On the resurgence and asymptotic resurgence of homogeneous ideals

Jayanthan A V

(joint work with Arvind Kumar and Vivek Mukundan)

Indian Institute of Technology Madras, Chennai, India.

Workshop on Commutative Algebra and Algebraic Geometry in Prime Characteristics, ICTP, Trieste.

◆□▶ ◆□▶ ◆□▶ ◆□)

R - Noetherian ring, $I \subset R$, an ideal.

$$I^{(s)} = \bigcap_{P \in Ass(I)} (I^s R_P \cap R)$$

R - Noetherian ring, $I \subset R$, an ideal.

$$I^{(s)} = \bigcap_{P \in Ass(I)} (I^s R_P \cap R)$$

Containment Problem: Given $t \in \mathbb{N}$, find the least *s* such that $I^{(s)} \subseteq I^t$.

R - Noetherian ring, $I \subset R$, an ideal.

$$I^{(s)} = \bigcap_{P \in \mathsf{Ass}(I)} (I^s R_P \cap R)$$

Containment Problem: Given $t \in \mathbb{N}$, find the least *s* such that $I^{(s)} \subseteq I^t$.

(Swanson, Ein-Lazarfeld-Smith, Hochster-Huneke, Ma-Schwede) If I is a radical ideal in a regular ring, then $I^{(ht)} \subseteq I^t$ for all $t \in \mathbb{N}$, where h = bh(I), big height of I.

イロト イポト イヨト イヨト

R - Noetherian ring, $I \subset R$, an ideal.

$$I^{(s)} = \bigcap_{P \in \mathsf{Ass}(I)} (I^s R_P \cap R)$$

Containment Problem: Given $t \in \mathbb{N}$, find the least *s* such that $I^{(s)} \subseteq I^t$.

(Swanson, Ein-Lazarfeld-Smith, Hochster-Huneke, Ma-Schwede) If I is a radical ideal in a regular ring, then $I^{(ht)} \subseteq I^t$ for all $t \in \mathbb{N}$, where h = bh(I), big height of I.

Question: (Huneke) If P = ht 2 prime ideal in a RLR of dimension 3, is $P^{(3)} \subseteq P^2$?

(日)

R - Noetherian ring, $I \subset R$, an ideal.

$$I^{(s)} = \bigcap_{P \in \mathsf{Ass}(I)} (I^s R_P \cap R)$$

Containment Problem: Given $t \in \mathbb{N}$, find the least *s* such that $I^{(s)} \subseteq I^t$.

(Swanson, Ein-Lazarfeld-Smith, Hochster-Huneke, Ma-Schwede) If I is a radical ideal in a regular ring, then $I^{(ht)} \subseteq I^t$ for all $t \in \mathbb{N}$, where h = bh(I), big height of I.

Question: (Huneke) If P = ht 2 prime ideal in a RLR of dimension 3, is $P^{(3)} \subseteq P^2$?

Known in the case of space monomial curves (Grifo) In general, the question is open.

(日)

Conjecture: (Harbourne) If *I* is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \in \mathbb{N}$.

ヘロト ヘロト ヘビト ヘビト

Conjecture: (Harbourne) If *I* is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \in \mathbb{N}$.

Not true in general, known to hold true for several classes of ideals.

Conjecture: (Harbourne) If *I* is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \in \mathbb{N}$.

Not true in general, known to hold true for several classes of ideals.

Question: (Grifo) If I is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \gg 0$.

(1)

Conjecture: (Harbourne) If *I* is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \in \mathbb{N}$.

Not true in general, known to hold true for several classes of ideals.

Question: (Grifo) If I is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \gg 0$.

Definition: (Bocci-Harbourne) resurgence of I

$$\rho(I) := \sup \left\{ \frac{s}{t} : s, t \in \mathbb{N} \text{ and } I^{(s)} \not\subseteq I^t \right\}.$$

Conjecture: (Harbourne) If *I* is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \in \mathbb{N}$.

Not true in general, known to hold true for several classes of ideals.

Question: (Grifo) If I is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \gg 0$.

Definition: (Bocci-Harbourne) resurgence of I

$$\rho(I) := \sup \left\{ \frac{s}{t} : s, t \in \mathbb{N} \text{ and } I^{(s)} \not\subseteq I^t \right\}.$$

Corollary: If *I* is a radical ideal in a regular ring, $\rho(I) \leq bh(I)$.

(1)

Conjecture: (Harbourne) If *I* is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \in \mathbb{N}$.

Not true in general, known to hold true for several classes of ideals.

Question: (Grifo) If I is a radical ideal in a regular ring, then $I^{(ht-h+1)} \subseteq I^t$ for all $t \gg 0$.

Definition: (Bocci-Harbourne) resurgence of I

$$\rho(I) := \sup \left\{ \frac{s}{t} : s, t \in \mathbb{N} \text{ and } I^{(s)} \not\subseteq I^t \right\}.$$

Corollary: If *I* is a radical ideal in a regular ring, $\rho(I) \leq bh(I)$.

Note: if $\frac{s}{t} > \rho(I)$, then $I^{(s)} \subseteq I^t$.

(1)

Definition: (Guardo-Harbourne-Van Tuyl) **asymptotic resurgence** of *I*

$$\rho_{a}(I) := \sup \left\{ \frac{s}{t} : s, t \in \mathbb{N} \text{ and } I^{(rs)} \not\subseteq I^{rt} \text{ for } r \gg 0 \right\}.$$

<ロト <回ト < 注ト < 注ト

Definition: (Guardo-Harbourne-Van Tuyl) **asymptotic resurgence** of *I*

$$\rho_a(I) := \sup \left\{ \frac{s}{t} : s, t \in \mathbb{N} \text{ and } I^{(rs)} \not\subseteq I^{rt} \text{ for } r \gg 0 \right\}.$$

Theorem: (Guardo-Harbourne-Van Tuyl) If is a homogeneous ideal in a finitely generated graded *K*-algebra, then

$$1 \leq \frac{\alpha(I)}{\hat{\alpha}(I)} \leq \rho_{a}(I) \leq \rho(I),$$

$$lpha(I) = \min\{\deg f : f \in I\},\ \hat{lpha}(I) = \lim_{s \to \infty} \frac{lpha(I^{(s)})}{s}, ext{ Waldschmidt constant.}$$

イロト イポト イヨト イヨト

Theorem: (Grifo, Grifo-Huneke-Mukundan) Stable Harbourne conjecture is true if $\rho(I) < bh(I)$ or $\rho_a(I) < bh(I)$.

(1)

Theorem: (Grifo, Grifo-Huneke-Mukundan) Stable Harbourne conjecture is true if $\rho(I) < bh(I)$ or $\rho_a(I) < bh(I)$.

Question: Can one compute the resurgence and asymptotic resurgence in finite steps?

イロト イポト イヨト イヨト

Theorem: (Grifo, Grifo-Huneke-Mukundan) Stable Harbourne conjecture is true if $\rho(I) < bh(I)$ or $\rho_a(I) < bh(I)$.

Question: Can one compute the resurgence and asymptotic resurgence in finite steps?

(DiPasquale-Drabkin): If $\rho_a(I) < \rho(I)$, then **YES**.

If the symbolic Rees algebra is Noetherian, then $\rho(I)$ is a rational number.

(1)

Theorem Suppose *S* is Noetherian, $(0) \neq I \subsetneq R$ such that $R_s(I) = S[It, I^{(n)}t^n]$ and $\exists P$ such that $PI^{(n)} \subset I^n \& I^{(n)} \subset P^k I^{n-1}$ for some $k \ge 1$. Then $I^{(nkq+nq)} \subset I^{nkq+nq-q}$ for all $q \in \mathbb{N}$ and $\rho(I) \le \frac{nk+n}{nk+n-1}$.

(日)

Theorem Suppose S is Noetherian, $(0) \neq I \subsetneq R$ such that $R_s(I) = S[It, I^{(n)}t^n]$ and $\exists P$ such that $PI^{(n)} \subset I^n \& I^{(n)} \subset P^k I^{n-1}$ for some $k \ge 1$. Then $I^{(nkq+nq)} \subset I^{nkq+nq-q}$ for all $q \in \mathbb{N}$ and $\rho(I) \le \frac{nk+n}{nk+n-1}$.

Upper bound is tight: $I = (x_1x_2, \ldots, x_{2n-1}x_1) \subset K[x_1, \ldots, x_{2n-1}].$ Then $\rho(I) = \rho_a(I) = \frac{2n}{2n-1}.$

A 日 > A 同 > A 国 > A 国 >

Theorem Suppose S is Noetherian, $(0) \neq I \subsetneq R$ such that $R_s(I) = S[It, I^{(n)}t^n]$ and $\exists P$ such that $PI^{(n)} \subset I^n \& I^{(n)} \subset P^k I^{n-1}$ for some $k \ge 1$. Then $I^{(nkq+nq)} \subset I^{nkq+nq-q}$ for all $q \in \mathbb{N}$ and $\rho(I) \le \frac{nk+n}{nk+n-1}$.

Upper bound is tight: $I = (x_1x_2, \ldots, x_{2n-1}x_1) \subset K[x_1, \ldots, x_{2n-1}].$ Then $\rho(I) = \rho_a(I) = \frac{2n}{2n-1}.$

Theorem

If I, J nonzero proper ideals generated in disjoint set of variables in a polynomial ring, then

1.
$$\rho(IJ) = \max\{\rho(I), \rho(J)\}.$$

2. $\rho_a(IJ) = \max\{\rho_a(I), \rho_a(J)\}$

イロト イポト イヨト イヨト

Theorem

Suppose I, J nonzero proper homogeneous ideals generated in disjoint set of variables in a polynomial ring. If $I^{(s)} = I^s$ for all $s \ge 1$, then $\rho(I + J) = \rho(J)$.

・ロット (雪) () () ()

Theorem

Suppose I, J nonzero proper homogeneous ideals generated in disjoint set of variables in a polynomial ring. If $I^{(s)} = I^s$ for all $s \ge 1$, then $\rho(I + J) = \rho(J)$.

Theorem $I_j \subset K[x_{j1}, \dots, x_{jn_j}]$, nonzero proper homogeneous ideals, $p_j = \min\{t : I_j^{(t)} \neq I_i^t\}, j = 1, \dots, k.$ If $\rho(I_j) = 1$ for all $j = 1, \dots, k$, then $\rho(I + J) = \rho(J)$.

$$\rho(I_1+\cdots+I_k) = \max\left\{\frac{p_1+\cdots+p_r}{p_1+\cdots+p_r-r+1} : 2 \le r \le k\right\}$$

(日)

Theorem:(DiPasquale-Drabkin) If $I \subset K[x_1, \ldots, x_{\ell}]$ is a squarefree monomial ideal of big height *h*, then $\rho_a(I) \leq h - \frac{1}{\ell}$.

Theorem:(DiPasquale-Drabkin) If $I \subset K[x_1, \ldots, x_{\ell}]$ is a squarefree monomial ideal of big height *h*, then $\rho_a(I) \leq h - \frac{1}{\ell}$.

Theorem

If $I \subset K[x_1, ..., x_\ell]$ is a squarefree monomial ideal of big height h, then $I^{(hr-h)} \subseteq I^r$ for all $r \ge \chi(I) = \min\{d : (x_1 \cdots x_\ell)^{d-1} \in I^d\}$. In particular, $\rho_a(I) \le h - \frac{1}{\chi(I)}$.

(日)

Theorem:(DiPasquale-Drabkin) If $I \subset K[x_1, \ldots, x_{\ell}]$ is a squarefree monomial ideal of big height *h*, then $\rho_a(I) \leq h - \frac{1}{\ell}$.

Theorem

If $I \subset K[x_1, ..., x_\ell]$ is a squarefree monomial ideal of big height h, then $I^{(hr-h)} \subseteq I^r$ for all $r \ge \chi(I) = \min\{d : (x_1 \cdots x_\ell)^{d-1} \in I^d\}$. In particular, $\rho_a(I) \le h - \frac{1}{\chi(I)}$.

Observation: *I* is squarefree monomial \Rightarrow *I* is cover ideal of a hypergraph \mathcal{H} . Then, $\chi(I) := \chi(\mathcal{H})$ is the chromatic number of \mathcal{H} .

(1)

Theorem:(DiPasquale-Drabkin) If $I \subset K[x_1, \ldots, x_{\ell}]$ is a squarefree monomial ideal of big height *h*, then $\rho_a(I) \leq h - \frac{1}{\ell}$.

Theorem

If $I \subset K[x_1, ..., x_\ell]$ is a squarefree monomial ideal of big height h, then $I^{(hr-h)} \subseteq I^r$ for all $r \ge \chi(I) = \min\{d : (x_1 \cdots x_\ell)^{d-1} \in I^d\}$. In particular, $\rho_a(I) \le h - \frac{1}{\chi(I)}$.

Observation: *I* is squarefree monomial \Rightarrow *I* is cover ideal of a hypergraph \mathcal{H} . Then, $\chi(I) := \chi(\mathcal{H})$ is the chromatic number of \mathcal{H} .

Hence $\chi(I) \leq \ell$, but a large bound in general.

For example, if $\mathcal{H} = K_{1,n}$, then $\chi(\mathcal{H}) = 2$.

(1)

G - a finite simple graph, $V(G) = \{x_1, \ldots, x_n\}$ and edge set E(G). Edge ideal of G, $I(G) = (x_i x_j : \{x_i, x_j\} \in E(G)) \subset K[x_1, \ldots, x_n]$.

G - a finite simple graph, $V(G) = \{x_1, \ldots, x_n\}$ and edge set E(G). Edge ideal of G, $I(G) = (x_i x_j : \{x_i, x_j\} \in E(G)) \subset K[x_1, \ldots, x_n]$. $w \subset V(G)$ is a Vertex cover of G, if $w \cap e \neq$ for all $e \in E(G)$. Cover ideal of G, $J(G) := (\prod_{x_j \in w} x_j : w \text{ is a vertex cover of } G)$.

G - a finite simple graph, $V(G) = \{x_1, \ldots, x_n\}$ and edge set E(G). Edge ideal of *G*, $I(G) = (x_i x_j : \{x_i, x_j\} \in E(G)) \subset K[x_1, \ldots, x_n]$. $w \subset V(G)$ is a Vertex cover of *G*, if $w \cap e \neq$ for all $e \in E(G)$. Cover ideal of *G*, $J(G) := (\prod_{x_j \in w} x_j : w \text{ is a vertex cover of } G)$. Cover ideal is the Alexander Dual of the edge ideal.

$$J(G) = \bigcap_{\{x_i, x_j\} \in E(G)} (x_i, x_j).$$

Cover ideals are radical, height 2, unmixed ideals.

Question:(Grifo) If *I* is a radical ideal in a regular ring *R*, then for given C > 0, does there exist an N > 0 such that $I^{(hr-C)} \subset I^r$ for all $r \ge N$?

(日)

Question:(Grifo) If *I* is a radical ideal in a regular ring *R*, then for given C > 0, does there exist an N > 0 such that $I^{(hr-C)} \subset I^r$ for all $r \ge N$?

Theorem

Let G be a graph and $c \in \mathbb{N}$. Then

(日)

Question:(Grifo) If *I* is a radical ideal in a regular ring *R*, then for given C > 0, does there exist an N > 0 such that $I^{(hr-C)} \subset I^r$ for all $r \ge N$?

Theorem

Let G be a graph and $c \in \mathbb{N}$. Then

►
$$J(G)^{(2r-2c)} \subset J(G)^r$$
 for every $r \ge c\chi(G)$,
► $J(G)^{(2r-2c-1)} \subset J(G)^r$ for every $r \ge c\chi(G) + 1$

Theorem

Let $\omega(G) := \max$ size of a clique in G and $\alpha(G) := \max$ size of an independent set in G. Then

$$\max\left\{2-\frac{2}{\omega(G)},2-\frac{2\alpha(G)}{n}\right\} \leq \rho_a(G) \leq \rho(G) \leq 2-\frac{2}{\chi(G)}.$$

Corollary If G is a perfect graph $(\chi(G) = \omega(G))$, then $\rho_a(G) = \rho(G) = 2 - \frac{2}{\chi(G)}$.

The earlier lower bound and the above Corollary was also simultaneously proved by Grisalde, Seceleanu and Villarreal using very different techniques.

◆□▶ ◆□▶ ◆□▶ ◆□)

Corollary If G is a perfect graph $(\chi(G) = \omega(G))$, then $\rho_a(G) = \rho(G) = 2 - \frac{2}{\chi(G)}$.

The earlier lower bound and the above Corollary was also simultaneously proved by Grisalde, Seceleanu and Villarreal using very different techniques.

► Herzog-Hibi-Trung: G is bipartite if and only if J(G)^s = J(G)^(s) for all s ≥ 1.

Theorem

 $\rho(J(G)) = 1 \iff G \text{ is bipartite } \iff \rho_a(G) = 1.$

(日)

Theorem

1.
$$\rho_{a}(J(C_{2n+1})) = \rho(J(C_{2n+1})) = \frac{\alpha(J(G))}{\hat{\alpha}(J(G))} = \frac{2n+2}{2n+1}.$$

2. $J(C_{2n+1})^{(2nt+2t)} \subseteq J(C_{2n+1})^{2nt+t}.$

Theorem

1.
$$\rho_a(J(C_{2n+1})) = \rho(J(C_{2n+1})) = \frac{\alpha(J(G))}{\hat{\alpha}(J(G))} = \frac{2n+2}{2n+1}$$

2. $J(C_{2n+1})^{(2nt+2t)} \subseteq J(C_{2n+1})^{2nt+t}$.

3. If G is non-bipartite cactus graph, then $\rho(J(G)) = \rho_a(J(G)) = \frac{n+1}{n}$, where n is the number of vertices of a smallest induced odd cycle in G.

Theorem

1.
$$\rho_{a}(J(C_{2n+1})) = \rho(J(C_{2n+1})) = \frac{\alpha(J(G))}{\hat{\alpha}(J(G))} = \frac{2n+2}{2n+1}$$

2. $J(C_{2n+1})^{(2nt+2t)} \subseteq J(C_{2n+1})^{2nt+t}$.

3. If G is non-bipartite cactus graph, then $\rho(J(G)) = \rho_a(J(G)) = \frac{n+1}{n}$, where n is the number of vertices of a smallest induced odd cycle in G.

Theorem

Let $G = G_1 \cup G_2$ be a clique-sum of G_1 and G_2 . Then :

- 1. For any $t \ge 1$, $J(G)^t = J(G_1)^t \cap J(G_2)^t$.
- 2. For any $s \ge 1$, $J(G)^{(s)} = J(G_1)^{(s)} \cap J(G_2)^{(s)}$.
- 3. $\rho(J(G)) = \max\{\rho(J(G_1)), \rho(J(G_2))\}.$
- 4. $\rho_a(J(G)) = \max\{\rho_a(J(G_1)), \rho_a(J(G_2))\}.$

(日)

Bocci-Harbourne: For a homogeneous ideal, $\frac{\alpha(I)}{\hat{\alpha}(I)} \leq \rho(I)$.

(日) (四) (三) (三) (三)

Bocci-Harbourne: For a homogeneous ideal, $\frac{\alpha(I)}{\hat{\alpha}(I)} \leq \rho(I)$.

Question: Classify homogeneous ideals satisfying the equality. Identify nice classes satisfying the equality.

◆□▶ ◆□▶ ◆□▶ ◆□)

Bocci-Harbourne: For a homogeneous ideal, $\frac{\alpha(I)}{\hat{\alpha}(I)} \leq \rho(I)$.

Question: Classify homogeneous ideals satisfying the equality. Identify nice classes satisfying the equality.

Theorem

◆□▶ ◆□▶ ◆□▶ ◆□)

- G graph on $\{x_1, \ldots, x_n\}$.
- Edge ideal $I(G) := (x_i x_j : \{x_i, x_j\}$ is an edge of G).
- Simis-Vasconcelos-Villarreal: G is bipartite if and only if I(G)^(s) = I(G)^s for all s ≥ 1.

•
$$G$$
 - graph on $\{x_1, \ldots, x_n\}$.

• Edge ideal $I(G) := (x_i x_j : \{x_i, x_j\}$ is an edge of G).

Simis-Vasconcelos-Villarreal: G is bipartite if and only if $I(G)^{(s)} = I(G)^s$ for all $s \ge 1$.

Theorem $\rho(I(G)) = 1 \iff G$ is bipartite $\iff \rho_a(I(G)) = 1$.

- G clique-sum of bipartite graphs and cycles of length 2n + 1.
- ▶ k = k_n(G) = max number of odd cycles in G who are at a distance at least 2.

・ロト ・ 日 ト ・ 日 ト ・ 日 ・

G - clique-sum of bipartite graphs and cycles of length 2n + 1.
 k = k_n(G) = max number of odd cycles in G who are at a distance at least 2.

Theorem

$$\rho(I(G)) = \begin{cases} \frac{2n+2}{2n+1} & \text{if } k = 1, \\ \frac{kn+k}{kn+1} & \text{if } k \ge 2. \end{cases}$$

イロト イポト イヨト イヨト

1. Huneke's question

イロト イヨト イヨト イヨト

- 1. Huneke's question
- 2. Stable Harbourne conjecture

<ロト <回ト < 注ト < 注ト

- 1. Huneke's question
- 2. Stable Harbourne conjecture
- 3. Identify important classes of ideals for which the (Stable) Harbourne conjecture is true

イロト イポト イヨト イヨト

- 1. Huneke's question
- 2. Stable Harbourne conjecture
- 3. Identify important classes of ideals for which the (Stable) Harbourne conjecture is true
- 4. Generalize the results to cover ideals of hypergraphs

◆□▶ ◆□▶ ◆□▶ ◆□)

- 1. Huneke's question
- 2. Stable Harbourne conjecture
- 3. Identify important classes of ideals for which the (Stable) Harbourne conjecture is true
- 4. Generalize the results to cover ideals of hypergraphs
- 5. Bounds for resurgence and asymptotic resurgence for edge ideals.

◆□▶ ◆□▶ ◆□▶ ◆□)

THANK YOU!!!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶