
The Arduino platform

Getting started with
Arduino

Prof Wouter Buytaert

Imperial College London

Arduino: a microcontroller ecosystem

Arduino is an open-source hardware and software company, project,

and user community that designs and manufactures single-board

microcontrollers and microcontroller kits for building digital devices.*

(Wikipedia)

Microcontrollers:

• Mini computer

• Everywhere: digital thermometers, microwave ovens, …

• Specialized for specific purposes

* https://en.wikipedia.org/wiki/Arduino

Source: store.arduino.cc

Arduino:

• Democratizing technology

• Easy to use, affordable

• For different people with different levels of experience

• Maker movement

History of Arduino Uno

Source: “One board to rule them all: History of

the Arduino UNO” (blog.arduino.cc)

Arduino Uno WiFi REV2

Source: store.arduino.cc

Arduino Uno

Source: store.arduino.cc (Arduino Uno

REV3)

USB

Arduino Shields

Source: store.arduino.cc

Motor Shield Rev3

Ethernet Shield 2

Arduino IDE

Board selector

Port selector

Tools menu

Get board info

Arduino IDE

Examples

Blink example

File menu

The blink example

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);
 delay(1000);
}

Programming microprocessors: concepts

• Embedded systems
Embedded systems are computational devices built for a specific purpose (as opposed to

general-purpose computers). The are typically smaller, less powerful, and more energy efficient.

A wide range of processor types exist for embedded systems.

• Embedded programming
Embedded systems are often programmed for a specific task. Compiled languages such as C

and C++ are often used because they are fast and versatile, and memory efficient. Often,

embedded processors only support a limited subset of instructions.

• Programming an Arduino board
The original Arduino code is based on the AVR C programming language.

However, it can be extended with C and C++ libraries. Other programming

languages such as MicroPython and CircuitPython are increasingly popular,

especially on boards with more memory.

Programming an Arduino

• The basic structure of an Arduino “sketch”

• Further resources
• https://docs.arduino.cc/software/ide-v1/tutorials/arduino-ide-v1-basics

• Arduino software -> file -> examples

• https://learn.adafruit.com

void setup() {
 // put your setup code here, to run once:

}

void loop() {
 // put your main code here, to run repeatedly:

}

The blink example

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);
 delay(1000);
}

Arduino IDE

Upload button

Output window

Compile button

Arduino IDE

Arduino IDE

Exercise 1:

Modify the “blink” script such that the LED on the board

blinks 5 times per second.

Advanced exercise:

Modify the blink script, such that the LED blinks first long (1s) and then

repeatedly short (100ms). Test the function of the reset button

Serial communication

Arduino has various digital communication interfaces. These are useful to communicate with a

variety of periferal devices, from single sensors to other Arduinos.

It can also communicate to the PC it is connected to via the USB cable. This is useful to get

direct feedback, for example for debugging.

The “serial monitor” interface allows us to communicate with the Arduino, in two directions: we

can ask the Arduino to send communication to the PC, and we can also send communication

from the PC to the Arduino.

Arduino IDE

Exercise 2:

Explore the following sketches available in the examples:

- communications -> ASCIItable.ino

- strings -> CharacterAnalysis.ino

Note: If you open the serial monitor after uploading your sketch, and you do

not see any output, then you may need to push the reset button to restart

the sketch

Data storage

The Arduino UNO has a small amount of storage in its microprocessor. Most of this storage is

used for the sketch and can only be written when the sketch is uploaded.

However, part of this storage can be used by the sketch (read, write). This can be accessed

using as EEPROM memory, using the EEPROM library.

This memory is persistent, i.e. the contents will be saved even if the Arduino is disconnected

from power.

Similar storage capability can be achieved by adding a separate EEPROM chip to your

electronic design (as we will see later).

Exercise 3:

Explore EEPROM storage by means of the following scripts:

- EEPROM -> eeprom.get

- EEPROM -> eeprom.put

Advanced exercise:

Store the names of your group members in the Arduino UNO’s EEPROM, swap the UNO with

another team, and retreive the other team’s names

Exercise 4 (Advanced):

Write your own sketch in which the Arduino executes the following steps:

- Blink the LED 1 second on startup

- Loop forever through the following actions:

- write an integer to the EEPROM

- sleep for 1 minute

	Slide 1: Getting started with Arduino
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

