
11

Introduction to MQTT

Marco Zennaro, PhD

TinyML4D Academic Network Co-Chair

22

All the credit goes to Prof. Pietro Manzoni:

3

A brief introduction to MQTT

4

• REST: Representational State Transfer
• Widely used; based on HTTP
• Lighter version: CoAP (Constrained Application Protocol)

Request/response approach

Server

5

Pub/sub approach: an example

Source: https://zoetrope.io/tech-blog/brief-
practical-introduction-mqtt-protocol-and-its-
application-iot

o Pub/Sub separate a client (or more
clients), who is sending a message
about a specific topic, called
publisher, from another client (or more
clients), who is receiving the
message, called subscriber.

o There is a third component, called
broker, which is known by both the
publisher and subscriber, which
filters all incoming messages and
distributes them accordingly.

https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot
https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot
https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot

6

Pub/sub approach: a growing approach

6

o Various protocols:
§ AMQP, XMPP (was Jabber), … MQTT

https://kafka.apache.orghttps://www.pubnub.com/

7

• A lightweight publish-subscribe protocol that can run on
embedded devices and mobile platforms è http://mqtt.org/
• Low power usage.
• Binary compressed headers
• Maximum message size of 256MB

• not really designed for sending large amounts of data
• better at a high volume of low size messages.

• Documentation sources:
• The MQTT community wiki:

• https://github.com/mqtt/mqtt.github.io/wiki

• A very good tutorial:
• http://www.hivemq.com/mqtt-essentials/

Message Queuing Telemetry Transport

7

http://mqtt.org/
https://github.com/mqtt/mqtt.github.io/wiki
http://www.hivemq.com/mqtt-essentials/

8

• MQTT 3.1.1 is the current version of the protocol.
• Standard document here:

• http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
• October 29th 2014: MQTT was officially approved as OASIS Standard.

• https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt

• MQTT v5.0 is the successor of MQTT 3.1.1
• Current status: Committee Specification 02 (7 March 2019)

• http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html
• Not backward compatible; too many new things are introduced so existing

implementations have to be revisited, for example:
1. More extensibility → user properties
2. Improved error reporting (Reason Code & Reason String)
3. Performance improvements and improved support for small clients

Ø shared subscriptions
Ø topic alias

4. Formalized common patterns → payload format description
5. Improved authentication

Some details about versions

8

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html

9

• mainly of TCP
• There is also the closely related MQTT for Sensor Networks (MQTT-SN) where TCP is replaced by

UDP à TCP stack is too complex for WSN

• websockets can be used, too!
• Websockets allows you to receive MQTT data directly into a web browser.

• Both, TCP & websockets can work on top of “Transport Layer Security (TLS)” (and its predecessor, Secure
Sockets Layer (SSL))

MQTT works on top of…

9

10

Publish/subscribe interactions sequence

10

Publisher SubscriberBROKER

connect

connect ACK

connect

connect ACK

subscribe (topic)

subscribe ACK

publish (topic, data)

publish (topic, data)

11

• MQTT Topics are structured in a hierarchy similar to folders and files in a file system using
the forward slash (/) as a delimiter.

• Allow to create a user friendly and self descriptive naming structures

• Topic names are:
• Case sensitive
• use UTF-8 strings.
• Must consist of at least one character to be valid.

• Except for the $SYS topic there is no default or standard topic structure.

Topics

11

Special $SYS/ topics

12

• Topic subscriptions can have wildcards. These enable nodes to subscribe to groups of
topics that don’t exist yet, allowing greater flexibility in the network’s messaging structure.
• ‘+’ matches anything at a given tree level
• ‘#’ matches a whole sub-tree

• Examples:
• Subscribing to topic house/# covers:

• house/room1/main-light/left/red
• house/room1/alarm
• house/garage/main-light
• house/main-door/lock/upper

• Subscribing to topic house/+/main-light covers:
• house/room1/main-light
• house/room2/main-light
• house/garage/main-light

• but doesn’t cover
• house/room1/side-light
• house/room2/front-light

Topics wildcards

12

13

• Messages are published with a Quality of Service (QoS) level, which specifies delivery
requirements.

• A QoS 0 (“at most once”) message is fire-and-forget.
• For example, a notification from a doorbell may only matter when immediately delivered.

• With QoS 1 (“at least once”), the broker stores messages on disk and retries until clients
have acknowledged their delivery.
• (Possibly with duplicates.) It’s usually worth ensuring error messages are delivered,

even with a delay.
• QoS 2 (“exactly once”) messages have a second acknowledgement round-trip, to ensure

that non-idempotent messages can be delivered exactly once.

Quality of Service (QoS)

13

14

• A retained message is a normal MQTT message with the retained flag set
to true. The broker will store the last retained message and the
corresponding QoS for that topic
• Each client that subscribes to a topic pattern, which matches the topic of

the retained message, will receive the message immediately after
subscribing.

• For each topic only one retained message will be stored by the broker.

• Retained messages can help newly subscribed clients to get a status update
immediately after subscribing to a topic and don’t have to wait until a
publishing clients send the next update.
• In other words, a retained message on a topic is the last known good

value, because it doesn’t have to be the last value, but it certainly is the
last message with the retained flag set to true.

Retained Messages

14

15

• The keep alive functionality assures that the connection is still open and both
broker and client are connected to one another.

• The client specifies a time interval in seconds and communicates it to the
broker during the establishment of the connection.
• The interval is the longest possible period of time which broker and client

can endure without sending a message.
• If the broker doesn’t receive a PINGREQ or any other packet from a

particular client, it will close the connection and send out the last will and
testament message (if the client had specified one).

• Good to Know
• The MQTT client is responsible of setting the right keep alive value.
• The maximum keep alive is 18h 12min 15 sec.
• If the keep alive interval is set to 0, the keep alive mechanism is

deactivated.

MQTT Keep alive

15

http://www.hivemq.com/mqtt-essentials-part-9-last-will-and-testament/
http://www.hivemq.com/mqtt-essentials-part-9-last-will-and-testament/

16

• When clients connect, they can specify an optional “will” message, to be
delivered if they are unexpectedly disconnected from the network.
• (In the absence of other activity, a 2-byte ping message is sent to clients

at a configurable interval.)
• This “last will and testament” can be used to notify other parts of the system

that a node has gone down.

“Will” message

16

17

• MQTT has the option for Transport Layer Security (TLS)
encryption.

• MQTT also provides username/password authentication with the
broker.
• Note that the password is transmitted in clear text. Thus, be sure to use

TLS encryption if you are using authentication.

A few words on security

17

18

MQTT in practice

19

BROKER

Creating a broker

19

20

• The most widely used are:
• http://mosquitto.org/

• man page: https://mosquitto.org/man/mosquitto-8.html
• http://www.hivemq.com/

• The standard trial version only supports 25 connections.

• And also:
• https://www.rabbitmq.com/mqtt.html
• http://activemq.apache.org/mqtt.html

• A quite complete list can be found here:
• https://github.com/mqtt/mqtt.github.io/wiki/servers

Available MQTT brokers

20

http://mosquitto.org/
http://www.hivemq.com/
https://www.rabbitmq.com/mqtt.html
http://activemq.apache.org/mqtt.html
https://github.com/mqtt/mqtt.github.io/wiki/servers

21

Cloud based MQTT brokers: CloudMQTT

21

https://www.cloudmqtt.com/ è based on Mosquitto

https://www.cloudmqtt.com/

22

Cloud based brokers: flespi

22

https://flespi.com/mqtt-broker

https://flespi.com/mqtt-broker

23

Cloud based brokers: flespi

23

https://flespi.io/#/panel/mqttboard

24

• TCP based:
• https://iot.eclipse.org/getting-started/#sandboxes

• Hostname: iot.eclipse.org
• http://test.mosquitto.org/

• Hostname: test.mosquitto.org
• https://www.hivemq.com/mqtt-demo/

• Hostname: broker.hivemq.com
• http://www.mqtt-dashboard.com/

• Ports:
• standard: 1883
• encrypted: 8883 (TLS v1.2, v1.1 or v1.0 with x509 certificates)

• Websockets based:
• broker.mqttdashboard.com port: 8000
• test.mosquitto.org port: 8080
• broker.hivemq.com port: 8000

• https://github.com/mqtt/mqtt.github.io/wiki/public_brokers

Open brokers (“Sandboxes”)

24

https://github.com/mqtt/mqtt.github.io/wiki/public_brokers

25

• It takes only a few seconds to install a Mosquitto broker on a Linux machine.
You need to execute the following steps:

• sudo apt-get update sudo apt-get install mosquitto mosquitto-clients

• To start and stop the broker execution use:

• sudo /etc/init.d/mosquitto start/stop

• Verbose mode:

• sudo mosquitto –v

• To check if the broker is running you can use the command:

• sudo netstat -tanlp | grep 1883

Installing Mosquitto

25

26

BROKER

Creating clients

26

27

MQTT clients: iOS

27

28

MQTT clients: Android

28

29

MQTT clients: Android

29

30

• The Mosquitto broker comes with a couple of useful commands to quickly
publish and subscribe to some topic.

• Their basic syntax is the following.

• mosquitto_sub -h HOSTNAME -t TOPIC
• mosquitto_pub -h HOSTNAME -t TOPIC -m MSG

• More information can be found:
 https://mosquitto.org/man/mosquitto_sub-1.html

https://mosquitto.org/man/mosquitto_pub-1.html

Mosquitto client

30

31

• MQTT Lens: a Google Chrome application, which connects to a MQTT
broker and is able to subscribe and publish to MQTT topics.

• Search for MQTT Lens in Google and install it in Chrome.

MQTT lens

31

32

MQTT lens

32

Click on +

33

MQTT lens

33

Name Broker address Broker port #

Create connection

34

MQTT lens: subscriber

34

Topic name

35

MQTT lens: publisher

35

Topic name

Message

36

• Exercise #1
• Split the class in two: half of the class will publish data using their

smartphones and the other half will subscribe using smartphones or
MQTT software (MQTT Lens, MQTT Explorer or others)

• You must first agree on:
• The broker you will use
• The topic you will use to publish/subscribe

MQTT Lab

36

37

• Exercise #2
• Download “Magicblocks" from the Google Play Store
• Experiment with the app and send data from your phone’s sensors to an

MQTT broker.
• Can you see the data on an MQTT subscriber?

MQTT Lab

37

38

Telegram/Whatsapp Door alarm

Using the gyroscope or the
accelerometer sensor, the Door
alarm will send an alert message
using Telegram/Whatsapp when
the door opens. Use an MQTT-
Telegram/Whatsapp bridge.

39

Thanks

