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O About 30 staff, incl. professional posts, laboratory technicians and
support staff.

O IHS is responsible for the design and implementation of all
activities of the IAEA’s Water Resources Programme.

Objectives: to provide Member States with science-based information and technical skills on
isotope hydrology that will help them to better assess and manage their water resources




Isotope Hydrology at the IAEA

Coordinated Research Projects

Development of new field and lab methods to assess water
in rivers, lakes, and aquifers for drinking, irrigation, and
industrial use.

Global Monitoring Networks

IAEA global isotope monitoring networks for hydrological,
climate, food and environmental data and studies. GNIP
(precipitation) and GNIR (rivers)

Capacity Building and Training.
Data synthesis and publications; teaching and training
materials both in person and online (e-courses).

Technical Cooperation Projects
Provide technical support to TC Dept for equipment,
experts, and training courses both in person and virtually.

Laboratory Support for Member States

Provides direct laboratory support to Member States,
through a variety of mechanisms, including CRPs, TC
projects and training courses.




Guidelines on modelling

Final Report of a Coordinated Research Project
ﬂ IAEA-TECDOC-2022
IEXE) 'AEA-TECDOC-2022 | 978-92-0-119023-9
52 pages | 13 figures | € 22.00 | Date published: 2023

Towards Best Practices in
Isotope-Enabled Hydrological n
Modelling Applications Download PDF (2.17 MB)

Final Raport of a Coordinated Research Prglect

IAEA TECDOC SERIES

®, Get citation details
Eraea

https://www.iaea.org/publications/15290/towards-best-practices-in-isotope-
enabled-hydrological-modelling-applications



National Water Analysis Capacity

Achieving SDG6

Functioning and effective national water laboratories are an essential
component of any resilient social system and underpins the achievement
of SDG6 in a variety of ways including:

e Providing a specific focus for capacity development actions and
activities both scientific and technical

e Allowing countries to generate the necessary data and information
needed to properly manage both surface water and groundwater
resources

e Creating opportunities for innovation in the way in which water is
evaluated and managed

e Supporting the legislative, regulatory and policy frameworks
necessary for effective water governance.

These actions are consistent with the five accelerators of SDG6 that have
been identified - these are finance, governance, innovation, data and
information and capacity development.
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How do isotopes help understand the water cycle? () foo...

IAEA | Programme




Isotope Hydrology

Stable (10, 170, 180, 'H, ?H) and radioactive (*H) water isotopes are powerful
tools to track water molecules throughout the hydrological cycle

e (

Water storage
in ice and snow

Water storage
in oceans

Ground-water storage



GNIP - 60 years

« Started 1960 by the IAEA in cooperation with the WMO, has become the world’s
largest and most comprehensive collection of isotope data in atmospheric
waters.

« ~ 140 K isotope records from ~1100 stations (350 active) in collaboration with

many contributors.
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Isotopes in Precipitation Network
(GNIP) for water and climate

The advent of national isotope
observation networks
increased substantially the
number of GNIP sites.

Research groups begin using Creation of the online
GNIP data to validate Global WISER (Water Isotope
Circulation Models System for Data Analysis,
Visualization and Electronic
Retrieval) database for
easier data dissemination
over the internet



Challenges

» Long-term systematic observations

« Common isotope data base

 Interdisciplinary approach

« Data quality

» High frequency — spatial and
temporal
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Presentation by C. Bataille



Machine learning approaches applied in isotope

data

« Support vector algorithm (SVM)

* Genetic Programming (GP)

* Neural networks

* Long Short-Term Memory (LSTM) -
Improved stream isotope simulations
(Time Series)

« Multiple models combined to Super
ensemble learner

« Random Forest (RF) — spatial
interpolation, high frequency data,
explainable Al

Artificial Intelligence

Intelligentrobot - -
Machine learning
Automatic Linear/Logistic regression

reasoning
K-means

Neutral networks
Random
forest

Visual
perception

Decision

Automatic -
trees Deep learning

programming

Gaussian
mixture

Knowledge model

representation




Time series

LSTM on stream isotopes ML on GNIP data to provide time series
for Europe
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Results outperforming physical-based models and classical statistical methods.

Presentations by A. Smith and D. Nelson



Random forest spatial interpolation

Spatial interpolation RF RF + OK
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Further Opportunities and Limitations

Opportunities

Aid in spatially (and temporally) refining datasets

Gap-fill and extend existing time-series

Use to identify key regions - providing further hydrologic insights
Gain insights into ungauged areas with more consistency
Potential for large-scale models

Limitations and further outlooks

Require robust datasets — availability, quality, and quantity of data limitations
Potential for over-fit of highly uncertain data

Careful use necessary

Predictive capability versus interpretability

Difficult to assess predictive capability beyond the range of training and validation data set (as opposed to
physical models)

Need to hybridize traditional hydrology modelling with ML
Continuation of information gained from machine learning (e.g. hidden states)




We will focus on two main approaches
Explanatory powers of Al

X explain processes and find determinants

Predictive powers of Al

x find determinants and predict processes



Explanatory power of Al model: why lakes are

disappearing?
Lakes are sensitive to climate change
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Explanatory power of Al model: why lakes are
disappearing? How it supports water management?

» Give the priority to water users

* |dentify the evaporation hotspots

* Determine factors that can be "managed”
* Develop lakes restoration strategy



Prediction power of Al model: how catchments response
on flood and drought
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River catchments response on climate

and land use changes differently:

« Fast response — flash floods and
emerging droughts
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Vystavna et al. In review Nature Water



Prediction power of Al model: how catchments response
on flood and drought? How to support water
management?

* |dentify the most responsive catchments (early
warning systems/gauging)

 Manage land use to control your catchment
response

« Determine factors impacting catchment response

« Develop river/catchment restoration strategy



What will we do today?

» Construct and simulate Al explanatory model
» Overview Al prediction model

_> WE WILL GO IN THE FOREST

Random Forest in Water
Sciences (published papers)




RANDOM FOREST

Machine learning algorithm used for classification and regression
Applied as supervised and data-driven machine learning algorithm
(you are training Al on data sets and control tuning of parameters)
Al model performance depends on tuning of parameters and

selected variables (data sets):

() number of trees,
(i) number of possible directions for splitting at each node of each tree
(i) number of examples in each cell, below which the cell is not split



RANDOM FOREST VISUALIZATION
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Variables - PCA

RANDOM FOREST vs. PCA
PCA

Linear and non-linear regression, non- Only linear regression . .. -

Dim2 (19.9%)

parametric e
Needs skills Easier

Needs tuning Doesn’t need tuning

Has explanatory and prediction power Has mainly explanatory power
Needs larger database Can be perform in smaller database
Visualization capacity Visualization capacity

Performance determined by many Performance determined by several
parameters parameters

No overfitting and autocorrelation Autocorrelation




Our tasks

* Download R

* Get R script and the sampled database
* Run R random forest model

* Explain results
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