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I. Motivation

R : standard graded algebra over a field k , m := R+,
M : finitely generated graded R-module,
If E is an Artinian graded R-module, we set

a(E ) := sup{t| Et 6= 0}.

The Castelnuovo-Mumford regularity:

regM := max{a(H i
R+

(M)) + i | i ≥ 0}.

regM controls the complexity of the graded structure of M1

1D. Bayer and D. Mumford, What can be computed in algebraic geometry?,
Computational algebraic geometry and commutative algebra (Cortona, 1991),
1-48, Cambridge Univ. Press, 1993.
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I. Motivation

0 6= I ⊂ R : graded ideal that is not nilpotent. Then:
- reg(I n) = reg(R/I n) + 1 for all n� 0;
- If R is a polynomial ring, then the above equality holds for all n ≥ 1.
- In general, reg(I ) is very big compared to the maximal generating
degree dmax(I ) of I . However,

Theorem A abc. There are integers d > 0 and e ≥ 0 such that

reg(I nM) = dn + e ∀n� 0.

aD. Cutkosky, J. Herzog and N.V. Trung, Asymptotic behavior of the
Castelnuovo-Mumford regularity, Compositio Math. 118 (1999), 243 -
261.

bV. Kodiyalam, Asymptotic behaviour of Castelnuovo-Mumford
regularity, Proc. Amer. Math. Soc. 128 (2000), 407 - 411.

cN.V. Trung and H-J. Wang, On the asymptotic linearity of
Castelnuovo-Mumford regularity, J. Pure Appl. Alg. 201 (2005), 42 - 48.
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I. Motivation

Remarks:
- The slope d is called the asymptotic degree of I w.r.t. M . It is the
smallest number d such that I nM = I≤d I

n−1M for large n, where I≤d

denotes the ideal generated by the elements of I having degree at
most d .
- d is one of the generating degrees of I . In particular, d ≤ dmax(I ).
If I is equigenerated, i.e. generated in degree δ, then d = δ.
- The intercept e remains mysterious.

Problem: When does reg I nM become a linear function, or
equivalently, give an upper bound on

reg-stab(I ;M) = min{n0| reg(I nM) = dn + e ∀n ≥ n0}.
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I. Motivation

Hard problem. Few results: even in the case `(R/I ) <∞
* D. Berlekamp, Regularity defect stabilization of powers of an

ideal, Math. Res. Lett. 19 (2012), 109 - 119.

* D. Eisenbud and B. Ulrich, Notes on regularity stabilization,
Proc. Amer. Math. Soc. 140 (2012), 1221 - 1232.

* M. Chardin, Regularity stabilization for the powers of graded
M-primary ideals, Proc. Amer. Math. Soc. 143 (2015), 3343 -
3349.

No explicit bound for reg-stab(I ), except:

Theorem 3.1 in Berlekamp: Let I be an m-primary monomial ideal
of S = KX1, ...,Xr ], with asymptotic degree d, and the number of
generators of type X d

i is equal to s. Then

reg-stab(I ) ≤ max{r , (r − 1)[s(d − 1)− 1] + 1}.
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I. Motivation

Higher dimensional case

Similarly,
reg(I nM) = dn + ē ∀n� 0.

Let

reg-stab(I ,M) = min{n0| reg(I nM) = dn + ē ∀n ≥ n0}.

Theorem 3.13 in a For any monomial ideal in S = k[X1, ...,Xr ],

reg-stab(I ) ≤ (r + 1)(r + 2)r rdmax(I )
2r2 .

aH, Asymptotic behavior of Integer Programming and the stability of
the Castelnuovo-Mumford regularity, Math. Programming; 193(2022),
157 - 194.
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I. Motivation

- It is unclear if the above bound is close to be optimal.

- However, it is no known bound for reg-stab(I ) even if I is a
monomial ideal.

- In the worst case, even for monomial ideals, e as well as reg-stab(I )
should be at least O(dmax(I )r−2)(Theorem 2.7 in2).

2H., Maximal generating degrees of powers of homogeneous ideals, Acta
Math. Vietnam. 47(2022), 19-37
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I. Motivation

Question: Why is it so difficult to study/bound e and
reg-stab(I ;M)?

A way to answer this question is to consider:

Problem 1: Study the behavior of the whole function reg I nM!

Equivalently,

Problem 1’: Study the behavior of the function

en := en(I ,M) := reg I nM − dn, n ≥ 1,

which is called defect sequence of the function reg I nM a.

aD. Berlekamp, Math. Res. Lett. 19 (2012), 109 - 119.
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I. Motivation

+ D. Eisenbud and J. Harris3: Assume M is generated in degree 0,
dimM > 0, dimM/IM = 0, and I is equigenerated.
Then, {en} is a weakly decreasing sequence of non-negative integers.

-D. Eisenbud and B. Ulrich4. Under the same assumption and
H0

R+
(M) = 0, then en − en−1 ≤ d .

3Powers of ideals and fibers of morphisms, Math. Res. Lett. 17 (2010), 267 -
273.

4Proc. Amer. Math. Soc. 140 (2012), 1221–232.
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I. Motivation

+ If dimR/I > 0 and I is equigenerated, the sequence {en} needs
not be weakly decreasing.

- Even if M = R is a polynomial ring, B. Sturmfels5 found examples
with e1 = 0 < e2.

- A. Conca6 gave examples with e1 = · · · = en = 0 < en+1 for an
arbitrary n.

5Four counterexamples in combinatorial algebraic geometry, J. Algebra 230
(2000), 282–294.

6Regularity jumps for powers of ideals in Commutative Algebra with a focus
on Geometric and Homological Aspects. Lecture Notes in Pure Applied
Mathematics, 244, 21–32. Chapman & Hall 2006.
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I. Motivation

+ If I is not equigenerated (and M = R is a polynomial ring), D.
Berlekamp7 showed that the sequence {en} can be initially increasing
then later decreasing.

The above partial results suggest that the the sequence {en} could
be arbitrary!

Main results of this talk confirm this guess!

For simplicity: M = R ; 0 6= I ⊂ R : graded ideal that is not nilpotent.
We study 3 functions: reg I n−1/I n, regR/I n and reg I n. (in both
papers 8 and 9, the defect sequence of the function reg I nM was
studied via the function regM/I nM .)

7Math. Res. Lett. 19 (2012), 109 - 119.
8D. Eisenbud and J. Harris, Math. Res. Lett. 17 (2010), 267 - 273.
9D. Eisenbud and B. Ulrich, Proc. Amer. Math. Soc. 140 (2012), 1221–232.
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II. Equigenerated ideals in a graded ring

Setting:
R any standard graded ring.
I ⊂ R graded ideal that is not nilpotent.
By Theorem A, reg(I n) = dn + en with en = e for all n� 0.
Using short exact sequences

0→ I n → I n−1 → I n−1/I n → 0,
0→ I n → R → R/I n → 0,

one can show

Proposition 2.1. Let I be an arbitrary graded ideal. Then
reg I n−1/I n = regR/I n = dn + e − 1 for n� 1, where d and e are
the slope and intercept of the function reg I n for n� 1.
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II. Equigenerated ideals in a graded ring

From now on, in this Part II, we assume in addition that I is
generated by forms of degree d

Definition 2.2. 1) Set cn = reg I n−1/I n − dn + 1 for all n ≥ 1. We
call {cn} the defect sequence of the function reg I n−1/I n.
2) Set an = regR/I n − dn + 1 for all n ≥ 1. We call {an} the defect
sequence of the function regR/I n.

Remarks. i) en ≥ 0 for all n.
Under the assumption that I is generated by forms of degree d , one
can prove:
ii) an ≥ 0, and
iii) cn ≥ 0 if ht I > 0.
iv) Although en = an = cn = e for all n� 0, they are different for
small n.
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II. 1. The function reg I n−1/I n

The case dimR/I = 0

Proposition 2.1.1. Let I be an equigenerated ideal with
dimR/I = 0. Then the defect sequence of the function reg I n−1/I n is
weakly decreasing.

It turns out that this additional constraint is exactly the condition for
a convergent sequence of non-negative integers to be the defect
sequence of the function reg I n−1/I n in the case dimR/I = 0.

Theorem 2.1.2. A sequence of non-negative integers is the defect
sequence of the function reg I n−1/I n for an equigenerated ideal I in a
standard graded algebra R with dimR/I = 0 if and only it is a weakly
decreasing sequence.
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II. 1. The function reg I n−1/I n

For the proof we give an explicit construction

Proposition 2.1.3. Let {cn}n≥1 be any weakly decreasing sequence
of positive integers and d ≥ 1. Let m be the minimum integer such
that cn = cm for n > m + 1. Let S = k[x , y ] and

Q = (xc1 , xc2yd , ..., xcm+1ydm).

Let R = S/Q and I = (yd ,Q)/Q. Then for all n ≥ 1,

reg I n−1/I n = dn + cn − 2.
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II. 1. The function reg I n−1/I n

The case dimR/I > 0

No constraint other than the convergence on the defect sequence of
the function reg I n−1/I n.

Theorem 2.1.4. A sequence of non-negative integers is the defect
sequence of the function reg I n−1/I n of an equigenerated graded ideal
I in a standard graded algebra R with dimR/I ≥ 1 if and only it is a
convergent sequence.

Theorem 2.1.4’. A numerical function f (n) is the function
reg I n−1/I n of an equigenerated ideal I of positive height in a
standard graded algebra R with dimR/I ≥ 1 if and only if f (n) is
asymptotically linear with slope d and f (n) ≥ dn − 1 for all n ≥ 1.
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II. 1. The function reg I n−1/I n

For the proof we give an explicit construction

Proposition 2.1.5. Let {cn}n≥1 be any convergent sequence of
positive integers and d ≥ 1. Let m be the minimum integer such that
cn = cm for all n > m + 1. S = k[x1, x2, y1, ..., ym], P = (y1, ..., ym)
and

Q =
(
xc11 , x1P

d ,
m−1∑
i=1

(x
ci+1

2 ,Pd)ydi
i , x

cm+1

2 ydm
m

)
.

Let R = S/Q and I = (Pd + Q)/Q. Then for all n ≥ 1,

reg I n−1/I n = dn + cn − 2.
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II. 2. The function regR/I n

The case dimR/I = 0

By D. Eisenbud and J. Harris (Proposition 1.1 in10): this defect
sequence is weakly decreasing.
A further constraint:

Proposition 2.2.1. Let {an} be the defect sequence of the function
regR/I n of an ideal I generated by forms of degree d with
dimR/I = 0. Then an − an+1 ≤ d for all n ≥ 1.

A complete characterization, which follows from Theorem 2.1.2.

Theorem 2.2.2 A sequence of non-negative integers {an} is the
defect sequence of the function regR/I n of an ideal I generated by
forms of degree d in a standard graded algebra R with dimR/I = 0 if
and only if it is weakly decreasing and an − an+1 ≤ d for all n ≥ 1.

10Math. Res. Lett. 17 (2010), 267 - 273.
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II. 2. The function regR/I n

The case dimR/I > 0

Theorem 2.2.3. The defect sequence of the function regR/I n of an
ideal I generated by forms of degree d with dimR/I ≥ 1 can be any
convergent sequence of non-negative integers {an} with the property
an − an+1 ≤ d for all n ≥ 1.

Equivalently:

Theorem 2.2.3’. The function regR/I n of an ideal I generated by
forms of degree d with dimR/I ≥ 1 can be any numerical
asymptotically linear function of slope d and f (n) ≥ dn − 1 that is
weakly increasing.
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II. 2. The function regR/I n

Remark. The above condition is not necessary. Nguyen Dang Hop
and Vu Quang Thanh (Remark 5.9 in 11) have constructed an
equigenerated ideal I in a polynomial ring R in m ≥ 4 variables such
that reg I = m + 3 and reg I n = 6n for n ≥ 2. Therefore, if
m + 3 > 6n,

regR/I = reg I − 1 > reg I n − 1 = regR/I n.

Proof of Theorem 2.2.3: Explicit construction, which is similar to
Proposition 2.1.5.

11Homological Invariants of Powers of Fiber Products, Acta Mathematica
Vietnamica 44 (2019), 617 - 638.
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II. 2. The function regR/I n

Proposition 2.2.4. Let {cn}n≥0 be any convergent sequence of
positive integers and d ≥ 1. Let m be the minimum integer such that
cn = cm for all n > m. Let S = k[x1, x2, y1, ..., ym], P = (y1, ..., ym)
and

Q =
(
xc01 , x1x2, x1P

d ,
m−1∑
i=1

(xci2 ,P
d)ydi

i , x
cm
2 ydm

m

)
.

Let R = S/Q and I = (Pd + Q)/Q. Then for all n ≥ 1,

regR/I n =


max{d(i + 1) + ci − 2| i = 0, ..., n − 1} if n ≤ m,
max{dn + cm − 2, d(i + 1) + ci − 2| i = 0, ...,m − 1}

if n > m.
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II. 3. The function reg I n

The case dimR/I = 0

By Eisenbud and Harris (Proposition 1.1 in12): the defect sequence
{en} is weakly decreasing.
Using construction in Proposition 2.1.3, we can compute reg I n.

Proposition 2.3.1. Let {cn}n≥0 be any weakly decreasing sequence
of positive integers and d ≥ 1. Let m be the minimum integer such
that cn = cm for all n > m. Let S = k[x , y ] and

Q = (xc0 , xc1yd , ..., xcmydm).

Let R = S/Q and I = (yd ,Q)/Q. Then for all n ≥ 0,

reg I n =

{
max

{
d(i + 1) + ci − 2| i = n, ...,m − 1

}
if n < m,

dn + cn − 1 if n ≥ m.
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II. 3. The function reg I n

Theorem 2.3.2. The defect sequence of the function reg I n of an
ideal I generated by forms of degree d with dimR/I = 0 can be any
weakly decreasing sequence {en} of non-negative integers with the
property en − en+1 ≥ d for n < m, where m is the least integer such
that en = em for all n > m.

Remarks. 1) The above condition is not necessary.

2) The condition en − en+1 ≥ d in Theorem 2.3.2 is opposite to the
property an − an+1 ≤ d in Proposition 2.2.1. If H0

R+
(R) = 0, {en}

also has the property en − en+1 ≤ d for all n ≥ 1 (Proposition 1.4(1)
in 13. We have H0

R+
(R) 6= 0 in the proof of Theorem 2.3.2.

13D. Eisenbud and B. Ulrich, Proc. Amer. Math. Soc. 140 (2012), 1221 - 232.
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II. 3. The function reg I n

Question (D. Eisenbud and B. Ulrich): Is the sequence {en − en+1}
always weakly decreasing?

Example. Let en = em + d(m − n) + (m − n)(n + m − 1)/2 for
n < m in Theorem 2.3.2. Then en − en+1 = d + n for n < m. Hence
{en − en+1} is an increasing sequence for n < m. This gives a large
class of counter-examples to the above question of D. Eisenbud and
B. Ulrich.
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II. 4. The function sdeg I n

Definition 2.4.1. Let Ĩ =
⋃

t≥0 I : R+
t be the saturation of I .

The saturation degree sdeg I of I is defined by

sdeg I := a(Ĩ/I ) + 1 = a(H0
R+

(R/I )) + 1.

L. Ein, H. T. Hà and R. Lazarsfeld (see Theorem A in 14) proved that
if R = C[x0, ..., xr ] is a polynomial ring over the complex numbers
and I = (f0, ..., fp) an ideal generated by forms of degree
d0 ≥ · · · ≥ dp such that the projective scheme cut out by the f0, ..., fp
is nonsingular, then sdeg I n ≤ d0n + d1 + · · ·+ dr − r for all n ≥ 1.

14Saturation bounds for smooth varieties, Algebra Number Theory 16 (2022),
1531-1546.
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II. 4. The function sdeg I n

Extending the method in 15 we can show

Theorem 2.4.2. Let I be a graded ideal and d its asymptotic degree.
(1) If H1

R+
(I n) = 0 for n� 1, then sdeg I n = a(H0

R+
(R)) + 1 for

n� 1.
(2) If H1

R+
(I n) 6= 0 for n� 1, then sdeg I n is asymptotically a linear

function with a positive slope δ ≤ d. Moreover, δ = d if I≤d is
generated by forms of degree d.

15N.V. Trung and H-J. Wang, On the asymptotic linearity of
Castelnuovo-Mumford regularity, J. Pure Appl. Alg. 201 (2005), 42 - 48.
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II. 4. The function sdeg I n

Example. Let R = k[x0, ..., xr ] and I = lQ, where l is a linear form
and Q = (x20 , ..., x

2
r , x0 · · · xr ). Then the projective scheme cut out by

the generators of I is nonsingular. By the above result of L. Ein, H.
T. Hà and R. Lazarsfeld: sdeg I n ≤ (r + 2)n + 2r for all n ≥ 1. On
the other hand, the asymptotic degree of I is 3. This follows from
the fact that I 2 = I≤3I and I≤3 = l(x20 , x

2
1 , ..., x

2
r ).

One can show sdeg I n = 3n + r − 1 for all n ≥ 1.

Proposition 2.4.3 Let I be an ideal generated by forms of degree d.

(i) Assume that H1
R+

(I n) 6= 0 for n� 1. Then sdeg I n = dn + b for
n� 1 for some b ≥ 0.

(ii) We set bn := sdeg I n − dn if Ĩ n 6= I n for all n ≥ 1 and call {bn}
the defect sequence of the function sdeg I n.
Assume that H0

R+
(R) = 0. Then bn ≥ 0 if Ĩ n 6= I n.
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II. 4. The function sdeg I n

Remarks. - If H0
R+

(R) 6= 0, bn may be a negative number.
- If dimR/I = 0, sdeg I n = regR/I n + 1 for all n ≥ 1. Hence, {bn} is
the defect sequence of the function regR/I n. By Remark after
Definition 2.2, bn ≥ 0 for all n ≥ 1.
By Theorem 2.2.2, a sequence of non-negative integers {bn} is the
defect sequence of the function sdegR/I n of an ideal I generated by
forms of degree d in a standard graded algebra R with dimR/I = 0 if
and only if it is weakly decreasing and bn − bn+1 ≤ d for all n ≥ 1.
- It remains to consider the case dimR/I ≥ 1.

Theorem 2.4.4. The defect sequence of the function sdeg I n of an
ideal I generated by forms of degree d with dimR/I ≥ 1 can be any
convergent sequence of non-negative integers {bn} with the property
bn − bn+1 ≤ d for all n ≥ 1.

Proof: Use the construction in Proposition 2.2.4.
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III. Polynomial ideals

Setting
S = k[x1, ..., xr ]; 0 6= I ⊂ S : homogeneous ideal, which can be
generated in different degrees. m = (x1, ..., xs).
In this case reg I n = reg S/I n + 1, so we only study reg I n.

Small dimension: some restrictions

Proposition 3.1.
(i) If dim(S/I ) ≤ 1, then for all n,m ≥ 1 we have en+m ≤ en + em.
In particular, if en0 = 0 for some n0 ≥ 1, then en = 0 for all n� 0.

(ii) Assume that dim(S/I ) = 0. For all m > n ≥ 2, we have
em/(m − 1) ≤ en/(n − 1).
In particular, if en0 = 0 for some n0 ≥ 1, then en = 0 for all n ≥ n0.
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III. Polynomial ideals

From Proposition 3.1(i), it is clear that not any bounded
non-decreasing function can be realized as a defect sequence of the
Castelnuovo-Mumford regularity function of an ideal of dimension at
most one.
However, we can prove

Theorem 3.2. Let f : N→ N be any non-increasing function.
Then there is an m-primary monomial ideal I such that en = f (n) for
all n ≥ 1.

The construction is quite complicate.

Step 1: Construct a monomial ideal I such that reg I n = dn (that is
en = 0) for all n > n0; and reg(I n) ≥ dn + ω (that is en > ω) for all
1 ≤ n ≤ n0, where d and ω satisfy certain relations ω � d .
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III. Polynomial ideals

Step 2: Truncate this ideal by a power of m and apply Theorem 2.3
in16. Then, we get an ideal J whose defect sequence has an
elementary type (called type II ): en(J) = constant for n ≤ n0 and
en(J) = 0 for n > n0.

16D. Eisenbud and B. Ulrich, Proc. Amer. Math. Soc. 140 (2012), 1221 - 232.
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III. Polynomial ideals
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III. Polynomial ideals

Step 3: Use the so-called fiber product:

Definition 3.3. Assume that x and y are two disjoint sets of
variables. Let I ⊂ k[x] and J ⊂ k[y] be ideals. We set m := (x),
n := (y). The fiber product

I ×k J := (I , J ,mn) ⊂ K [x, y].
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III. Polynomial ideals

Lemma 3.4. Assume that dimK [x]/I = dim[y]/J = 0 and the two
functions reg I n and reg Jn have the same slope d. Assume further,
that en(I ) ≤ d − 2 and en(J)− 2 for all n ≥ 1. Then for all n ≥ 1,
we have

reg((I ×k J)n) = max{reg(I n), reg(Jn)}.

This implies reg(I ×k J)n is an asymptotic linear function of slope d
and

en(I ×k J) = max{en(I ), en(J)}.
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III. Polynomial ideals

Then we can use induction and put together one ideal with
non-increasing function defect sequence with another ideal with
function defect sequence of type II.
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III. Polynomial ideals

Higher dimension

In this case, we can show

Theorem 3.5. Given any sequence of positive numbers
2 ≤ n1 < n2 < · · · < nk (k ≥ 1) such that ni+1 − ni ≥ 2. Then there
is a monomial ideal such that its defect sequence of the
Castelnuovo-Mumford regularity - considered as a numerical function
- gets local maxima exactly at points of the set {n1, ..., nk}.

For the proof, we need a monomial ideal whose defect sequence is of
type I.
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III. Polynomial ideals

Lemma 3.6 (Subsection 4.2 ina). Let d ≥ 2 and b ≤ s(d − 1)− d.
Let

J := (X d
1 , ...,X

d
s ) + (X1, ...,Xs)

d+b.

Let
t0 = b s(d−1)+1

d+b
c,

δ = max{0, s(d − 1) + 1− t0(d + b)− p} < b.

Then the slope of reg Jn is d and

en(J) =

{
bn if n ≤ t0,

t0b + δ if n > t0.

aD. Berlekamp, Math. Res. Lett. 19 (2012), 109 - 119.

Le Tuan Hoa (IMH) Regularity of powers Workshop on Commutative Algebra and Algebraic Geometry in Prime Characteristics May 8-12, 2023; ICTP, Italia (A joint work with Nguyen Dang Hop and Ngo Viet Trung.) 38 / 41



III. Polynomial ideals

Then, one can put an ideal in Theorem 3.2 and an ideal in Lemma
3.6 together to get a proof of Theorem 3.5, by using the following
technique, which is an immediate consequence of Lemma 3.2 in17

Lemma 3.7. Given two non-zero ideals I ⊂ K [X] and J ⊂ K [Y],
where all variables are different. We consider IJ as an ideal of
K [X,Y]. Then for all n ≥ 1, we have

en(IJ) = en(I ) + en(J).

17H. and N. D. Tam, Arch. Math. 94 (2010), 327 - 337.
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III. Polynomial ideals
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III. Polynomial ideals

Conjecture. Any convergent sequence of non-negative integers can
be realized as a defect sequence of the function Castelnuovo
-Mumford regularity.
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THANK YOU FOR YOUR ATTENTION!
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