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Introduction

R - Noetherian ring, I ⊂ R, an ideal.

I (s) =
⋂

P∈Ass(I )

(I sRP ∩ R)

Containment Problem: Given t ∈ N, find the least s such that
I (s) ⊆ I t .

(Swanson, Ein-Lazarfeld-Smith, Hochster-Huneke, Ma-Schwede) If
I is a radical ideal in a regular ring, then I (ht) ⊆ I t for all t ∈ N,
where h = bh(I ), big height of I .

Question: (Huneke) If P = ht 2 prime ideal in a RLR of
dimension 3, is P(3) ⊆ P2?

Known in the case of space monomial curves (Grifo)
In general, the question is open.
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Introduction

Conjecture: (Harbourne) If I is a radical ideal in a regular ring,
then I (ht−h+1) ⊆ I t for all t ∈ N.

Not true in general, known to hold true for several classes of ideals.

Question: (Grifo) If I is a radical ideal in a regular ring, then
I (ht−h+1) ⊆ I t for all t ≫ 0.

Definition: (Bocci-Harbourne) resurgence of I

ρ(I ) := sup
{s

t
: s, t ∈ N and I (s) ̸⊆ I t

}
.

Corollary: If I is a radical ideal in a regular ring, ρ(I ) ≤ bh(I ).

Note: if s
t > ρ(I ), then I (s) ⊆ I t .
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Introduction

Definition: (Guardo-Harbourne-Van Tuyl)
asymptotic resurgence of I

ρa(I ) := sup
{s

t
: s, t ∈ N and I (rs) ̸⊆ I rt for r ≫ 0

}
.

Theorem: (Guardo-Harbourne-Van Tuyl) If is a homogeneous
ideal in a finitely generated graded K -algebra, then

1 ≤ α(I )

α̂(I )
≤ ρa(I ) ≤ ρ(I ),

α(I ) = min{deg f : f ∈ I},

α̂(I ) = lim
s→∞

α(I (s))

s
, Waldschmidt constant.
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Introduction

Theorem: (Grifo, Grifo-Huneke-Mukundan) Stable Harbourne
conjecture is true if ρ(I ) < bh(I ) or ρa(I ) < bh(I ).

Question: Can one compute the resurgence and asymptotic
resurgence in finite steps?

(DiPasquale-Drabkin): If ρa(I ) < ρ(I ), then YES.

If the symbolic Rees algebra is Noetherian, then ρ(I ) is a rational
number.
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Resurgence of Homogeneous Ideals

Theorem
Suppose S is Noetherian, (0) ̸= I ⊊ R such that
Rs(I ) = S [It, I (n)tn] and ∃P such that PI (n) ⊂ I n&I (n) ⊂ Pk I n−1

for some k ≥ 1. Then I (nkq+nq) ⊂ I nkq+nq−q for all q ∈ N and
ρ(I ) ≤ nk+n

nk+n−1 .

Upper bound is tight: I = (x1x2, . . . , x2n−1x1) ⊂ K [x1, . . . , x2n−1].
Then ρ(I ) = ρa(I ) =

2n
2n−1 .

Theorem
If I , J nonzero proper ideals generated in disjoint set of variables in
a polynomial ring, then

1. ρ(IJ) = max{ρ(I ), ρ(J)}.
2. ρa(IJ) = max{ρa(I ), ρa(J)}.
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Resurgence of Homogeneous Ideals

Theorem
Suppose I , J nonzero proper homogeneous ideals generated in
disjoint set of variables in a polynomial ring. If I (s) = I s for all
s ≥ 1, then ρ(I + J) = ρ(J).

Theorem
Ij ⊂ K [xj1, . . . xjnj ], nonzero proper homogeneous ideals,

pj = min{t : I
(t)
j ̸= I ti }, j = 1, . . . k. If ρ(Ij) = 1 for all

j = 1, . . . , k, then ρ(I + J) = ρ(J).

ρ(I1 + · · ·+ Ik) = max

{
p1 + · · ·+ pr

p1 + · · ·+ pr − r + 1
: 2 ≤ r ≤ k

}
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Resurgence of Homogeneous Ideals

Theorem:(DiPasquale-Drabkin) If I ⊂ K [x1, . . . , xℓ] is a squarefree
monomial ideal of big height h, then ρa(I ) ≤ h − 1

ℓ .

Theorem
If I ⊂ K [x1, . . . , xℓ] is a squarefree monomial ideal of big height h,
then I (hr−h) ⊆ I r for all r ≥ χ(I ) = min{d : (x1 · · · xℓ)d−1 ∈ I d}.
In particular, ρa(I ) ≤ h − 1

χ(I ) .

Observation: I is squarefree monomial ⇒ I is cover ideal of a
hypergraph H. Then, χ(I ) := χ(H) is the chromatic number of H.

Hence χ(I ) ≤ ℓ, but a large bound in general.

For example, if H = K1,n, then χ(H) = 2.
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Resurgence of Cover Ideals

G - a finite simple graph, V (G ) = {x1, . . . , xn} and edge set E (G ).

Edge ideal of G , I (G ) = (xixj : {xi , xj} ∈ E (G )) ⊂ K [x1, . . . , xn].

w ⊂ V (G ) is a Vertex cover of G , if w ∩ e ̸= for all e ∈ E (G ).

Cover ideal of G , J(G ) := (
∏

xj∈w xj : w is a vertex cover of G ).

Cover ideal is the Alexander Dual of the edge ideal.

J(G ) =
⋂

{xi ,xj}∈E(G)

(xi , xj).

Cover ideals are radical, height 2, unmixed ideals.
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Resurgence of Cover Ideals

Question:(Grifo) If I is a radical ideal in a regular ring R, then for
given C > 0, does there exist an N > 0 such that I (hr−C) ⊂ I r for
all r ≥ N?

Theorem
Let G be a graph and c ∈ N. Then
▶ J(G )(2r−2c) ⊂ J(G )r for every r ≥ cχ(G ),

▶ J(G )(2r−2c−1) ⊂ J(G )r for every r ≥ cχ(G ) + 1.

Theorem
Let ω(G ) := max size of a clique in G and α(G ) := max size of an
independent set in G. Then

max

{
2− 2

ω(G )
, 2− 2α(G )

n

}
≤ ρa(G ) ≤ ρ(G ) ≤ 2− 2

χ(G )
.
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Resurgence of Cover Ideals

Corollary

If G is a perfect graph (χ(G ) = ω(G )), then
ρa(G ) = ρ(G ) = 2− 2

χ(G) .

The earlier lower bound and the above Corollary was also
simultaneously proved by Grisalde, Seceleanu and Villarreal using
very different techniques.

▶ Herzog-Hibi-Trung: G is bipartite if and only if
J(G )s = J(G )(s) for all s ≥ 1.

Theorem
ρ(J(G )) = 1 ⇐⇒ G is bipartite ⇐⇒ ρa(G ) = 1.
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Resurgence of Cover Ideals

Theorem

1. ρa(J(C2n+1)) = ρ(J(C2n+1)) =
α(J(G ))

α̂(J(G ))
=

2n + 2

2n + 1
.

2. J(C2n+1)
(2nt+2t) ⊆ J(C2n+1)

2nt+t .

3. If G is non-bipartite cactus graph, then
ρ(J(G )) = ρa(J(G )) = n+1

n , where n is the number of vertices
of a smallest induced odd cycle in G.

Theorem
Let G = G1 ∪ G2 be a clique-sum of G1 and G2. Then :

1. For any t ≥ 1, J(G )t = J(G1)
t ∩ J(G2)

t .

2. For any s ≥ 1, J(G )(s) = J(G1)
(s) ∩ J(G2)

(s).

3. ρ(J(G )) = max{ρ(J(G1)), ρ(J(G2))}.
4. ρa(J(G )) = max{ρa(J(G1)), ρa(J(G2))}.
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t ∩ J(G2)

t .

2. For any s ≥ 1, J(G )(s) = J(G1)
(s) ∩ J(G2)

(s).

3. ρ(J(G )) = max{ρ(J(G1)), ρ(J(G2))}.
4. ρa(J(G )) = max{ρa(J(G1)), ρa(J(G2))}.



Resurgence of Cover Ideals

Bocci-Harbourne: For a homogeneous ideal,
α(I )

α̂(I )
≤ ρ(I ).

Question: Classify homogeneous ideals satisfying the equality.
Identify nice classes satisfying the equality.

Theorem

1. If G = K c
m ∗ H, where H is a non-trivial bipartite graph on n

vertices, then ρ(J(G )) =
α(J(G ))

α̂(J(G ))
if and only if

m = α(J(H)) =
n

2
.

2. If G = Kn1,...,nk , then ρ(J(G )) =
α(J(G ))

α̂(J(G ))
if and only if

n1 = · · · = nk .
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Resurgence of Edge Ideals

▶ G - graph on {x1, . . . , xn}.
▶ Edge ideal I (G ) := (xixj : {xi , xj} is an edge of G ).

▶ Simis-Vasconcelos-Villarreal: G is bipartite if and only if
I (G )(s) = I (G )s for all s ≥ 1.

Theorem
ρ(I (G )) = 1 ⇐⇒ G is bipartite ⇐⇒ ρa(I (G )) = 1.
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Resurgence of Edge Ideals

▶ G - clique-sum of bipartite graphs and cycles of length 2n+ 1.

▶ k = kn(G ) = max number of odd cycles in G who are at a
distance at least 2.

Theorem

ρ(I (G )) =


2n + 2

2n + 1
if k = 1,

kn + k

kn + 1
if k ≥ 2.
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Further Questions

1. Huneke’s question

2. Stable Harbourne conjecture

3. Identify important classes of ideals for which the (Stable)
Harbourne conjecture is true

4. Generalize the results to cover ideals of hypergraphs

5. Bounds for resurgence and asymptotic resurgence for edge
ideals.
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