b
f (projA) ending at X•.
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Tate process

We describe Tate process for creating algebra resolution of A/I where I is

an ideal in A. An associative algebra X• over A is called an non-positive

DG-algebra over A if the following hypotheses are satisfied:

1 X• is non-positively graded X• =
⊕

n≤0X
n
• with each Xi

• a finitely

generated A-module and Xi
•X

j
• ⊆ Xi+j

• for all i , j ≤ 0.

2 X• has a unit element 1 ∈ X0
• such that X0

• = A1.
3 X• is strictly skew-commutative; (for homogeneous element x ∈ Xi

•
set |x | = i) For homogeneous elements x , y we have
(i) x .y = (−1)|x||y |yx .
(ii) x2 = 0 if |x | is odd.

4 There exists a skew derivation d : X• → X• such that
(i) d(Xn

•) ⊆ Xn+1
• for all n ≤ 0.

(ii) d2 = 0.
(iii) For x , y homogeneous,

d(xy) = d(x)y + (−1)|x|xd(y).
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Tate process continued

Next we recall Tate’s process of killing cycles. Let X• be a non-positive

DG-algebra. Let ρ < 0 be a negative integer. Let t ∈ Z ρ+1(X•) be a cycle

of degree ρ+ 1.

If ρ is odd one can adjoin exterior variable to X•. If ρ is even we add

divided power variable to X•. In the DG-algebra X• < T > the cycle t is

killed.

By Tate process we can give construct a DG algebra resolution of A/I for

any ideal I .

Problem Say I is an m-primary ideal and let X• be the Koszul complex of

I . Note H∗(X•) has finite length. If t is a cycle in degree −1 and if

Y• = X < T > with dT = t then note H∗(Y•) need not have finite

length. However note that H i (Y•) has finite length for all i ∈ Z.
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Good filtrations of DG-algebras

Let X• be a non-positive DG-algebra over A. We assume Xi
• is a finitely

generated free A-module for all i ≤ 0 and ℓ(H∗(X•)
n) < ∞ for all n ∈ Z.

By a good filtration F = {F•(i)}i≥0 of X• we mean

1 F•(i) is a sub-complex of X• with F•(i)
n a direct summand of Xn

• for

all n ≤ 0.

2 F•(i) ⊆ F•(i + 1) for all i ≥ 0 and
⋃

i≥0 F•(i) = X•.

3 F•(i)
n is a direct summand of F•(i + 1)n for all n ≤ 0.

4 There exists c depending on X• and F such that

F•(i)
nF•(j)

m ⊆ F•(i + j + c)n+m.

5 ℓ(H∗(F•(i))) < ∞ for all i ≥ 1.

We say F is a proper good filtration of X• if F•(i) ̸= X• for all i .
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A Lemma on Good filtrations

Theorem 11

Let ρ < 0 be such that H i (X•) = 0 for 0 > i ≥ ρ+ 2. Suppose

Hρ+1(X•) ̸= 0 and let t ∈ Z ρ+1(X•) be a cycle of degree ρ+ 1 such that

its residue class in Hρ+1(X•) is non-zero. Let Z• = X• < T > with

d(T ) = t. Then Z• also has a good filtration. Furthermore

1 If the filtration on X• is proper then the constructed filtration on Z•
is proper

2 If ρ is even then regardless of filtration on X• the constructed

filtration on Z• is proper.

Tony J. Puthenpurakal (IIT Bombay) Happels results 6 May 19 / 23



Two Propositions

Let (A,m) be local Noetherian ring. First we show

Proposition 12

Let U• ∈ K−,b
f (projA) be a minimal complex, i.e., ∂(U•) ⊆ mU•. Let

V• ⊆ U• be a sub-complex such that Vn
• is a direct summand of Un

• for all

n ∈ Z. If V• ̸= U• then the inclusion i : V• → U• is not a retraction in

K−,b
f (projA).

Next we prove the following result:

Proposition 13

Let U• ∈ K−,b(projA). Let V• ⊆ U• be a sub-complex such that Vn
• is a

direct summand of Un
• for all n ∈ Z. Let W• ∈ K−,b(projA) be such that

Hn(W•) = 0 for n ≤ m. Suppose Vn
• = Un

• for all n ≥ m. Let

g : U• → W• be a chain map such that g restricted to V• is

null-homotopic. Then g is null-homotopic.
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Proof of Lemma 10

Suppose if possible there exists a right AR-triangle ending at X•. Say we

have an AR-triangle

α : U• → K• → X•
g−→ U•[1]

in K−,b
f (projA). Assume H i (U•[1]) = 0 for i ≥ −m. We consider two

cases:

Case (1): A is a complete intersection. Let Y•1 be the Koszul complex on

a minimal set of generators of m. Let Y•2 = Y•1 < T1, . . .Tr > be the

DG-complex obtained by killing cycles in degree minus one of Y•1. Then

Tate shows that Y•2 is a minimal resolution of k.

Let F = {F•(i)}i≥0 be a proper good filtration of Y•2. We may assume

that F•(i)
j = Y•

j
2 for i ≥ −m for all i ≥ i0. We have an inclusion

ϕi0 : F•(i0) → X• = Y•2. Then ϕi0 is not a retraction, by our earlier

proposition. So g ◦ ϕi0 = 0 in K−,b
f (projA) (as α is an AR-triangle in

K−,b
f (projA)).
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Proof of Lemma 10 (continued)

By the second of our proposition for i ≥ i0 the null homotopy g ◦ ϕi can

be extended to a null homotopy g ◦ ϕi+1. Thus inductively we have

defined homotopy on F•(i) for all i ≥ i0. But X• =
⋃

i≥i0
F•(i). It follows

that g is null-homotopic which is a contradiction.

Case (2): A is not a complete intersection.

Then X• =
⋃

i≥1Y•i where Y•1 is the Koszul complex on a minimal set of

generators of m and for i ≥ 2 the DG-complex Y•i is obtained by killing

cycles of Y•i−1 in degree −i + 1. We note that Xn
• = Y•

n
i for n ≥ −i . It is

known thatthat Y•i ̸= X• for all i .

Let F = {F•(i)}i≥0 be a good filtration of Y•m. We may assume that

F•(i)
j = Y•

j
m for i ≥ −m for all i ≥ i0. We have an inclusion

ϕi0 : F•(i0) → X•. Then clearly ϕi0 is not a retraction. So g ◦ ϕi0 = 0 in

K−,b
f (projA) (as α is an AR-triangle in K−,b

f (projA)). Then as

constructed above we can extend to a homotopy from Y•m → U•[1].
Tony J. Puthenpurakal (IIT Bombay) Happels results 6 May 22 / 23



Proof of Lemma 10 (continued)

Now suppose the map g : X• → U•[1] when restricted to Y•i is

null-homotopic for some i ≥ m. Then by our earlier proposition we can

extend the homotopy to Y•i+1. As X• =
⋃

i≥m Y•i we have that we have

extended the homotopy to X•. In particular g is null-homotopic which is a

contradiction.

Tony J. Puthenpurakal (IIT Bombay) Happels results 6 May 23 / 23


