
 Mapping
Consider an ensemble E ofNXN real
symmetricmatrices and let AEE
Denote a 5A di di the spectrumoff
Definethe empiricalspectral density gben
A as
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salt can be related to a bed observable
related to a Demiltonian for whichthe
matrix entries of A playthe roleof
exchange couplings
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Introduce partition function
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Then
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Noticethatfromthepountofviewotstat.mech.ve

havethat
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where corresponds tothe average
with respectto de Gibbs measure
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Noticethat to calculate salt oneneeds
to evaluate the expectation value X z
For this we only need single site
marginalsPiki of PCI One can usethe
cavitymethod to tryto obtainsimple used
equationsfor single site marginales
Recallthat
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of course we couldhave startedwith a
system with a node jedi this meansrather straightforwardlythat
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Assumethatthe underlying graphstructureof
thematrix A is a tree or someother

underlyingstructurethat graph doesnot contain
short bops.Then
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which isthe so called BettePeters approx
motion Then eitherfor certaintypesof



matrices or withthis approximation we can
unte close equations for single sitemarginals
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Notice that in this case the set ofcavity
equations invokesingle sitemarginalswith
continuous variables So in principle you
need an infinitenumber ofparameters
tofully characterizethem In this case
however one realizesthatthecavitymagnets
have a Gaussian form this form ispreservedunderthe cavityequations Letusthen
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and similarly
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Thentheprevious setofcavity equations
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Onceyouhave the solution tothisset
ofequations numerically or otherwise we



ally
haveobtainthevalues ofAi list N
fromtheother equation
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Once we havethe values of Sili NThen the spectral density can
be evaluated as follows First noticethat
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So the algorithm to estimatethespectral
density f H of a givenmatrixA asthefollowing



I Initialize silk site to

eg random values
2 Take a value of delk and small
value of 2 and introduce 2 d iz

3 Iterate the following setof equations
until convergence
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4 obtain the values of Sil using
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5 Do the operation

Salt IN ImΔi
6 repeatthe processchangingthevalueof
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This will giveneither an approximation
to 5pct or the exactexpression for
a certain ensembles Ʃ ofmatrices

In some cases the setofcavityequations
can be solved explicitly Indeed onside
The ensemble of homogeneous random
regular graphs These are graphs where
The degreeof each wide is the same and
the links between nodes havethe same
value
supposethen homogeneous randomreguler
graphs withweights
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and degree Since these graphs
are isotropic and homogeneousthen
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similarly for this case
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Exercise find the expression for

SAH in this case
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