Normal and Tight Hilbert Polynomials

Pham Hung Quy - FPT University, Hanoi (with Linquan Ma, Trans. Amer. Math. Soc. 2022; with Saipriya Dubey and Jugal Verma, Res. Math. Sci. 2023; with Linquan Ma, arXiv:2301.13084)

> ICTP, Trieste, Italy May, 2023

∃ ► < ∃ ►

- Normal/Tight Hilbert polynomials
- Ight Buchsbaum rings and its tight Hilbert polynomials
- One Normal/Tight Hilbert coefficients

э

- 4 四 ト - 4 回 ト

In this talk

- (R, \mathfrak{m}) denotes a complete local ring of dimension d.
- $H^i_{\mathfrak{m}}(R)$ denotes the *i*-th local cohomology of R.
- Let I is an m-primary ideal.
- Let $Q = (x_1, \ldots, x_d)$ be a parameter ideal of R.
- e(I), $\ell(R/I)$ denote the **Hilbert multiplicity** and the **colength** of *I*.
- Let \overline{I} denote the **integral closure** of I.
- If *R* has positive characteristic *p*, then *I*^{*} denotes the **tight closure** of *I*.

> < 문 > < 문 >

It is well-known that $\ell(R/I^{n+1})$ becomes a Hilbert polynomial of degree d, i.e. for all $n \gg 0$

$$\ell(R/I^{n+1}) = P_I(n) = e_0(I) \binom{n+d}{d} - e_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d e_d(I),$$

where $e_0(I)$ is the multiplicity of R with respect to I, and $e_i(I)$, $0 \le i \le d$, is the Hilbert coefficients of R with respect to I.

Normal/Tight Hilbert polynomials

Let \overline{I} be the integral closure of I, i.e.

$$\overline{I} = \{x \mid x \text{ is integral on } I\}.$$

A B b A B b

< A

Let \overline{I} be the integral closure of I, i.e.

 $\overline{I} = \{x \mid x \text{ is integral on } I\}.$

If *R* is reduced, by Rees we have an integer number *c* such that $\overline{I^n} \subseteq I^{n-c}$ for all *n*. Hence $\ell(R/\overline{I^{n+1}})$ becomes a polynomial of degree *d*, i.e. for all $n \gg 0$

$$\ell(R/\overline{I^{n+1}}) = \overline{P}_I(n) = \overline{e}_0(I) \binom{n+d}{d} - \overline{e}_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d \overline{e}_d(I),$$

where $\overline{e}_0(I) = e_0(I)$.

Let \overline{I} be the integral closure of I, i.e.

 $\overline{I} = \{x \mid x \text{ is integral on } I\}.$

If *R* is reduced, by Rees we have an integer number *c* such that $\overline{I^n} \subseteq I^{n-c}$ for all *n*. Hence $\ell(R/\overline{I^{n+1}})$ becomes a polynomial of degree *d*, i.e. for all $n \gg 0$

$$\ell(R/\overline{I^{n+1}}) = \overline{P}_I(n) = \overline{e}_0(I) \binom{n+d}{d} - \overline{e}_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d \overline{e}_d(I),$$

where $\overline{e}_0(I) = e_0(I)$. $\overline{P}_I(n)$ is called the **normal Hilbert polynomial** of R with respect to I. We call $\overline{e}_0(I)$ the normal multiplicity, and $\overline{e}_i(I)$, $0 \le i \le d$, the normal Hilbert coefficients of R with respect to I.

イロト イヨト イヨト イヨト

Let $I = (a_1, \ldots, a_t)$ be an ideal of R. The **Frobenius power** $I^{[p]}$ of I is the extension of I via the Frobenius endomorphism, that is

$$I^{[p]} = (a^p \mid a \in I).$$

In general, for every $q = p^e$ we can work with the *e*-th Frobenius endomorphism

$$F^e: R \to R; x \mapsto x^q,$$

and the *e*-th Frobenius power $I^{[q]} = (a^q \mid a \in I)$.

A B M A B M

Let I be an ideal of R. The **tight closure** I^* of I is defined as follows

$$I^*=\{x\mid cx^q\in I^{[q]} ext{ for some } c\in R^\circ ext{ and for all } q=p^e\gg 0\},$$

where $R^{\circ} = R \setminus \bigcup_{P \in \min Ass(R)} P$. The ideal *I* is called tight closed if $I = I^*$.

イロト イヨト イヨト イヨト

Let I be an ideal of R. The tight closure I^* of I is defined as follows

$$I^*=\{x\mid cx^q\in I^{[q]} ext{ for some } c\in R^\circ ext{ and for all } q=p^e\gg 0\},$$

where $R^{\circ} = R \setminus \bigcup_{P \in \min Ass(R)} P$. The ideal I is called tight closed if $I = I^*$. We have $I \subseteq I^* \subseteq \overline{I}$. Thus if R is reduced, $\ell(R/(I^{n+1})^*)$ becomes a polynomial of degree d, i.e. for all $n \gg 0$

$$\ell(R/(I^{n+1})^*) = P_I^*(n) = e_0^*(I) \binom{n+d}{d} - e_1^*(I) \binom{n+d-1}{d-1} + \dots + (-1)^d e_d^*(I)$$

where $e_0^*(I) = e_0(I)$. $P_I^*(n)$ is called the **tight Hilbert polynomial** of R with respect to I. We call $e_0^*(I)$ the tight multiplicity, and $e_i^*(I)$, $0 \le i \le d$, the tight Hilbert coefficients of R with respect to I.

イロン イヨン イヨン

Suppose *R* is reduced, so $e_0(I) = \overline{e}_0(I) = e_0^*(I)$. Moreover $\ell(R/\overline{I^{n+1}}) \le \ell(R/(I^{n+1})^*) \le \ell(R/I^{n+1}).$

э

イロト イヨト イヨト イヨト

Suppose *R* is reduced, so $e_0(I) = \overline{e}_0(I) = e_0^*(I)$. Moreover

$$\ell(R/\overline{I^{n+1}}) \leq \ell(R/(I^{n+1})^*) \leq \ell(R/I^{n+1}).$$

Corollary

 $\overline{e}_1(I) \geq e_1^*(I) \geq e_1(I).$

æ

(4回) (4回) (4回)

Theorem (Goto, 1987)

Let Q be a parameter ideal of R. Suppose $\overline{Q} = Q$. Then R is regular, and $\mu(\mathfrak{m}/Q) \leq 1$.

Theorem (Goto, 1987)

Let Q be a parameter ideal of R. Suppose $\overline{Q} = Q$. Then R is regular, and $\mu(\mathfrak{m}/Q) \leq 1$.

Theorem (Morales-Trung-Villamayor, 1990)

Let (R, \mathfrak{m}) be a reduced and equidimensional local ring. Suppose $\overline{e}_1(Q) = e_1(Q)$. Then R is regular, and $\mu(\mathfrak{m}/Q) \leq 1$.

It is well known that $\ell(R/Q) \ge e_0(Q)$ for all Q.

Theorem (Hayasaka-Hyry, 2010)

Let Q be a parameter ideal of R. Then $\ell(R/Q^{n+1}) \ge e_0(Q)\binom{n+d}{d}$ for all n. If $\ell(R/Q^{n+1}) = e_0(Q)\binom{n+d}{d}$ for some n, then R is Cohen-Maucaulay.

It is well known that $\ell(R/Q) \ge e_0(Q)$ for all Q.

Theorem (Hayasaka-Hyry, 2010)

Let Q be a parameter ideal of R. Then $\ell(R/Q^{n+1}) \ge e_0(Q)\binom{n+d}{d}$ for all n. If $\ell(R/Q^{n+1}) = e_0(Q)\binom{n+d}{d}$ for some n, then R is Cohen-Maucaulay.

We get a solution for the Vasconcelos non-positive conjecture of $e_1(Q)$.

Theorem (Mandal-Singh-Verma, 2011)

Let Q be a parameter ideal of R. Then $e_1(Q) \leq 0$.

For the Vasconcelos vanishing conjecture of $e_1(Q)$, we have the following theorem.

Theorem (GGHOPV, 2010)

Let Q be a parameter ideal of an unmixed local ring R. If $e_1(Q) = 0$, then R is Cohen-Macaulay.

For the Vasconcelos vanishing conjecture of $e_1(Q)$, we have the following theorem.

Theorem (GGHOPV, 2010)

Let Q be a parameter ideal of an unmixed local ring R. If $e_1(Q) = 0$, then R is Cohen-Macaulay.

For integral closure, we have the following result.

Theorem (Goto-Hong-Mandal, 2011)

Let (R, \mathfrak{m}) be a reduced and equidimensional local ring. Then $\overline{e}_1(Q) \ge 0$.

For the Vasconcelos vanishing conjecture of $e_1(Q)$, we have the following theorem.

Theorem (GGHOPV, 2010)

Let Q be a parameter ideal of an unmixed local ring R. If $e_1(Q) = 0$, then R is Cohen-Macaulay.

For integral closure, we have the following result.

Theorem (Goto-Hong-Mandal, 2011)

Let (R, \mathfrak{m}) be a reduced and equidimensional local ring. Then $\overline{e}_1(Q) \ge 0$.

For any m-primary ideal, we choose Q a minimal reduction of I. Therefore $\overline{P}_{I}(n) = \overline{P}_{Q}(n)$, so $\overline{e}_{1}(I) \geq 0$.

イロト イヨト イヨト ・

Theorem (Goel-Verma-Mukundan, 2020)

Let (R, \mathfrak{m}) be a reduced Cohen-Macaulay local ring of positive characteristic. Then R is F-rational if and only if $e_1^*(Q) = 0$ for some Q.

Theorem (Goel-Verma-Mukundan, 2020)

Let (R, \mathfrak{m}) be a reduced Cohen-Macaulay local ring of positive characteristic. Then R is F-rational if and only if $e_1^*(Q) = 0$ for some Q.

Question (Huneke, 2023)

Let (R, \mathfrak{m}) be a reduced and equidimensional local ring of positive characteristic. Then is it true that R is F-rational if and only if $e_1^*(Q) = 0$ for some parameter ideal Q.

In general, we have $\ell(R/Q) \ge e(Q)$ for all parameter ideals Q.

Definition (Stuckrad-Vogel)

Let (R, \mathfrak{m}) be a local ring of dimension d. Then R is called Buchsbaum if and only if $\ell(R/Q) - e(Q)$ is a constant for all parameter ideals Q.

Buchsbaum rings

Theorem (Stuckrad-Vogel)

The following are equivalent: (i) (R, \mathfrak{m}) is Buchsbaum. (ii) For every system of parameters x_1, \ldots, x_d we have

$$(x_1,\ldots,x_{i-1})$$
: $x_i=(x_1,\ldots,x_{i-1})$: \mathfrak{m}

for all $i \leq d$.

Buchsbaum rings

Theorem (Stuckrad-Vogel)

The following are equivalent: (i) (R, \mathfrak{m}) is Buchsbaum. (ii) For every system of parameters x_1, \ldots, x_d we have

$$(x_1,\ldots,x_{i-1})$$
: $x_i=(x_1,\ldots,x_{i-1})$: \mathfrak{m}

for all $i \leq d$.

Theorem (Stuckrad-Vogel)

Let (R, \mathfrak{m}) be a Buchsbaum local ring of dimension d. Then for all parameter ideal Q we have

$$\ell(R/Q) - e(Q) = \sum_{i=0}^{d-1} \binom{d-1}{i} \ell(H^i_{\mathfrak{m}}(R)).$$

Pham Hung Quy (FPT University)

- 4 回 ト 4 回 ト 4 回 ト

Definition (Schenzel)

Let (R, \mathfrak{m}) be a local ring of dimension d. We define

$$\mathfrak{b}(R) = \bigcap_{x_1,\ldots,x_d} \operatorname{Ann}\left(\frac{(x_1,\ldots,x_{i-1}):x_i}{(x_1,\ldots,x_{i-1})}\right)$$

where x_1, \ldots, x_d runs over all systems of parameters of R.

Definition (Schenzel)

Let (R, \mathfrak{m}) be a local ring of dimension d. We define

$$\mathfrak{b}(R) = \bigcap_{x_1,\ldots,x_d} \operatorname{Ann}\left(\frac{(x_1,\ldots,x_{i-1}):x_i}{(x_1,\ldots,x_{i-1})}\right)$$

where x_1, \ldots, x_d runs over all systems of parameters of R.

Theorem

 (R, \mathfrak{m}) is a Buchsbaum local ring iff $\mathfrak{b}(R) \supseteq \mathfrak{m}$.

Definition (Fedder-Watanabe)

An equidimensional local ring (R, \mathfrak{m}) is called *F*-rational if every parameter ideal is tight closed, i.e. $Q^* = Q$ for all Q

(日) (四) (日) (日) (日)

Definition (Fedder-Watanabe)

An equidimensional local ring (R, \mathfrak{m}) is called *F*-rational if every parameter ideal is tight closed, i.e. $Q^* = Q$ for all Q

Theorem

- (Hochster-Huneke) A local ring (R, m) is F-rational. Then it is normal and Cohen-Macaulay.
- (Smith) A local ring (R, \mathfrak{m}) is *F*-rational if and only if it is Cohen-Macaulay and $0^*_{H^d_\mathfrak{m}(R)} = 0$.

Conjecture (Watanabe-Yoshida, 2000)

Let (R, \mathfrak{m}) be an unmixed local ring of dimension d and of characteristic p > 0. Then (1) For every parameter ideal Q we have $e(Q) \ge \ell(R/Q^*)$.

(2) If we have $e(Q) = \ell(R/Q^*)$ for some parameter ideal Q, then R is *F*-rational.

Conjecture (Watanabe-Yoshida, 2000)

Let (R, \mathfrak{m}) be an unmixed local ring of dimension d and of characteristic p > 0. Then

(1) For every parameter ideal Q we have $e(Q) \ge \ell(R/Q^*)$.

(2) If we have $e(Q) = \ell(R/Q^*)$ for some parameter ideal Q, then R is *F*-rational.

Theorem (Goto-Nakamura, 2001)

The conjecture of Watanabe and Yoshida is true.

2

イロト イヨト イヨト イヨト

There are partial answers for $\ref{eq:second}$ of Bhatt, Ma and Schewde (2018), and Q (2018).

э

4 B K 4 B K

Definition

Let (R, \mathfrak{m}) be an equidimension local ring of characteristic p > 0 and dimension *d*. The *parameter test ideal* is defined

$$au_{par}(R) = igcap_Q(Q:Q^*),$$

where Q runs over all parameter ideals.

Definition

Let (R, \mathfrak{m}) be an equidimension local ring of characteristic p > 0 and dimension *d*. The *parameter test ideal* is defined

$$au_{par}(R) = igcap_Q(Q:Q^*),$$

where Q runs over all parameter ideals.

Remark

(1)*R* is *F*-rational iff $\tau_{par}(R) = R$. (2) *R* is *F*-rational on puncture spectrum iff $\tau_{par}(R)$ is an m-primary ideal.

Question (Watanabe)

Suppose $\mathfrak{m} \subseteq \tau_{par}(R)$. Is it true that $e(Q) - \ell(R/Q^*)$ does not depend of the choice of Q?

э

Theorem (Ma-Q, 2022)

Let (R, \mathfrak{m}) be an unmixed local ring of characteristic p > 0 and dimension d. Let following are equivalent:

- *R* is a **tight Buchsbaum ring** i.e., the difference $e(Q) \ell(R/Q^*)$ is independent of *Q*.
- **2** $\mathfrak{m} \subseteq \tau_{par}(R)$, i.e., $\mathfrak{m}Q^* \subseteq Q$ for every Q.

Theorem (Ma-Q, 2022)

Let (R, \mathfrak{m}) be an unmixed local ring of characteristic p > 0 and dimension d. Let following are equivalent:

• *R* is a **tight Buchsbaum ring** i.e., the difference $e(Q) - \ell(R/Q^*)$ is independent of *Q*.

2)
$$\mathfrak{m} \subseteq \tau_{par}(R)$$
, i.e., $\mathfrak{m}Q^* \subseteq Q$ for every Q .

Moreover, if R is tight Buchsbaum then for every Q we have

$$e(Q) - \ell(R/Q^*) = \sum_{i=0}^{d-1} \binom{d}{i} \ell(H^i_\mathfrak{m}(R)) + \ell(0^*_{H^d_\mathfrak{m}(R)}).$$

æ

イロト イヨト イヨト イヨト

Example

A Buchsbaum ring with $0^*_{H^d_{\mathfrak{m}}(R)} = 0$ is a tight Buchsbaum ring. For example, $k[[a, b, c, d]]/(a, b) \cap (c, d)$, and $k[[x^4, x^3y, xy^3, y^4]]$, char p > 0, are tight Buchsbaum.

Example

A Buchsbaum ring with $0^*_{H^d_{\mathfrak{m}}(R)} = 0$ is a tight Buchsbaum ring. For example, $k[[a, b, c, d]]/(a, b) \cap (c, d)$, and $k[[x^4, x^3y, xy^3, y^4]]$, char p > 0, are tight Buchsbaum.

Example

Let $R = k[[X, Y, Z]]/(X^3 + Y^3 - Z^3)$, char p > 3. We have that R is Cohen-Macaulay and $0^*_{H^2_{\mathfrak{m}}(R)} \cong k$. Then R is tight Buchsbaum.

Theorem (Schenzel)

Let (R, \mathfrak{m}) be a Buchsbaum local ring of dimension d. Then for any parameter ideal Q we have:

$$\ell(R/Q^{n+1}) = \sum_{i=0}^{d} (-1)^{i} e_{i}(Q) \binom{n+d-i}{d-i},$$

where

$$e_i(Q) = (-1)^i \sum_{j=0}^{d-i} {d-i-1 \choose j-2} \ell(H^j_{\mathfrak{m}}(R))$$

for $i = 1, 2, \cdots, d$.

- E - - E -

Tight Hilbert polynomials for tight Buchsbaum rings Theorem (Dubey-Q-Verma, 2023)

Let (R, \mathfrak{m}) be a tight Buchsbaum local ring of dimension d. Then for any parameter ideal Q we have:

$$\ell(R/(Q^{n+1})^*) = \sum_{i=0}^d (-1)^i e_i^*(Q) \binom{n+d-i}{d-i},$$

where

$$e_1^*(Q) = \sum_{j=0}^{d-1} {d-2 \choose j-2} \ell(H^j_\mathfrak{m}(R)) + \ell(0^*_{H^d_\mathfrak{m}(R)})$$

and

$$e_i^*(Q) = (-1)^{i-1} ig[\sum_{j=0}^{d-i} igg(rac{d-i-1}{j-2} ig) \ell(H^j_\mathfrak{m}(R)) + \ell(H^{d-i+1}_\mathfrak{m}(R)) ig]$$

for $i = 2, \dots, d$. Pham Hung Quy (FPT University)

Corollary

Let (R, \mathfrak{m}) be a tight Buchsbaum local ring with depth $R \ge 2$. Suppose $e_1^*(Q) = 0$ for some parameter ideal Q. Then R is F-rational.

.

Similar to Hayasaka-Hyry's theorem we can prove the following.

Theorem (Ma-Q)

Let (R, \mathfrak{m}) be a reduce equidimensional local ring of positive characteristic. Let Q be a parameter ideal. Then for all n, we have

$$\ell(R/(Q^{n+1})^*) \leq e_0(R) \binom{n+d}{d}.$$

Therefore $e_1^*(Q) \ge 0$.

Similar to Hayasaka-Hyry's theorem we can prove the following.

Theorem (Ma-Q)

Let (R, \mathfrak{m}) be a reduce equidimensional local ring of positive characteristic. Let Q be a parameter ideal. Then for all n, we have

$$\ell(R/(Q^{n+1})^*) \leq e_0(R) \binom{n+d}{d}.$$

Therefore $e_1^*(Q) \ge 0$.

If I is a m-primary ideal and Q is minimal reduction of I, then $e_1^*(I) \ge e_1^*(Q) \ge 0.$

Similar to Morales-Trung-Villamayor's result, we have

Corollary (Ma-Q)

Let (R, \mathfrak{m}) be a reduce equidimensional local ring of positive characteristic. Let Q be a parameter ideal. If $e_1^*(Q) = e_1(Q)$, then R is F-rational. In fact, for any balance big Cohen-Macaulay local ring B of R we can define $I^B = IB \cap R$, and hence $e_i^B(Q)$. We have

$$\ell(R/(Q^{n+1})^B) \leq e_0(R) \binom{n+d}{d}.$$

Therefore $e_1^B(Q) \ge 0$.

- E - - E -

In fact, for any balance big Cohen-Macaulay local ring B of R we can define $I^B = IB \cap R$, and hence $e_i^B(Q)$. We have

$$\ell(R/(Q^{n+1})^B) \leq e_0(R) \binom{n+d}{d}.$$

Therefore $e_1^B(Q) \ge 0$. Note that $I^B \subseteq \overline{I}$, hence $\overline{e}_1(Q) \ge e_1^B(Q) \ge 0$. We can prove the following result.

Theorem (Ma-Q)

Let (R, \mathfrak{m}) be a reduce equidimensional local ring satisfying the S_2 condition. If $\overline{e}_1(Q) = 0$ for some Q, then R is regular and $\mu(\mathfrak{m}/Q) \leq 1$.

Conjecture (Huneke, Ma-Q)

Let (R, \mathfrak{m}) be a reduced and S_2 local ring of characteristic p. Suppose $e_1^*(Q) = 0$ for some parameter ideal Q. Then R is F-rational.

4 3 4 3 4 3 4

Conjecture (Huneke, Ma-Q)

Let (R, \mathfrak{m}) be a reduced and S_2 local ring of characteristic p. Suppose $e_1^*(Q) = 0$ for some parameter ideal Q. Then R is F-rational. In general, let B is a balance big Cohen-Macaulay algebra of R. Suppose $e_1^B(Q) = 0$ for some parameter ideal Q. Then R is BCM_B -rational.

THANK YOU VERY MUCH FOR YOUR ATTENTION

æ

イロト イヨト イヨト イヨト