Castelnuovo-Mumford regularity of powers of an ideal

Le Tuan Hoa

Institute of Mathematics Hanoi (IMH)
Vietnam Academy of Science and Technology

Workshop on Commutative Algebra and Algebraic Geometry in Prime Characteristics
 May 8-12, 2023; ICTP, Italia

(A joint work with Nguyen Dang Hop and Ngo Viet Trung.)

Content

I. Motivation
II. Equigenerated ideals in a graded ring
2.1 The function reg I^{n-1} / I^{n}
2.2 The function reg R / I^{n}
2.3 The function reg I^{n}
2.4 The function sdeg I^{n}
III. Polynomial ideals

I. Motivation

R : standard graded algebra over a field $k, \mathfrak{m}:=R_{+}$,
M : finitely generated graded R-module, If E is an Artinian graded R-module, we set

$$
a(E):=\sup \left\{t \mid E_{t} \neq 0\right\} .
$$

The Castelnuovo-Mumford regularity:

$$
\operatorname{reg} M:=\max \left\{a\left(H_{R_{+}}^{i}(M)\right)+i \mid i \geq 0\right\} .
$$

reg M controls the complexity of the graded structure of M^{1}
${ }^{1}$ D. Bayer and D. Mumford, What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991), 1-48, Cambridge Univ. Press, 1993.

I. Motivation

$0 \neq I \subset R$: graded ideal that is not nilpotent. Then:
$-\operatorname{reg}\left(I^{n}\right)=\operatorname{reg}\left(R / I^{n}\right)+1$ for all $n \gg 0$;

- If R is a polynomial ring, then the above equality holds for all $n \geq 1$.
- In general, reg (I) is very big compared to the maximal generating degree $d_{\max }(I)$ of I. However,

Theorem A ${ }^{a b c}$. There are integers $d>0$ and $e \geq 0$ such that

$$
\operatorname{reg}\left(I^{n} M\right)=d n+e \forall n \gg 0
$$

${ }^{\text {a D D. Cutkosky, J. Herzog and N.V. Trung, Asymptotic behavior of the }}$ Castelnuovo-Mumford regularity, Compositio Math. 118 (1999), 243 261.
${ }^{\text {b }}$ V. Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford regularity, Proc. Amer. Math. Soc. 128 (2000), 407-411.
${ }^{c}$ N.V. Trung and H-J. Wang, On the asymptotic linearity of Castelnuovo-Mumford regularity, J. Pure Appl. Alg. 201 (2005), 42-48.

I. Motivation

Remarks:

- The slope d is called the asymptotic degree of I w.r.t. M. It is the smallest number d such that $I^{n} M=I_{\leq d} I^{n-1} M$ for large n, where $I_{\leq d}$ denotes the ideal generated by the elements of I having degree at most d.
- d is one of the generating degrees of I. In particular, $d \leq d_{\max }(I)$. If I is equigenerated, i.e. generated in degree δ, then $d=\delta$.
- The intercept e remains mysterious.

Problem: When does reg $I^{n} M$ become a linear function, or equivalently, give an upper bound on

$$
\operatorname{reg}-\operatorname{stab}(I ; M)=\min \left\{n_{0} \mid \operatorname{reg}\left(I^{n} M\right)=d n+e \quad \forall n \geq n_{0}\right\}
$$

I. Motivation

Hard problem. Few results: even in the case $\ell(R / I)<\infty$

* D. Berlekamp, Regularity defect stabilization of powers of an ideal, Math. Res. Lett. 19 (2012), 109-119.
* D. Eisenbud and B. Ulrich, Notes on regularity stabilization, Proc. Amer. Math. Soc. 140 (2012), 1221-1232.
* M. Chardin, Regularity stabilization for the powers of graded M-primary ideals, Proc. Amer. Math. Soc. 143 (2015), 3343 3349.

No explicit bound for reg-stab(I), except:
Theorem 3.1 in Berlekamp: Let I be an m-primary monomial ideal of $\left.S=K X_{1}, \ldots, X_{r}\right]$, with asymptotic degree d, and the number of generators of type X_{i}^{d} is equal to s. Then

$$
\operatorname{reg}-\operatorname{stab}(I) \leq \max \{r,(r-1)[s(d-1)-1]+1\} .
$$

I. Motivation

Higher dimensional case

Similarly,

$$
\operatorname{reg}\left(\overline{I^{n}} M\right)=d n+\bar{e} \forall n \gg 0
$$

Let

$$
\overline{\operatorname{reg}-\operatorname{stab}}(I, M)=\min \left\{n_{0} \mid \operatorname{reg}\left(\overline{I^{n}} M\right)=d n+\bar{e} \quad \forall n \geq n_{0}\right\} .
$$

Theorem 3.13 in ${ }^{\text {a }}$ For any monomial ideal in $S=k\left[X_{1}, \ldots, X_{r}\right]$,

$$
\overline{\operatorname{reg}-\operatorname{stab}}(I) \leq(r+1)(r+2) r^{r} d_{\max }(I)^{2 r^{2}} .
$$

${ }^{\mathrm{a}} \mathrm{H}$, Asymptotic behavior of Integer Programming and the stability of the Castelnuovo-Mumford regularity, Math. Programming; 193(2022), 157-194.

I. Motivation

- It is unclear if the above bound is close to be optimal.
- However, it is no known bound for reg-stab(I) even if I is a monomial ideal.
- In the worst case, even for monomial ideals, e as well as reg-stab(I) should be at least $O\left(d_{\max }(I)^{r-2}\right)$ (Theorem $\left.2.7 \mathrm{in}^{2}\right)$.

[^0]
I. Motivation

Question: Why is it so difficult to study/bound e and reg-stab($I ; M$)?

A way to answer this question is to consider:
Problem 1: Study the behavior of the whole function reg / $n M$!
Equivalently,
Problem 1': Study the behavior of the function

$$
e_{n}:=e_{n}(I, M):=\operatorname{reg} /^{n} M-d n, n \geq 1,
$$

which is called defect sequence of the function reg $/{ }^{n} M^{a}$.
${ }^{a}$ D. Berlekamp, Math. Res. Lett. 19 (2012), 109 - 119.

I. Motivation

+ D. Eisenbud and J. Harris ${ }^{3}$: Assume M is generated in degree 0, $\operatorname{dim} M>0, \operatorname{dim} M / I M=0$, and I is equigenerated.
Then, $\left\{e_{n}\right\}$ is a weakly decreasing sequence of non-negative integers.
-D. Eisenbud and B. Ulrich ${ }^{4}$. Under the same assumption and $H_{R_{+}}^{0}(M)=0$, then $e_{n}-e_{n-1} \leq d$.
${ }^{3}$ Powers of ideals and fibers of morphisms, Math. Res. Lett. 17 (2010), 267 273.
${ }^{4}$ Proc. Amer. Math. Soc. 140 (2012), 1221-232.

I. Motivation

+ If $\operatorname{dim} R / I>0$ and I is equigenerated, the sequence $\left\{e_{n}\right\}$ needs not be weakly decreasing.
- Even if $M=R$ is a polynomial ring, B . Sturmfels ${ }^{5}$ found examples with $e_{1}=0<e_{2}$.
- A. Conca ${ }^{6}$ gave examples with $e_{1}=\cdots=e_{n}=0<e_{n+1}$ for an arbitrary n.

[^1]
I. Motivation

+ If I is not equigenerated (and $M=R$ is a polynomial ring), D. Berlekamp ${ }^{7}$ showed that the sequence $\left\{e_{n}\right\}$ can be initially increasing then later decreasing.

The above partial results suggest that the the sequence $\left\{e_{n}\right\}$ could be arbitrary!

Main results of this talk confirm this guess!

For simplicity: $M=R ; 0 \neq I \subset R$: graded ideal that is not nilpotent. We study 3 functions: reg I^{n-1} / I^{n}, reg R / I^{n} and reg I^{n}. (in both papers ${ }^{8}$ and ${ }^{9}$, the defect sequence of the function reg $I^{n} M$ was studied via the function reg $M / I^{n} M$.)
${ }^{7}$ Math. Res. Lett. 19 (2012), 109-119.
${ }^{8}$ D. Eisenbud and J. Harris, Math. Res. Lett. 17 (2010), 267-273.
${ }^{9}$ D. Eisenbud and B. Ulrich, Proc. Amer. Math. Soc. 140 (2012), $1221 \equiv 232$.

II. Equigenerated ideals in a graded ring

Setting:

R any standard graded ring.
$I \subset R$ graded ideal that is not nilpotent.
By Theorem A, reg $\left(I^{n}\right)=d n+e_{n}$ with $e_{n}=e$ for all $n \gg 0$. Using short exact sequences

$$
\begin{aligned}
& 0 \rightarrow I^{n} \rightarrow I^{n-1} \rightarrow I^{n-1} / I^{n} \rightarrow 0 \\
& 0 \rightarrow I^{n} \rightarrow R \rightarrow R / I^{n} \rightarrow 0
\end{aligned}
$$

one can show
Proposition 2.1. Let I be an arbitrary graded ideal. Then $\operatorname{reg} I^{n-1} / I^{n}=\operatorname{reg} R / I^{n}=d n+e-1$ for $n \gg 1$, where d and e are the slope and intercept of the function reg I^{n} for $n \gg 1$.

II. Equigenerated ideals in a graded ring

From now on, in this Part II, we assume in addition that I is generated by forms of degree d

Definition 2.2. 1) Set $c_{n}=\operatorname{reg} I^{n-1} / I^{n}-d n+1$ for all $n \geq 1$. We call $\left\{c_{n}\right\}$ the defect sequence of the function reg I^{n-1} / I^{n}.
2) Set $a_{n}=\operatorname{reg} R / I^{n}-d n+1$ for all $n \geq 1$. We call $\left\{a_{n}\right\}$ the defect sequence of the function reg R / I^{n}.

Remarks. i) $e_{n} \geq 0$ for all n.
Under the assumption that I is generated by forms of degree d, one can prove:
ii) $a_{n} \geq 0$, and
iii) $c_{n} \geq 0$ if ht $I>0$.
iv) Although $e_{n}=a_{n}=c_{n}=e$ for all $n \gg 0$, they are different for small n.

II. 1. The function reg I^{n-1} / I^{n}

The case $\operatorname{dim} R / I=0$

Proposition 2.1.1. Let I be an equigenerated ideal with $\operatorname{dim} R / I=0$. Then the defect sequence of the function reg I^{n-1} / I^{n} is weakly decreasing.

It turns out that this additional constraint is exactly the condition for a convergent sequence of non-negative integers to be the defect sequence of the function reg I^{n-1} / I^{n} in the case $\operatorname{dim} R / I=0$.

Theorem 2.1.2. A sequence of non-negative integers is the defect sequence of the function reg I^{n-1} / I^{n} for an equigenerated ideal I in a standard graded algebra R with $\operatorname{dim} R / I=0$ if and only it is a weakly decreasing sequence.

II. 1. The function reg I^{n-1} / I^{n}

For the proof we give an explicit construction
Proposition 2.1.3. Let $\left\{c_{n}\right\}_{n \geq 1}$ be any weakly decreasing sequence of positive integers and $d \geq 1$. Let m be the minimum integer such that $c_{n}=c_{m}$ for $n>m+1$. Let $S=k[x, y]$ and

$$
Q=\left(x^{c_{1}}, x^{c_{2}} y^{d}, \ldots, x^{c_{m+1}} y^{d m}\right)
$$

Let $R=S / Q$ and $I=\left(y^{d}, Q\right) / Q$. Then for all $n \geq 1$,

$$
\operatorname{reg} I^{n-1} / I^{n}=d n+c_{n}-2
$$

II. 1. The function reg I^{n-1} / I^{n}

The case $\operatorname{dim} R / I>0$
No constraint other than the convergence on the defect sequence of the function reg I^{n-1} / I^{n}.

Theorem 2.1.4. A sequence of non-negative integers is the defect sequence of the function reg I^{n-1} / I^{n} of an equigenerated graded ideal I in a standard graded algebra R with $\operatorname{dim} R / I \geq 1$ if and only it is a convergent sequence.

Theorem 2.1.4'. A numerical function $f(n)$ is the function reg I^{n-1} / I^{n} of an equigenerated ideal I of positive height in a standard graded algebra R with $\operatorname{dim} R / I \geq 1$ if and only if $f(n)$ is asymptotically linear with slope d and $f(n) \geq d n-1$ for all $n \geq 1$.

II. 1. The function reg I^{n-1} / I^{n}

For the proof we give an explicit construction
Proposition 2.1.5. Let $\left\{c_{n}\right\}_{n \geq 1}$ be any convergent sequence of positive integers and $d \geq 1$. Let m be the minimum integer such that $c_{n}=c_{m}$ for all $n>m+1 . S=k\left[x_{1}, x_{2}, y_{1}, \ldots, y_{m}\right], P=\left(y_{1}, \ldots, y_{m}\right)$ and

$$
Q=\left(x_{1}^{c_{1}}, x_{1} P^{d}, \sum_{i=1}^{m-1}\left(x_{2}^{c_{i+1}}, P^{d}\right) y_{i}^{d i}, x_{2}^{c_{m+1}} y_{m}^{d m}\right)
$$

Let $R=S / Q$ and $I=\left(P^{d}+Q\right) / Q$. Then for all $n \geq 1$,

$$
\operatorname{reg} I^{n-1} / I^{n}=d n+c_{n}-2
$$

II. 2. The function reg R / I^{n}

The case $\operatorname{dim} R / I=0$
By D. Eisenbud and J. Harris (Proposition 1.1 in 10): this defect sequence is weakly decreasing.
A further constraint:
Proposition 2.2.1. Let $\left\{a_{n}\right\}$ be the defect sequence of the function reg R / I^{n} of an ideal I generated by forms of degree d with $\operatorname{dim} R / I=0$. Then $a_{n}-a_{n+1} \leq d$ for all $n \geq 1$.

A complete characterization, which follows from Theorem 2.1.2.
Theorem 2.2.2 A sequence of non-negative integers $\left\{a_{n}\right\}$ is the defect sequence of the function reg R / I^{n} of an ideal I generated by forms of degree d in a standard graded algebra R with $\operatorname{dim} R / I=0$ if and only if it is weakly decreasing and $a_{n}-a_{n+1} \leq d$ for all $n \geq 1$.
${ }^{10}$ Math. Res. Lett. 17 (2010), 267 - 273.

II. 2. The function reg R / I^{n}

The case $\operatorname{dim} R / I>0$

Theorem 2.2.3. The defect sequence of the function reg R / I^{n} of an ideal I generated by forms of degree d with $\operatorname{dim} R / I \geq 1$ can be any convergent sequence of non-negative integers $\left\{a_{n}\right\}$ with the property $a_{n}-a_{n+1} \leq d$ for all $n \geq 1$.

Equivalently:
Theorem 2.2.3'. The function reg R / I^{n} of an ideal I generated by forms of degree d with $\operatorname{dim} R / I \geq 1$ can be any numerical asymptotically linear function of slope d and $f(n) \geq d n-1$ that is weakly increasing.

II. 2. The function reg R / I^{n}

Remark. The above condition is not necessary. Nguyen Dang Hop and $V u$ Quang Thanh (Remark 5.9 in ${ }^{11}$) have constructed an equigenerated ideal / in a polynomial ring R in $m \geq 4$ variables such that reg $I=m+3$ and reg $I^{n}=6 n$ for $n \geq 2$. Therefore, if $m+3>6 n$,

$$
\operatorname{reg} R / I=\operatorname{reg} I-1>\operatorname{reg} I^{n}-1=\operatorname{reg} R / I^{n} .
$$

Proof of Theorem 2.2.3: Explicit construction, which is similar to Proposition 2.1.5.

[^2]
II. 2. The function reg R / I^{n}

Proposition 2.2.4. Let $\left\{c_{n}\right\}_{n \geq 0}$ be any convergent sequence of positive integers and $d \geq 1$. Let m be the minimum integer such that $c_{n}=c_{m}$ for all $n>m$. Let $S=k\left[x_{1}, x_{2}, y_{1}, \ldots, y_{m}\right], P=\left(y_{1}, \ldots, y_{m}\right)$ and

$$
Q=\left(x_{1}^{c_{0}}, x_{1} x_{2}, x_{1} P^{d}, \sum_{i=1}^{m-1}\left(x_{2}^{c_{i}}, P^{d}\right) y_{i}^{d i}, x_{2}^{c_{m}} y_{m}^{d m}\right) .
$$

Let $R=S / Q$ and $I=\left(P^{d}+Q\right) / Q$. Then for all $n \geq 1$,

$$
\operatorname{reg} R / I^{n}=\left\{\begin{array}{r}
\max \left\{d(i+1)+c_{i}-2 \mid i=0, \ldots, n-1\right\} \quad \text { if } n \leq m, \\
\max \left\{d n+c_{m}-2, d(i+1)+c_{i}-2 \mid i=0, \ldots, m-1\right\} \\
\text { if } n>m .
\end{array}\right.
$$

II. 3. The function reg $/^{n}$

The case $\operatorname{dim} R / I=0$

By Eisenbud and Harris (Proposition 1.1 in 12): the defect sequence $\left\{e_{n}\right\}$ is weakly decreasing.
Using construction in Proposition 2.1.3, we can compute reg I^{n}.
Proposition 2.3.1. Let $\left\{c_{n}\right\}_{n \geq 0}$ be any weakly decreasing sequence of positive integers and $d \geq 1$. Let m be the minimum integer such that $c_{n}=c_{m}$ for all $n>m$. Let $S=k[x, y]$ and

$$
Q=\left(x^{c_{0}}, x^{c_{1}} y^{d}, \ldots, x^{c_{m}} y^{d m}\right)
$$

Let $R=S / Q$ and $I=\left(y^{d}, Q\right) / Q$. Then for all $n \geq 0$,

$$
\operatorname{reg} I^{n}= \begin{cases}\max \left\{d(i+1)+c_{i}-2 \mid i=n, \ldots, m-1\right\} & \text { if } n<m \\ d n+c_{n}-1 & \text { if } n \geq m\end{cases}
$$

II. 3. The function reg $/^{n}$

Theorem 2.3.2. The defect sequence of the function reg I^{n} of an ideal I generated by forms of degree d with $\operatorname{dim} R / I=0$ can be any weakly decreasing sequence $\left\{e_{n}\right\}$ of non-negative integers with the property $e_{n}-e_{n+1} \geq d$ for $n<m$, where m is the least integer such that $e_{n}=e_{m}$ for all $n>m$.

Remarks. 1) The above condition is not necessary.
2) The condition $e_{n}-e_{n+1} \geq d$ in Theorem 2.3.2 is opposite to the property $a_{n}-a_{n+1} \leq d$ in Proposition 2.2.1. If $H_{R_{+}}^{0}(R)=0,\left\{e_{n}\right\}$ also has the property $e_{n}-e_{n+1} \leq d$ for all $n \geq 1$ (Proposition 1.4(1) in ${ }^{13}$. We have $H_{R_{+}}^{0}(R) \neq 0$ in the proof of Theorem 2.3.2.
${ }^{13}$ D. Eisenbud and B. Ulrich, Proc. Amer. Math. Soc. 140 (2012), $1221 \equiv 232$.

II. 3. The function reg $/^{n}$

Question (D. Eisenbud and B. Ulrich): Is the sequence $\left\{e_{n}-e_{n+1}\right\}$ always weakly decreasing?

Example. Let $e_{n}=e_{m}+d(m-n)+(m-n)(n+m-1) / 2$ for $n<m$ in Theorem 2.3.2. Then $e_{n}-e_{n+1}=d+n$ for $n<m$. Hence $\left\{e_{n}-e_{n+1}\right\}$ is an increasing sequence for $n<m$. This gives a large class of counter-examples to the above question of D. Eisenbud and B. Ulrich.

II. 4. The function sdeg I^{n}

Definition 2.4.1. Let $\tilde{I}=\bigcup_{t \geq 0} I: R_{+}{ }^{t}$ be the saturation of I. The saturation degree sdeg I of I is defined by

$$
\operatorname{sdeg} I:=a(\tilde{I} / I)+1=a\left(H_{R_{+}}^{0}(R / I)\right)+1
$$

L. Ein, H. T. Hà and R. Lazarsfeld (see Theorem A in ${ }^{14}$) proved that if $R=\mathbb{C}\left[x_{0}, \ldots, x_{r}\right]$ is a polynomial ring over the complex numbers and $I=\left(f_{0}, \ldots, f_{p}\right)$ an ideal generated by forms of degree $d_{0} \geq \cdots \geq d_{p}$ such that the projective scheme cut out by the f_{0}, \ldots, f_{p} is nonsingular, then sdeg $I^{n} \leq d_{0} n+d_{1}+\cdots+d_{r}-r$ for all $n \geq 1$.

[^3]
II. 4. The function sdeg $/^{n}$

Extending the method in ${ }^{15}$ we can show
Theorem 2.4.2. Let I be a graded ideal and d its asymptotic degree. (1) If $H_{R_{+}}^{1}\left(I^{n}\right)=0$ for $n \gg 1$, then sdeg $I^{n}=a\left(H_{R_{+}}^{0}(R)\right)+1$ for $n \gg 1$.
(2) If $H_{R_{+}}^{1}\left(I^{n}\right) \neq 0$ for $n \gg 1$, then sdeg I^{n} is asymptotically a linear function with a positive slope $\delta \leq d$. Moreover, $\delta=d$ if $I_{\leq d}$ is generated by forms of degree d.

[^4]
II. 4. The function sdeg I^{n}

Example. Let $R=k\left[x_{0}, \ldots, x_{r}\right]$ and $I=I Q$, where I is a linear form and $Q=\left(x_{0}^{2}, \ldots, x_{r}^{2}, x_{0} \cdots x_{r}\right)$. Then the projective scheme cut out by the generators of I is nonsingular. By the above result of L . Ein, H . T. Hà and R. Lazarsfeld: sdeg $I^{n} \leq(r+2) n+2 r$ for all $n \geq 1$. On the other hand, the asymptotic degree of I is 3 . This follows from the fact that $I^{2}=I_{\leq 3} I$ and $I_{\leq 3}=I\left(x_{0}^{2}, x_{1}^{2}, \ldots, x_{r}^{2}\right)$.
One can show sdeg $I^{n}=3 n+r-1$ for all $n \geq 1$.
Proposition 2.4.3 Let I be an ideal generated by forms of degree d.
(i) Assume that $H_{R_{+}}^{1}\left(I^{n}\right) \neq 0$ for $n \gg 1$. Then sdeg $I^{n}=d n+b$ for $n \gg 1$ for some $b \geq 0$.
(ii) We set $b_{n}:=\operatorname{sdeg} I^{n}-d n$ if $\tilde{I^{n}} \neq I^{n}$ for all $n \geq 1$ and call $\left\{b_{n}\right\}$ the defect sequence of the function sdeg I^{n}.
Assume that $H_{R_{+}}^{0}(R)=0$. Then $b_{n} \geq 0$ if $\tilde{I}^{n} \neq I^{n}$.

II. 4. The function sdeg I^{n}

Remarks. - If $H_{R_{+}}^{0}(R) \neq 0, b_{n}$ may be a negative number.

- If $\operatorname{dim} R / I=0$, sdeg $I^{n}=\operatorname{reg} R / I^{n}+1$ for all $n \geq 1$. Hence, $\left\{b_{n}\right\}$ is the defect sequence of the function reg R / I^{n}. By Remark after
Definition $2.2, b_{n} \geq 0$ for all $n \geq 1$.
By Theorem 2.2.2, a sequence of non-negative integers $\left\{b_{n}\right\}$ is the defect sequence of the function sdeg R / I^{n} of an ideal I generated by forms of degree d in a standard graded algebra R with $\operatorname{dim} R / I=0$ if and only if it is weakly decreasing and $b_{n}-b_{n+1} \leq d$ for all $n \geq 1$.
- It remains to consider the case $\operatorname{dim} R / I \geq 1$.

Theorem 2.4.4. The defect sequence of the function sdeg I^{n} of an ideal I generated by forms of degree d with $\operatorname{dim} R / I \geq 1$ can be any convergent sequence of non-negative integers $\left\{b_{n}\right\}$ with the property $b_{n}-b_{n+1} \leq d$ for all $n \geq 1$.

Proof: Use the construction in Proposition 2.2.4.

III. Polynomial ideals

Setting

$S=k\left[x_{1}, \ldots, x_{r}\right] ; 0 \neq I \subset S$: homogeneous ideal, which can be generated in different degrees. $\mathfrak{m}=\left(x_{1}, \ldots, x_{s}\right)$.
In this case reg $I^{n}=\operatorname{reg} S / I^{n}+1$, so we only study reg I^{n}.
Small dimension: some restrictions

Proposition 3.1.

(i) If $\operatorname{dim}(S / I) \leq 1$, then for all $n, m \geq 1$ we have $e_{n+m} \leq e_{n}+e_{m}$. In particular, if $e_{n_{0}}=0$ for some $n_{0} \geq 1$, then $e_{n}=0$ for all $n \gg 0$.
(ii) Assume that $\operatorname{dim}(S / I)=0$. For all $m>n \geq 2$, we have $e_{m} /(m-1) \leq e_{n} /(n-1)$.
In particular, if $e_{n_{0}}=0$ for some $n_{0} \geq 1$, then $e_{n}=0$ for all $n \geq n_{0}$.

III. Polynomial ideals

From Proposition 3.1(i), it is clear that not any bounded non-decreasing function can be realized as a defect sequence of the Castelnuovo-Mumford regularity function of an ideal of dimension at most one.
However, we can prove
Theorem 3.2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be any non-increasing function.
Then there is an \mathfrak{m}-primary monomial ideal I such that $e_{n}=f(n)$ for all $n \geq 1$.

The construction is quite complicate.
Step 1: Construct a monomial ideal $/$ such that reg $I^{n}=d n$ (that is $e_{n}=0$) for all $n>n_{0}$; and $\operatorname{reg}\left(I^{n}\right) \geq d n+\omega$ (that is $e_{n}>\omega$) for all $1 \leq n \leq n_{0}$, where d and ω satisfy certain relations $\omega \ll d$.

III. Polynomial ideals

Step 2: Truncate this ideal by a power of \mathfrak{m} and apply Theorem 2.3 in^{16}. Then, we get an ideal J whose defect sequence has an elementary type (called type II): $e_{n}(J)=$ constant for $n \leq n_{0}$ and $e_{n}(J)=0$ for $n>n_{0}$.

III. Polynomial ideals

III. Polynomial ideals

Step 3: Use the so-called fiber product:
Definition 3.3. Assume that x and y are two disjoint sets of variables. Let $I \subset k[x]$ and $J \subset k[y]$ be ideals. We set $\mathfrak{m}:=(x)$, $\mathfrak{n}:=(\mathrm{y})$. The fiber product

$$
I \times_{k} J:=(I, J, \mathfrak{m n}) \subset K[x, y]
$$

III. Polynomial ideals

Lemma 3.4. Assume that $\operatorname{dim} K[x] / I=\operatorname{dim}[y] / J=0$ and the two functions reg I^{n} and reg J^{n} have the same slope d. Assume further, that $e_{n}(I) \leq d-2$ and $e_{n}(J)-2$ for all $n \geq 1$. Then for all $n \geq 1$, we have

$$
\operatorname{reg}\left(\left(I \times_{k} J\right)^{n}\right)=\max \left\{\operatorname{reg}\left(I^{n}\right), \operatorname{reg}\left(J^{n}\right)\right\}
$$

This implies $\operatorname{reg}\left(I \times_{k} J\right)^{n}$ is an asymptotic linear function of slope d and

$$
e_{n}\left(I \times_{k} J\right)=\max \left\{e_{n}(I), e_{n}(J)\right\}
$$

III. Polynomial ideals

Then we can use induction and put together one ideal with non-increasing function defect sequence with another ideal with function defect sequence of type II.

III. Polynomial ideals

Higher dimension

In this case, we can show
Theorem 3.5. Given any sequence of positive numbers
$2 \leq n_{1}<n_{2}<\cdots<n_{k}(k \geq 1)$ such that $n_{i+1}-n_{i} \geq 2$. Then there is a monomial ideal such that its defect sequence of the
Castelnuovo-Mumford regularity - considered as a numerical function - gets local maxima exactly at points of the set $\left\{n_{1}, \ldots, n_{k}\right\}$.

For the proof, we need a monomial ideal whose defect sequence is of type I.

III. Polynomial ideals

Lemma 3.6 (Subsection 4.2 in $\left.^{a}\right)$. Let $d \geq 2$ and $b \leq s(d-1)-d$. Let

$$
J:=\left(X_{1}^{d}, \ldots, X_{s}^{d}\right)+\left(X_{1}, \ldots, X_{s}\right)^{d+b} .
$$

Let

$$
\begin{aligned}
t_{0} & =\left\lfloor\frac{s(d-1)+1}{d+b}\right\rfloor, \\
\delta & =\max \left\{0, s(d-1)+1-t_{0}(d+b)-p\right\}<b .
\end{aligned}
$$

Then the slope of reg J^{n} is d and

$$
e_{n}(J)= \begin{cases}b n & \text { if } n \leq t_{0}, \\ t_{0} b+\delta & \text { if } n>t_{0}\end{cases}
$$

${ }^{2} \mathrm{D}$. Berlekamp, Math. Res. Lett. 19 (2012), 109-119.

III. Polynomial ideals

Then, one can put an ideal in Theorem 3.2 and an ideal in Lemma 3.6 together to get a proof of Theorem 3.5, by using the following technique, which is an immediate consequence of Lemma 3.2 in 17

Lemma 3.7. Given two non-zero ideals $I \subset K[X]$ and $J \subset K[Y]$, where all variables are different. We consider IJ as an ideal of $K[X, Y]$. Then for all $n \geq 1$, we have

$$
e_{n}(I J)=e_{n}(I)+e_{n}(J)
$$

${ }^{17}$ H. and N. D. Tam, Arch. Math. 94 (2010), $327-337$.

III. Polynomial ideals

III. Polynomial ideals

Conjecture. Any convergent sequence of non-negative integers can be realized as a defect sequence of the function Castelnuovo -Mumford regularity.

THANK YOU FOR YOUR ATTENTION!

[^0]: ${ }^{2} \mathrm{H}$., Maximal generating degrees of powers of homogeneous ideals, Acta Math. Vietnam. 47(2022), 19-37

[^1]: ${ }^{5}$ Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000), 282-294.
 ${ }^{6}$ Regularity jumps for powers of ideals in Commutative Algebra with a focus on Geometric and Homological Aspects. Lecture Notes in Pure Applied Mathematics, 244, 21-32. Chapman \& Hall 2006.

[^2]: ${ }^{11}$ Homological Invariants of Powers of Fiber Products, Acta Mathematica Vietnamica 44 (2019), 617-638.

[^3]: ${ }^{14}$ Saturation bounds for smooth varieties, Algebra Number Theory 16 (2022), 1531-1546.

[^4]: ${ }^{15} \mathrm{~N} . \mathrm{V}$. Trung and H-J. Wang, On the asymptotic linearity of Castelnuovo-Mumford regularity, J. Pure Appl. Alg. 201 (2005), 42-48.

