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[ Sources of ionizing radiation

e Radioisotopes (o, y, X-rays)
e X-ray Tubes
e Synchrotron radiation
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J Interaction of X-rays with matter

X-rays can interact with the atoms of the material in two different ways:

* Photoelectric effect: Primary X-ray radiation can ionise atoms of the
material. The X-ray is absorbed in this process

e Scattering:

v’ Elastic/Coherent scattering (Rayleigh): no energy loss after collision
with electrons. The Rayleigh effect is present when electrons are
strongly bound (inner atomic electrons)

v" Inelastic/Incoherent scattering (Compton): energy loss after collision
with electrons. The Compton effect is present when electrons are
loosely bound (outer, less bound electrons)

School on Synchrotron Light Sources and their Applications, 15-26 January 2024



] Photoelectric effect

Photoelectric effect: Primary X-ray radiation o0 X-ray Absorption
can ionise atoms of the material to be analysed wGE AL L %
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. X-Ray Fluorescence

Photo-lonization

Incident photon i
of atomic bound

Energy E,

should be adequate electrons
to ionize the atomic (K, L, M)
bound electrons (Photoelectric

- E, 2 inner shell absorption)

binding energy
Electronic
transition and
emission of
Fluorescence element
X-ray emission — characteristic
isisotropic | ™ fluorescence

L o radiation
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1 De-excitation: Fluorescence/Auger
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J Fluorescence vyield

The fluorescence yield is given by the ratio of the emitted fluorescence
photons over the number of the created holes. The competing process is the
emission of Auger electrons as the atom returns to its ground state
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Atomic Number

atomic number, Z

For low Z the Auger electron emission is dominant
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. Emission of characteristic X-rays

e The emission of characteristic
413|112 ) Mudfz - X_ray lines follows allowed
e Npy 4dap ) .
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J X-ray energies

Moseley’s law . Kb/ ko
< 30
(D] L
5 i‘; 25
E=h-A-R-(Z-Db) 2 20(
S 15
h = Planck constant S 10/
R = Rydberg frequency 2 5l
Z = atomic number I
A =3/4forK, 5/36for L, 0 20 40 60 80 100
b=1forK, 7.4 forL, Atomic Number

X-ray spectroscopy within the

~ (7 _1\2 ~ energy range 1+30 keV offers in
Ka Flevl=10.20-(2-1) Ere.xa = 6380 eV principle the possibility to detect

all the periodic table elements

La E[eV]=~1.89- (Z— 7_4)2 pr_La ~ 10520 eV (Z>10) through their K, L or

even M series of emission lines
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J X-ray scattering

Elastic/coherent scattering (Rayleigh):

no energy loss after collision with electrons.
The Rayleigh effect is present when electrons
are strongly bound.

Rayleigh is more intense for high Z (= heavy)
matrices

Inelastic/Incoherent scattering (Compton):
energy loss after collision with electrons. The
Compton effect is present when electrons
are loosely bound.

Compton is more intense for low Z (= light)
matrices
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J Rayleigh scattering

Incident photon
Energy E,

E;=E,: Coherent
(Rayleigh)

It occurs mostly
with inner atomic
electrons
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1 Compton scattering
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J Linear attenuation coefficient u

t /
Attenuation of photons by a thin layer of thickness dt is described by
dl =1 -u-dt

where I is the number of photons per unit area and unit time (photon flux) of
which dI are attenuated while penetrating the layer of a material characterized
by the (total, linear) attenuation coefficient u. This is equivalent to

I=10’e_”.t

I and I, are the photon fluxes behind and in front of the absorber, respectively,
and t is the thickness. u is a function not only of the material
(atomic number Z) but also of the photon energy E
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L Mass attenuation coefficient u,,

H=Hmn" P
the total mass attenuation - —— Photoelectric
coefficient u,, doesn’t depend . Pb ’ - Rayleigh
on the density p of the = O e w el pe— Compton
material. S 10 K Air K-edge S
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absorption and 6, = 0,,, + O;,care 2 Fe ttt e
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Both kinds of scattering contribute Energy (keV)

much less than the photo
absorption to the total u,,

School on Synchrotron Light Sources and their Applications, 15-26 January 2024



L Mass attenuation coefficient u,,

the mass attenuation coefficient of a material that is composed of
several elements, with weight fractions w;,, is

”mzzwi'ﬂrin
i

Use of mass attenuation coefficients suggests replacing the
thickness by the area-related mass m = M/A (mass M per unit area

A) and rewriting the attenuation law as

I=10‘e_um'm

t-p=M/A, in grams/cm?

School on Synchrotron Light Sources and their Applications, 15-26 January 2024



. Penetration and information depth

surface

information
depth

penetration
depth
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. Penetration and information depth

Penetration and information (analytical) depth depend on the energy of the X-
ray and on the matrix:

surface

Low-energy X-ray High-Z matrix
Energy Z( Zeff)

High-energy X-ray

e Surface treatment is extremely important for heavy matrices
* Information thickness is essential for light matrices
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J Influence of sample thickness

MaX | = = = mof == o= o= o = = e e e e = = = "infinitely thick”

T~

no matrix effects
| proportional to d

saturation of X-rays

that leave the sample

Intensity | /

“infinitely thin“

»

thickness d

Increasing the thickness of the sample above the information depth will not
increase the signal but only the scattering of the primary radiation
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1 Analytical depths in different matrices

Different elements exhibit different Information thicknesses (99%),
depending on their characteristic X-ray energy and on the overall matrix

Energy

Graphite
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23,17 keV

14,46 cm

0,70 mm

17,48

6,06

0,31
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5,51 mm
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7,48

4,39

29,80

6,40

2,72

*164,00

5,41

1,62

104,00

2,31

116,00 pm

10,10

1,25

20,00

1,92

0,68

3,70

0,36

0,39

0,83

0,08

0,28

*13,60

0,03

0,18

4,19

E,c = 0.2842

0,01

Eype = 7.112
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] Detectors

* Proportional Counters
e Scintillation Detectors
e Si(Li)

* LEGe

* PIN Diode

* SDD

* CCD, CMOS cameras

e CZT, other
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J Semiconductor detectors

* X-rays produce electron-hole pairs,
whose number is proportional to the
energy of the radiation (average
energy to produce an electron/hole

pair is 3.6eV for Si and 2.9eV for Ge) CC——D ;
/
—

Be window

* Electrons and holes are collected from
the depleted active region to the
electrodes, where they result in a
pulse that can be further amplified
and finally measured

| Au contact

Dead Layer (Ge/Si)

| Active volume (Ge/Si)

* This pulse carries information about
the energy of the original incident
radiation. The number of such pulses
per unit time also gives information
about the intensity of the radiation
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] Silicon Drift Detectors - SDD

The charge is drifted from a large area into a small read-out node with low capacitance,
independent of the active area of the sensor. Thus, the serial noise decreases, and
shorter shaping time can be used. For SDDs faster counting is enabled and higher
leakage current can be accepted, drastically reducing the need for cooling.

anode

field strips

integrated FET §

back contact

* Energy resolution ~ 125 — 140 eV (Mn-Ka)
* Input capability ~ 10® photons/sec

Detector photograph reproduced from
https://www.rayspec.co.uk/x-ray-detectors/silicon-
drift-detectors/xrf/

https://tools.thermofisher.com/content/sfs/bro
chures/TN52342 E_0512M_SiliconDrift_H.pdf
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] Efficiencies of different detectors

Intrinsic Efficiency
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7
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Comparison of different detector’s efficiency from AMPTEK

https://www.amptek.com/products/x-ray-detectors/fastsdd-x-ray-detectorsfor-xrf-eds/fastsdd-silicon-drift-detector
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Transmission

d “Light” elements (Na, Mg, Al, Si)

Vacuum atmosphere or He flushing
is required in the x-rays path
between sample and detector

1.0
0.8
0.6
- - Air 10 mm
04T S - - - Air20mm
. ) ’ He 20 mm
° . /
0.2 + R ’ Be 1/3 mil
- ) S Be 0.5 mil
0.0k - - - - Belmil
1 1 1 1 1 1 1 1
1 2 3 4 5

Energy (keV)

Ceramic sample

14001 50kv 600mA 100s
1200 Sl
K

Helium

No Helium

1000

800

Counts

600

400

200

1 2 3 4
Energy (keV)

The improvement in the intensity of Al-K
and Si-K characteristic X-ray lines is
significant, 22 and 7.3 times respectively
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. Conventional XRF
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1 X-ray optics

C
Refractive index: m = —
Uy

refractive index

IR Visible uv X-rays

n=1-—46 + ilg B = Attenuation term
0 = Phase term
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J X-ray total reflection

\ : Reflectivity ~ 1
Wb\ Cbz 90° 9<§Iec

2
Glassg
sing, 1 sin ¢4
Snell Law : =— = sin = = > n1-9§
o= b2 =" b2> b1

Z: Atomic number

— 1.651 Z g . .
19crit =V26 Yrit(deg) = o— =P %) A: Atorryc mass
p: Density
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J X-ray Standing Wave

Reflect am

beam

Inci

Formation of X-ray Standing Wave
(XSW) at grazing incident/exit angle

Electric Field Modulations above
the surface

The X-ray fluorescence intensity
from the sample depends on the
varying field intensity of the XSW
field within the sample
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] GIXRF and XRR

By varying continuously the grazing
incident angle through and few times
above the critical angle for TR, the
recorded XRF intensity profiles (Grazing
Incidence-XRF analysis) have the
potential to provide information on
structural and compositional properties
of thin films, such as the layer
composition, sequence, thicknesses
and densities, interface roughness, in
depth elemental gradients of matrix
elements or dopants in semiconductors,
characterization of nano-particles
deposited on flat surfaces, etc

A more accurate and robust reconstruction of these thin film properties
requires the synergy or even the simultaneous fitting of GI-XRF with X-ray

reflectometry (XRR) data
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] Total reflection X-ray Fluorescence

TXRF is essentially an energy
dispersive XRF technique
arranged in a special geometry.

Due to this configuration, the
measured spectral background in
TXRF is less than in conventional
XRF. This reduction results in
increased signal to noise ratio.

TXRF is a surface elemental
analysis technique often used for
the ultra-trace analysis of
particles, residues, and
impurities on smooth surfaces.
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(5)1AEA

tional Atomic Energy Agency

The joint IAEA-Elettra
XRF beamline
at Elettra Sincrotrone Trieste

International Atomic Energy Agency
Atoms for Peace

Elettra Sincrotrone Trieste
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1 Optical layout

Synchrotron X-Ray Beam

Front End S$.81 S$.8.2
Source Bending magnet
Flux 101%ph/s (at 5 keV for 2.0 GeV, at 10 keV for 2.4 GeV) (Si 111)
Spot size 250 x 100 (H x V) pm?
Beam divergence < 0.15 mrad (at exit slits)

Werner Jark, Diane Eichert, Lars Luehl, Alessandro Gambitta, Optimisation of a compact optical system for the beam transport at the x-ray fluorescence beamline
at Elettra for experiments with small spots, Proc. SPIE 9207, Advances in X-Ray/EUV Optics and Components IX, 92070G, 2014; doi: 10.1117/12.2063009

School on Synchrotron Light Sources and their Applications, 15-26 January 2024




J The monochromator at XRF

Optics type E range (keV) E resolution (AE)
Si(111) 3.6-14 ~1eVat7keV
InSb(111) 2.0-3.8 ~ leV at 2.2 keV
ML: High E (RuB,C) 4.0-14.0

ML: Medium E (NiC) 1.5-8.0 ~ igoe\e/\fgtllkj\liev
ML: Low E (RuB,C) 0.7-1.8

Werner Jark et al., Proc. SPIE 9207, Advances in X-Ray/EUV Optics and Components IX, 92070G, 2014; doi: 10.1117/12.2063009
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J IAEAXspe endstation

sample transfer - sample transfer

The IAEA end-station is based on a prototype design by Physikalisch - Technische
Bundesanstalt (PTB, Berlin) and Technical University of Berlin (TUB)

Load-Lock
Chamber

Available detectors:

* Diamond detector for |,

» SDD detector for XRF (different variants) and XAS (in
fluorescence geometry)

* Photodiodes for XAS in transmission geometry

* Photodiodes with 100 and 200um slits and SDD for XRR

Andreas G. Karydas et al., J. Synchrotron Rad. (2018). 25, 189-203

Beam Monitor System
(Diamond sensor)

Microscope

SDD Detector

School on Synchrotron Light Sources and their Applications, 15-26 January 2024



1 7-Axis Manipulator

Sample arm

* 3linear stages (X, Y, Z)

e 2 goniometers (Theta, Phi)
Photodiodes arm:

e 1 linear stages (diode)

1 goniometer (2Theta)

 Sample can be moved in various directions/
orientations with respect to the exciting X-
ray beam or with respect to the detectors.

e Ultra Thin Window (UTW) Bruker Silicon
Drift detector (30 mm?, FWHM 131 eV @
Mn-Ka), Si photodiodes

Full step resolution
Linear axes: Diode, X, Y, Z (0.005mm, 0.005mm, 0.0005mm, 0.01mm)
Goniometers: Theta, 2theta, phi (0.001°, 0.001°, 0.005°)
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1 IAEA Coordinated Research Project

Materials Science: Structured materials for
energy storage and conversion technologies

Nanomedicine - Biosensing technologies

Environmental monitoring (air particulate
matter, water)

Biological: Elemental distribution/
speciation on plant organ (leaves, roots,
shoots, seeds, etc.)

Cultural Heritage —preventive conservation

Food products security — Authenticity

Determination of X-Ray Fundamental
Parameters
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Analytical Applications

B Materials Science
B Environmental

M Cultural Heritage
B Biomedicine

M Biology

M Industrial

M Fundamental

1 Food/Agriculture

XRS Techniques

Bl GI-XRF

B GE-XRF

B XRR

B XANES/EXAFS
B TXRF

= XRF

= AD-XRF




J non-UHV compatible samples

20um IF-1 Beryllium

(o) " Luxel Corporation
N »

o,

\ -
. = ’
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J Geometries and techniques

[ 0000 [ [ | 0000 o e
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Standard 45°/45° - XRF micro - XRF
Elemental characterization Mapping

-

X-ray Absorption Spectroscopy
(on hot spots)
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J Grazing angle geometries
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XSW
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Grazing Emission - XRF

Depth profiling
measurements
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E, —]

—>
oo 0o oo 00

Total reflection - XRF

Trace element analysis
Surface contamination

-

X-ray Absorption Spectroscopy
(in TXRF geometry)
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J GIXRF Geometry aspects

1800
1600 |
1400 |
SDD 1200 |
> 1000 |
. Q
Collimators O 800
= 600
O
> 400
.............. “““““““‘ 200
Point source OF
-200 —71r +~ 1 _ r 1 r 1 r 1 *r T ‘* T T T T T 7
-0 8 6 4 -2 0 2 4 6 8 10
2.25mm and 4.7 mm Distance off-detector axis (mm)
collimators
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J SDD analysis modes (UTW/Be+UTW)

X-ray detector efficiency

08l T SLEW
SLEW+Be
> 0.6 |-
(@)
c
Q
‘O
&= 04+
Ll
o
wn 0.2

0.1 1 10
Energy (keV)
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. Elemental XRF sensitivities

10 mins measurement, 2.4 GeV mode

10°F Al-K
HSi-K

Counts

ﬂ

10 ] Ti-K Cr-K

|

JL

Ni-K

ﬁ

Cu-K

..................

10.

b keV

Energy [keV]

Beam dimensions @ 10.5 keV

260 um (H) 110 um(V)

(7))}
5 3 456 7 8 9 10 11 §
O

AXO Dresden

Cr/Al/Ni/Cu/Ti/ Si;N,200 nm,
each layer about 10 ug/cm?

0] (Ni+Cu}L  SHK
| Al-K

(Ti+Cr)-L

%0 05 10 15 20 25
Energy (keV)
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. Elemental sensitivities, Exp. vs MC

Experimental Sensitivities, XMI-MSIM MC calculations

— 10°F 6.75 keV

(\Il s

5 10.5 keV

-kO')

_kC
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X (9\]

@ =

~ (®]

'9 -ko)

(e (-

S 5 >

S 10%F ®m 10.5keV, AP3.3 +Be ER

? e 10.5keV, AP3.3 e

2 B 6.75keV, AP3.3 +Be £

£ ® 6.75keV, AP3.3 3

g 10'3 = 7))

g | s

@ N — Z 01}
()] [ ] ] 1 1 1 1 ] 1 ] ]
n 4 5 6 7 8 9 10 11 12131415

Energy [keV]
Incident energy Eo (keV)

Sensitivities: counts/(s*pA*ng*cm2)
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1 Detection limits from thin sample

Si;N, 200 nm membrane, with 10ug/cm? of Cr/Al/Ni/Cu/Ti

300s, 200nm Si,N,, 5x10ug/cm2, 45/45, Be+AP3.3

: 2
] 300s, 200nm SiyN,, 5x10ug/cm’, 45/45 ~10%F - DL's estimated at "Closest distance"
= 1 2.4 GeV, "15" mm detector-sample NE ®0
O 10*F O
g > | Solid: 2.4 GeV
2 j \5101 3 Dotted: 2.0 GeV
5 0y £ | |
5 — _ . 135keV
2 c 0 7o
3 S10°%
§ 10° g : 12.5 ke\|
E O 10.5 ke
73keV  105keM A f 73 keV e
[ T TR S R S SRR T 1 0_1 I : : L ! L L !

1 2 3 4 5 6 7 8 9
Energy (keV)

1 2 3 4 5 6 7 8 9
Energy (keV)

Detection limits (Al - Cu): 2 - 0.2 ng/cm?
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1 Detector geometry for TXRF

synchrotron

The beam is naturally vertically collimated (0.1-0.2
mrad) and has linear polarization in the orbit plane

entrance slit sample

d_et_ector é

E’ reflector A . .
Good excitation

o No scattering

Poor detection

detector

—_—

synchrotron

reflector

o Poor excitation

detector
a4 o M Noscattering

Good detection

Good excitation

Scattering
entrance slit ’detecmr \ a G OOd d etECt i o n

detector

B
reflector C

sample C. Streli, P. Wobrauschek, F. Meirer and G. Pepponi,
sample Synchrotron radiation induced TXRF, J. Anal. At. Spectrom.,
reflector 2008, 23, 792-798, DOI: 10.1039/b719508¢g
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. GIXRF: C/Ti double layer

Ti/C/Si-wafer

Prepared and 0.010
h terized b Measured: 51.5/7.02 nm
characterizea by ! Densities: 1.8/51.5 glcm’
AXO Dresden 0.008 .
—~ Nominal (XRR): 48.9/6.4 nm
-}
©
Ti-5nm S 0.006 -
K7
C
2 0.004F
=
S
Si Wafer l_L 0.002 |
1.0E+00 - 0.000 F&—, - : T - . - . :
1.0E-01 - 0.0 0.2 0.4 0.6 0.8 1.0
1.0E-02
1.0F-03 Theta (degrees)
1.0E-04
1.0E-05 Fit Nominal
1.0E-06 - .
1.0E-07 - Ti (nm) 7.0 6.4
1.0E-08

0 0.5 1 15
0[°]

2

2.5

3 C (nm) 51.5 48.9
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J W/B,C multilayered (x15) thin film

T T T 1.8
> XRR L
- 10" s GIXRF -1.6
Multilayered [ 14
sample, 2 10°] =
£ 1.2 .~
prepared by 5 g _ =
the Ramanna £ 10”4 02
Center for i 2 . 08 =
2, % 10 + c
Advanced 2 = ALo6s =
Technology, - 10° ] W o4
Indore, India il -
10-6 ; T T T T T T T T T T T T T T _0'2
00 05 10 15 20 25 30 35 40
o ss i Incident angle (Theta) [deg.]
. §§ . 'B,C'/'W'" multilayer
— N
o ~ 1 Layer e Thickness  Roughness Densit
= = =y Periodicity - 3y
s . S 0 Material (nm) (nm) (g/cm?3)
Q
o, B,C 19401 02%01 2.10%0.2
14
400 . : W 2.4+0.2 0.3%+0.1 16.0£0.2
ultilayer medium
00 [ERPTRON B,C 21+0.6 04502 23+0.2

w 3603 055802 155210

0 0.2 0.4 0.6 0.8 1 12
Angle (degree) Sio, 1 2.0+£0.3 0.5%+0.2 2.0+£0.3
Electric Field Intensity (Normalized) good agreement with previous analyses performed at the BL-16 beamline

of Indus Il
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. X-ray Absorption Spectroscopy

XANES: local site symmetry, oxidation state, orbital occupancy
EXAFS: local structure (bond distance, number and type of neighbors)

3-0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 3

: KANES i
transitions to unfilled bound states, As(lI)

2.5 .

nearly bound states, continuum \

Energy shift

20r

@
c -
= - EXAFS 1 =
O 15¢L ~ 50 - 1000 eV after edge i Eﬂ
p— due to transitions to continuum
m -
g 1 T~
o 1.0t .

05 —— .

sov vy by v v by v b v ey vy by vy vy s by g u
94 96 98 100 102 104 106 11850 11870 11890
Energy (keV) eV

Fine structure is affected by energy and density of electronic states and transition probabilities

Extended fine structure presents oscillated pattern due to constructive and destructive interferences of the outgoing
photo-e wave with neighbor atoms.
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. Zn speciation in fractionated APM

9-stage May-
type cascade
impactor

Sampling of size
fractionated

aerosol, down
to 0.07um size
20-3200 L of air

Deposited particles forma *
stripe of 200-500 pum width
on the 20x20 mm? Si wafer

Sample geometry well suited to
SR-TXRF-XANES investigations!

J. Osan, Environmental Physics Department,
Centre for Energy Research, Budapest, Hungary

*Self-absorption correction as described in: Osan J et al.,,
Spectrochim Acta Part B 65 (2010) 1008-1013

1.8

—27ZnCO3 basic
16 1 4 —4ZnS
N —27ZnS04.H20

1.4 - —Fit
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?
o 17
©
D
2 0.8 -
©
g 0.6
o
zZ

0.4 -

0.2 -

0

9700 9720 9740 9760

Energy (eV)

=TT OJ N\

Sgamtse PBke Hpesgtiuin£ady)-6.15%,0.3 um,
Zprceoheait 723WAE)YIn 82§82 g @ 2Q mvm
setifp)

9640 9660 9680

38764 PR 0A ,, AORZNSS 23K LIninnghaass™

Maiirsegucee | Bireltdrpainted wood
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J Aerosols from 3D metal printing
XANES: Elettra XRF and XAFS beamlines

Cr oxidized — oxidation number ~+1.0
No significant amount of Cr®* detected

45— —— Cr aerosol
Powder ]
feeder
g Mn mostly oxidized —
= S C_ Mnmeta  OXidation number ~+2.3
Powder %
fioripledl | E 2o . Feaerosol  Fe glightly oxidized —
g ] - .Fe steel oxidation number ~+0.7
5 1.5+
ST B _ —_Niaerosol  Nj mostly metallic —
05 ] 2 - - -Nisteel oxidation number ~+0.1
Figure courtesy: Attila Nagy, Wigner FK, Budapest, Hungary 0,0- — . —
20 10 0 10 20 30 40 50 60
Relative energy (eV)
Most of emitted aerosol Oxidation number increases with
particles are in the decreasing particle diameter —important
ultrafine range for estimation of health effects

S. Kugler et al., Spectrochim. Acta Part B 2021, 177, 106110
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J Se and Hg in edible mushrooms

Se (ug/ g)

135 22.5
K. Vogel-Mikus 1, P. Kump?, I. Aréon3
120 20.0
1 Biotechnical faculty, University of -
. . . 105 .
Ljubljana, 2Jozef Stefan Institute,
90 15.0
3 University of Nova Gorica
i 75 12.5
60 10.0
See detail
(cross section) 45 7.5
TR Jl 30 5.0
e | ll' 15 25
. . 0 0.0
Stl pe \ 0 500 100(:"%1500 2000 2500 0 500 1000ur1n$00 2000 2500
Porous
underside 45
] Experiment
©'E m—
33 Q L""ﬁ;:":-".' wi X
Mycelium{ 8 1.04 " :’» .-.,. = ..3 :..:."'ﬁ‘a*
30 vt TN .
® . o
. 25 § ;‘"' Hg in fungus (68%)
-4 4
Cap nner 20 © b
N -~ cap E 05-
tissue ‘ll g 1 I i zc>
f 10
I i! I Il Hg in plant (16%)
% 5
Tubes i 0.0+ HgSe (16%)
@ 200/3000 100:2000.4500 12260 12280 12300 12320 12340 12360

E (eV)

Hg is bound to tetra-cysteine proteins (metallothioneins). These proteins are digested by enzyms in
the stomach and Hg is released and absorbed in our body.
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t!

] GI-XANES on Black Glaze

Fe-based decorations of Ancient ceramics manufactured in South Italy

Fe?* >>> - <<< Fe?*
: | :
¢ .
0.4+ o !
1 ‘ -% 1
e 1 Bl Tar13 (459
! (‘) F‘e( ) , Tar-26 (3°)
() ! * : Syr-1 (4°) :
L 031 ! o | @ sy AC
e v Syr-3(3°)
& ! ! Tar-12 (3°)
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0.1 i i W Atlic1 (6%
: L ¥ Aftic2(39)
W Syr-2(6°)
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0f et " e o
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Museum Apulo f.r. ;i INFN-LNS, Catania, Italy
Anonymous (Half IV

cent. b.C.)
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J Resonant inelastic X-ray scattering

E; = emitted photon energy
E. = incident photon energy
Q. = K/L binding energy

E; = Fermi energy

k = photoelectron energy

1,0 4

0,8

0,6

0,4

0,2

RRS cross section [cfig]

0,0
K 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100
Energy [eV]

ES — Ei — QL — EF — k Measured KL-RIXS cross section for Fe (points) and a

non-linear fitting to an expression with the functional

Courtesy of J.J. Leani, CONICET, Argentina form of the theoretical cross section (solid line)
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J Elemental speciation in contaminated

water by TR-RIXS

The toxicity and mobility of metal species varies with

oxidation state and chemical environment

The analyzed samples consisted of droplets dried on silicon

wafers. The solutions consisted of the different compounds

diluted in distilled water (to 1 % by mass concentration).

*  Two chromium compounds, CrCI3 (+l1l), K2CrO4 (+VI),

* Four manganese species MnClI2.(H20) (+Il), KMnO4
(+VI1), Mn(H2P0O2)2 (+llI) and MnO2 (+1V) were studied.

Incident photons energy was set 10 eV below the K-edge
binding energy, i.e. 6529 eV (Mn) and 5979 eV (Cr), under
TXRF conditions.

50 spectra of each sample acquired (5 min each). A PCA

procedure was performed over the selected energies
(RIXS peaks).

J.l. Robledo et al., Anal. Chem. 90, 3886 (2018)

PC 2 (15,30%)

PC 2 (3,8%)
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1 Analysis of gold

Absorption edges of Pt and Au

z 78 79

L1 (keV) 13.88 14.353 .
L2 (keV) 13.273 13734 Pt la: 9.44 keV ]
L3 (keV) 11.564 11.919 ’
Synchrotron XRF spectra of pure (99.99%) i
thick (thickness 25 um) gold samples

N
[
|

W

i JVIA
it "{WW.; A

Eo=11600 eV @Elettra

(Au:65.56%, Cu:25.21%, Ag:9.08%) and vs.

a different certified alloy of similar composition
without Pt

11600 eV > Pt(U_L3)=11564 eV

Courtesy of A.G.Karydas, (National Center for Scientific Research "

samples

Incident energies employed: 11600, 11650, 11700, 11800 eV

Eo elastic
scattering
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Demokritos", Greece)
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()
‘N J/IAEA

International Atomic Energy Agency

Thanks for your attention!

Alessandro Migliori

a.migliori@iaea.orq

https://nucleus-new.iaea.org/sites/nuclear-instrtumentation/Pages/Home.aspx

https://lwww.elettra.trieste.it/lightsources/elettralelettra-beamlines/microfluorescence/x-ray-fluorescence.htmi


mailto:a.migliori@iaea.org
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