Beamline design

Matteo Altissimo
Elettra Sincrotrone Trieste SCpA
S.S. 14, km163.5, Basovizza (TS)

Email: matteo.altissimo@elettra.eu

Goal of beamline design

> Design a photon transport system connecting the light source to the experimental station within a set of specific parameters:

- Photon flux
- Photon energy
- Photon energy bandwidth
- Photon beam spatial size
- ...

Beamline design process

Requirements

Optics
Engineering

Thermal load

Beamline length

- Flux?
- Energy?
- Energy range?
- Energy resolution?
- Spatial size?
- ...

Tools available

- Physics side: Photons' interactions with matter
- Refraction
- Reflection
- Diffraction
- Design side: Simulators
- Ray tracers
- Wave optics
- Finite Elements

Elettra
Sincrotrone

Quick word about simulators

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina, "Recent developments in SHADOW," Review of Scientific Instruments, vol. 63, p. 865, 1992. O. Chubar, P. E. P. O. T. E. Conference, 1998, "Accurate and efficient computation of synchrotron radiation in the near field region," accelconf.web.cern.ch L. Rebuffi, M. Sanchez del Rio, "OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual xperiments", Proc. SPIE 10388 ,

103880S (2017) . DOI: 10.1117/12.2274263
L. Rebuffi, M. Sanchez del Rio, "ShadowOui: A new visual environment for X-ray optics and synchrotron beamline simulations", J. Synchrotron Rad. 23 (2016).

A quick recap

just to set the scene...

Handles available for "manipulating" x-ray photons

Usage

Diffraction
$2 d \cdot \sin \theta=m \lambda$
$d \cong \lambda$
Monochromatization Focussing

Reflection $\sin \phi^{\prime}=\frac{\sin \phi}{n} \cong \frac{\sin \phi}{1-\delta} \quad \begin{array}{ll}\theta_{C} \approx \sqrt{2 \delta} \quad(\mathrm{rad}) & \begin{array}{l}\text { Transport } \\ \theta_{C} \approx 81 \sqrt{\delta} \quad(\text { degrees })\end{array} \\ \begin{array}{l}\text { Divergence corrections } \\ \text { Focussing } \\ \text { Basic energy filtering }\end{array}\end{array}$

$$
\begin{array}{lll}
\text { Refraction } & n=1-\delta+i \beta & \begin{array}{l}
\delta=10^{-1} \div 10^{-6} \\
\beta=10^{-1} \div 10^{-8}
\end{array}
\end{array}
$$

Focussing

Synchrotron beam emitted by source

$$
\gamma=1957 \mathrm{E}_{\mathrm{e}}[\mathrm{GeV}]
$$

$$
\text { For a typical experiment: required beam size } \sim 0.1 \text { to } 10 \text { 's of } \mu \mathrm{m} \text { or more }
$$

A couple of undulator simulations $\mathrm{E}_{\mathrm{e}}=2.4 \mathrm{GeV}, \mathrm{N}=17$, period $=56 \mathrm{~mm}$, first harmonic only

Source Size

Divergence

Beam 20 m from source

M. Altissimo, 16th January 2024

It's even more complicated...

$$
\mathrm{E}_{\mathrm{e}}=2.4 \mathrm{GeV}, \mathrm{~N}=17, \text { period }=56 \mathrm{~mm}
$$

Total flux $\sim 10^{19} \mathrm{ph} / \mathrm{s}$

So what am I going to talk about??

- Mirrors for X-rays
- Basics of diffracting elements
- Monochromators for X-rays
- The thermal load issue

Mirrors for x-rays

Transport
Divergence corrections
Focussing
Basic energy filtering

Some nomenclature

Tangential/Meridian direction

Mirror figures used in synchrotron beamlines

Some numbers

Plane	Re-direction/filtering	$R>100 \mathrm{~km}$
Cylindrical	1D focusing	$R \sim 100$'s m
Spherical	2D focusing	$R \sim 100$'s m
Paraboloid	Infinity to point (or viceversa)	$a \sim \mathrm{~cm}, \mathrm{f} \sim \mathrm{m}$
Elliptical	Point to point focusing	$r \gg r^{`}$
Toroidal	Astigmatic focusing	$R \sim 100 \mathrm{~m}, \rho \sim 10$'s cm

All this with a surface rms roughness $\sim \mathrm{nm}$ or less

A quick look at reflectivities

$$
\theta_{c}=\sqrt{2 \delta} \propto \lambda \sqrt{Z}
$$

Au Reflectivity

Si Reflectivity

The higher the energy, the more grazing the incidence angle ($1 \mathrm{mrad}=0.057^{\circ}, 1^{\circ}=17 \mathrm{mrad}$)

Source for examples

Spatial Dimensions:

$$
\sigma_{x}=48 \mu m \quad \sigma_{z}=1.3 \mu m
$$

FWHM $(X)=105 \mu \mathrm{~m} \operatorname{FWHM}(Z)=3 \mu \mathrm{~m}$

Angular dimensions:

$$
\sigma_{x}^{\prime}=3.8 \mu \mathrm{rad} \quad \sigma_{z}^{\prime}=1.82 \mu \mathrm{rad}
$$

FWHM $\left(X^{\prime}\right)=8.6 \mu \mathrm{rad} \operatorname{FWHM}\left(Z^{\prime}\right)=4.2 \mu \mathrm{rad}$

Plane mirror, $\mathrm{r}=20 \mathrm{~m}, \mathrm{r}^{\prime}=20 \mathrm{~m}, \theta=88^{\circ}$

Spatial Dimensions:

Angular dimensions:

FWHM $\left(X^{\prime}\right)=8.6 \mu \mathrm{rad} \operatorname{FWHM}\left(Z^{\prime}\right)=4.2 \mu \mathrm{rad}$

Toroidal mirror: focussing properties

$\left(\frac{1}{r}+\frac{1}{r^{\prime}}\right) \frac{\cos \theta}{2}=\frac{1}{R} \quad$ Tangential focusing

$$
R>\rho
$$

$\left(\frac{1}{r}+\frac{1}{r^{\prime}}\right) \frac{1}{2 \cos \theta}=\frac{1}{\rho} \quad$ Sagittal focusing

Tangential focus

$$
\begin{aligned}
f_{t} & =\frac{R \cdot \cos \theta}{2} \\
f_{s} & =\frac{\rho}{2 \cos \theta}
\end{aligned}
$$

Condition for a stigmatic image of a point source:

$$
\frac{\rho}{R}=\cos ^{2} \theta
$$

Toroidal mirror, $\mathrm{r}=20 \mathrm{~m}, \mathrm{r}^{\prime}=10 \mathrm{~m}, \theta=88^{\circ}$

$$
\begin{aligned}
& R=\left(\left(\frac{1}{r}+\frac{1}{r^{\prime}}\right) \frac{\cos \theta}{2}\right)^{-1}=382 \mathrm{~m} \rho=\left(\left(\frac{1}{r}+\frac{1}{r^{\prime}}\right) \frac{1}{2 \cos \theta}\right)^{-1}=0.23 \mathrm{~m} \\
& f_{t}=\frac{R \cdot \cos \theta}{2}=6.6 \mathrm{~m} \quad f_{s}=\frac{\rho}{2 \cos \theta}=3.3 \mathrm{~m} \\
& \text { Tangential focus } \\
& \text { Sagittal focus }
\end{aligned}
$$

$\operatorname{FWHM}(X)=333 \mu \mathrm{~m} \operatorname{FWHM}(Z)=1.5 \mu \mathrm{~m}$

Spherical mirrors

Same as toroidal mirrors with:

$$
\begin{array}{ccc}
R=\rho & f_{t}=\frac{R \cdot \cos \theta}{2} \\
\left(\frac{1}{r}+\frac{1}{r^{\prime}}\right) \frac{\cos \theta}{2}=\frac{1}{R} & \left(\frac{1}{r}+\frac{1}{r^{\prime}}\right) \frac{1}{2 \cos \theta}=\frac{1}{R} & f_{s}=\frac{R}{2 \cos \theta}
\end{array}
$$

A stigmatic image is only possible if:

$$
\frac{\rho}{R}=\cos ^{2} \theta=1
$$

i.e. this is possible only for normal incidence!

Paraboloidal mirror

<- To source

$$
Y^{2}=4 \cdot a \cdot X
$$

$$
P\left(X_{0}, Y_{0}\right):
$$

$$
X_{0}=a \cdot \tan ^{2} \theta
$$

$$
Y_{0}=2 a \cdot \tan \theta
$$

$$
f=\frac{a}{\cos ^{2} \theta}
$$

Parabola parameter $a=f \cos ^{2} \theta=0.02435 \mathrm{~m}$

Source image @ 20 mt

FWHM (X) $=860 \mu \mathrm{~m}$ FWHM $(Z)=864 \mu \mathrm{~mm}$
FWHM (X^{\prime})=8.6 $\mu \mathrm{rad} \operatorname{FWHM}\left(Z^{\prime}\right)=4.2 \mu \mathrm{rad}$

Paraboloidal Mirror image

FWHM $(X)=172 \mu \mathrm{~m}$ FWHM $(Z)=83 \mu \mathrm{~m}$
FWHM $\left(X^{\prime}\right)=5.2 \mu \mathrm{rad}$ FWHM $\left(Z^{\prime}\right)=0.1 \mu \mathrm{rad}$

Ellipsoidal mirror

Ellipsoidal mirror, $\mathrm{r}=20 \mathrm{~m}, \mathrm{r}^{\prime}=5 \mathrm{~m}, \theta=88^{\circ}$

$$
\mathrm{a}=12.5 \mathrm{~m}, \mathrm{~b}=0.349 \mathrm{~m}, \mathrm{e}=0.999610
$$

Our source dimensions are: $\operatorname{FWHM}(X)=105 \mu \mathrm{~m} \operatorname{FWHM}(Z)=3 \mu \mathrm{~m}$

$$
M=\frac{r^{\prime}}{r}=0.25
$$

i.e. we expect a focus of $\sim 26 \times 0.75 \mu \mathrm{~m}$ (FWHM)

$\operatorname{FWHM}(X)=26 \mu \mathrm{~m} \operatorname{FWHM}(Z)=0.7 \mu \mathrm{~m}$

WARNING!

All the simulations above are for educational purposes!

- Reflectivity set to 1 , and independent of energy
- Ideal source
- No mirror errors (roughness, figure errors, etc)

Elettra
Sincrotrone
Trieste

http://www.esrf.eu/home/UsersAndScience/Experiments/ CBS/ID09/OpticsHutch/mirror.html

http://www.crystal-scientific.com/ mirror_plano.html
R. Radhakirshnan et al, DOI 10.1149/07711.1255ecst

School on Synchrotron Light Sources and their Applications, ICTP Trieste (remote)

Diffracting elements

Gratings
Crystals
Multilayers
Zone Plates

Monochromatization Focussing

Usage:
 Overwhelmingly for monochromatization

Micro wave	I.R.	Visible	U.V.	Soft X-ray	Hard X-ray

Micro wave	I.R.	Visible	U.V.	Soft X-ray	Hard X-ray

Grating

Diffraction gratings

Artificial periodic structure, with a precisely defined period d.

Grating equation
$\sin \alpha+\sin \beta=L m \lambda$
m is the diffraction order
α and β have opposite signs if on opposite side of the surface normal

Grating resolving power

Angular dispersion of a grating with line density $\mathrm{L}: \quad \Delta \lambda=\frac{s^{\prime} \cos \beta}{L m r^{\prime}}$
Resolving power $\mathrm{R}: \quad R=\frac{E}{\Delta E}=\frac{\lambda}{\Delta \lambda}=\frac{\lambda L m r^{\prime}}{s^{\prime} \cos \beta}$

Crystals

Based on Bragg's law: $\quad 2 d \sin \theta=m \lambda$

Since $\sin \theta \leq 1, \lambda \leq \lambda_{\text {MAX }}\left(E \geq E_{\text {MIN }}\right)=2 \mathrm{~d}$
$\operatorname{Si}(111): d=3.13 \AA\left(E_{\text {Min }} \sim 2 k e V\right) \quad S i(311): d=1.64 \AA\left(E_{\text {MIN }} \sim 3.8 k e V\right)$ $\operatorname{lnSb}(111): d=3.74 \AA\left(E_{\text {MIN }} \sim 1.7 \mathrm{keV}\right)$

Crystals' resolving power

$$
\begin{aligned}
& \frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\Delta \theta \frac{\cos \theta}{\sin \theta} \\
& \text { Angular spread }
\end{aligned}
$$

Where does $\Delta \theta$ come from?
$\Delta \theta_{\text {beam }} \quad$ Angular divergence of the incoming beam
$\omega_{\text {crystal }} \quad \begin{gathered}\text { Intrinsinc width of Bragg reflection, } \\ \text { the Darwin curve }\end{gathered}$

* more on this later...

Multi-layer mirrors

$$
\omega_{s}=\omega_{i}+\omega_{d}
$$

$\mathbf{k}_{\mathrm{s}}=\mathbf{k}_{\mathbf{i}}+\mathbf{k}_{\mathrm{d}}$
But $\omega_{d}=0$, therefore:

$$
\begin{aligned}
& \left|\mathbf{k}_{\mathbf{s}}\right|=\left|\mathbf{k}_{\mathbf{i}}\right|=2 \pi / \lambda \\
& \sin \theta=\frac{k_{d} / 2}{k_{i}}
\end{aligned}
$$

$\lambda=2 d \sin \theta$

D. Attwood, X-Rays and Extreme Ultraviolet Radiation,Cambridge University Press, 2017

Multi-layer mirrors

What if $n_{a}(z)$ is still periodic, but not a simple sinusoid?

Elettra
Sincrotrone
Trieste

Multi-layer mirrors

W/C, d=22.3 A, $\Gamma=0.5, N=100$

Monochromator

The need for collimated illumination

Crystals Energy resolution:

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\Delta \theta \frac{\cos \theta}{\sin \theta}
$$

Same for multilayers
Gratings

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\frac{\cos \beta}{\lambda L m r^{\prime}} \Delta \beta
$$

Undulator

5th Harmonic ($\sim 1 \mathrm{keV}$) $\Delta \mathrm{E}=500 \mathrm{eV}$

The need for collimated illumination

Collimating mirror before monochromator

Mirror calculated setting virtual source distance (r) very far (~100s m)

* more on this later...

Double Crystal Monocromator (DCM)

$$
2 d \sin \theta=m \lambda
$$

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\Delta \theta \frac{\cos \theta}{\sin \theta}
$$

Parallel geometry

All rays accepted by first crystal are accepted also by the second

Second crystal acts merely as a mirror

DCM in parallel configuration

Elettra
Sincrotrone
Trieste

DCM in parallel configuration

Elettra
Sincrotrone
Trieste

DCM in parallel configuration

DCM in parallel configuration

2 X DCM in parallel configuration

Plane grating monochromator

Concept of the plane grating monochromator

Plane grating monochromator

Something to keep in mind: thermal loads!

Source

Spectrum

~ 100's W
~few kW
~0.1-1 kW

From first mono element standpoint: kW in, NOTHING out!

Thermal load issues (besides melting)

Q is the incoming power, D the mirror/crystal thickness

Silicon vs Copper Thermal conductivity

M White et al 2014 Metrologia 51 S245

... finally a couple of examples

TwinMic Beamline @ Elettra

Photon energy: 400 eV to 2 keV X-ray microscopy and microFluorescence

Undulator source $\mathrm{N}=17$
Period $=56 \mathrm{~mm}$
Min gap: 25 mm

Cylindrical mirror
16 m from source
Au coated
$\rho=0.56 \mathrm{~m}$
$\theta=1 \mathrm{deg}$

Toroidal mirror
20 m from source
Au Coated
$\mathrm{R}=211 \mathrm{~m}$
$\rho=0.07 \mathrm{~m}$
$\theta=1 \mathrm{deg}$

Entrance slit
12.6 m from source
$\mathrm{D}=1 \mathrm{~mm}$

PGM with plane pre-mirror 18 m from source
Blazed grating, $\theta_{b}=1.1 \mathrm{deg}$ Au coated
$\mathrm{L}=600 \mathrm{I} / \mathrm{mm}$

Secondary source 22 m from source $5-100 \mu \mathrm{~m}$ diameter

Zone Plate $\mathrm{D}=600 \mu \mathrm{~m}$
Res 50 nm
24 m from source

Experiment
$\sim 24.5 \mathrm{~m}$ from source
Focal spot dia:
100 nm to $1.5 \mu \mathrm{~m}$

Diffraction Beamline @ Elettra

Photon energy: 4 to 21 keV

Cylindrical mirror for vertical collimation
22 m from source
Pt Coated
$\mathrm{R}=14 \mathrm{~km}$
$\theta=0.172 \mathrm{deg}$

Multi-pole wiggler
$\mathrm{N}=54$, 1.5 T mag field
Period $=140 \mathrm{~mm}$
Critical Energy: 5.8keV @ 2.4GeV 5 kW total power @ 140 mA

Toroidal focussing mirror 28 m from source
Sagittally cylindrical, bendable $\mathrm{R}=9 \mathrm{~km}$ (5 km to ∞)
$\rho=0.055 \mathrm{~m}$

Experiment 41.5 m from source Focal spot:
$0.7 \times 0.2 \mathrm{~mm}^{2}$
$\Delta \mathrm{E} / \mathrm{E} \sim 4000$

Double crystal mono
24 m from source
$\mathrm{Si}(111), \omega_{\mathrm{s}}=25 \mu \mathrm{rad} @ 8 \mathrm{keV}$

Thank you!

