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We perform the following experiment in a feedback-
controlled two-state system. Our device is a single-electron
box [30,31] (SEB), illustrated in Fig. 1(a), which connects
two metallic islands by a junction, permitting electron
transport between the two by tunneling. We employ two-
island configuration in our box [27,32,33]: one island is
made out of copper, which is a normal metal, and the other
out of aluminum, which is a superconductor. The super-
conductor energy gap in the density of states strongly
suppresses the tunneling rates to observable levels.
Furthermore, as both islands have only capacitive coupling
to the environment, the electric noise to the SEB is
minimal. The SEB is placed in a dilution cryostat, and
the experiments are performed at T ¼ 100" 3 mK. The
two islands have a mutual capacitance CΣ, such that
tunneling electrons change the charge of this capacitor
by elemetary charge −e per electron. The charging energy
of an SEB is

Eðn; ngÞ ¼ ECðn − ngÞ2; ð6Þ

where EC ¼ e2=2CΣ is the energy required to charge the
capacitor by a single electron, and −en is the charge of the
right island, induced by n electrons that have tunneled from
the left island. Our SEB has EC ≈ 111 μeV. Consequently,
charge conservation requires that the charge of the left
island is en. The electron tunneling is controlled by a
nearby gate, accumulating a charge equal to eng ¼ CgVg
to the gate capacitor. The gate voltage Vg is modulated to
drive the SEB with n being the stochastic state that changes
by electron tunneling. The state n naturally favors the
energy minimum given by Eq. (6), but can also change to a
higher energy state due to thermal excitations. The islands
of the SEB are a few μm long, providing a sufficiently small
CΣ at sub-Kelvin temperatures to achieve EC ≫ kBT.
Then the SEB is a two-state system with either n ¼ 0 or
n ¼ 1 if we operate in the range ng ¼ 0…1. A nearby
single electron transistor (SET) monitors n. The measured
trajectories of n then determine the applied work
W ¼

R
dtðdng=dtÞð∂E=∂ngÞ.

An SEB can be driven and monitored to test thermody-
namic relations in a two-state system [34], and has already
been used to verify various fluctuation relations [32,33]. It
can also be operated [27] as a Szilard engine [2], ideally
extracting kBT ln 2 of work per feedback cycle. The steps of
the operation follow the description introduced in Ref. [20].
The initial energies of states n ¼ 0 and n ¼ 1 are equal by
setting ng ¼ 0.5. Then n follows the distribution with equal
probabilities Pð0Þ ¼ Pð1Þ ¼ 1=2. The state n is measured
with the SET, providing an outcome m. As feedback
control, the gate is rapidly driven to ng ¼ 0.5" Δng, where
Δng is a predetermined parameter set to Δng ¼ 0.167
for the present experiment, þ sign is used for m ¼ 1, and
− sign for m ¼ 0. This drive causes the state m to have
lower energy by ΔE ¼ 2ECΔng than the other state.
Finally, ng is slowly brought back to degeneracy
ng ¼ 0.5, extracting net work from concurrent thermal
excitations of n. In this closed cycle, the free energy
difference over the whole cycle is zero, ΔF ¼ 0, and we
only need to consider W.
Let ε be the error rate of the measurement, which is

assumed to be equal for measuring n ¼ 0 and n ¼ 1; we
obtain an incorrect outcome with probability PðnjmÞ ¼ ε
for m ≠ n, while PðnjmÞ ¼ 1 − ε for m ¼ n. If ε ¼ 0, the
measurement is error free and n ¼ m holds. By direct
insertion to Eq. (1), we obtain stochastic mutual informa-
tion Iðn;mÞ ¼ ln ½2ð1 − εÞ' for m ¼ n, and Iðn;mÞ ¼
ln ð2εÞ for m ≠ n. The average of I over all possible n
and m produces the mutual information:

hIi ¼
X

nm

Pðn;mÞIðn;mÞ

¼ ln 2þ ð1 − εÞ lnð1 − εÞ þ ε ln ε; ð7Þ
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FIG. 1 (color online). Device and operation. (a) The single
electron box (SEB), highlighted in blue, is the system under
study. It is monitored by a single electron transistor (SET), whose
current Idet depends on n, the number of excess electrons on the
right island of the SEB. The SEB is controlled by gate voltage Vg.
(b) Single trace histogram of detector signal for states n ¼ 0
(peaks to the left) and n ¼ 1 (peaks to the right) with filter cutoff
frequencies 50 (black), 100 (green), 300 (yellow), and 1000 Hz
(red), in the order of decreasing maxima. (c) A full trace of the
feedback control. Idet shows the measured occupation in the SEB.
(d) Energy diagrams of the process. The rapid feedback (left)
extracts work by lowering the energy. During the return back to
degeneracy (middle), net work is extracted from the thermal
excitations of n entering the higher energy state. If the rapid
feedback were performed incorrectly (right), excess work equal
toΔEwould be applied to add energy to the system. The return to
degeneracy would again follow the behavior of middle panel.
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box [30,31] (SEB), illustrated in Fig. 1(a), which connects
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transport between the two by tunneling. We employ two-
island configuration in our box [27,32,33]: one island is
made out of copper, which is a normal metal, and the other
out of aluminum, which is a superconductor. The super-
conductor energy gap in the density of states strongly
suppresses the tunneling rates to observable levels.
Furthermore, as both islands have only capacitive coupling
to the environment, the electric noise to the SEB is
minimal. The SEB is placed in a dilution cryostat, and
the experiments are performed at T ¼ 100" 3 mK. The
two islands have a mutual capacitance CΣ, such that
tunneling electrons change the charge of this capacitor
by elemetary charge −e per electron. The charging energy
of an SEB is

Eðn; ngÞ ¼ ECðn − ngÞ2; ð6Þ

where EC ¼ e2=2CΣ is the energy required to charge the
capacitor by a single electron, and −en is the charge of the
right island, induced by n electrons that have tunneled from
the left island. Our SEB has EC ≈ 111 μeV. Consequently,
charge conservation requires that the charge of the left
island is en. The electron tunneling is controlled by a
nearby gate, accumulating a charge equal to eng ¼ CgVg
to the gate capacitor. The gate voltage Vg is modulated to
drive the SEB with n being the stochastic state that changes
by electron tunneling. The state n naturally favors the
energy minimum given by Eq. (6), but can also change to a
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CΣ at sub-Kelvin temperatures to achieve EC ≫ kBT.
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difference over the whole cycle is zero, ΔF ¼ 0, and we
only need to consider W.
Let ε be the error rate of the measurement, which is
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electron box (SEB), highlighted in blue, is the system under
study. It is monitored by a single electron transistor (SET), whose
current Idet depends on n, the number of excess electrons on the
right island of the SEB. The SEB is controlled by gate voltage Vg.
(b) Single trace histogram of detector signal for states n ¼ 0
(peaks to the left) and n ¼ 1 (peaks to the right) with filter cutoff
frequencies 50 (black), 100 (green), 300 (yellow), and 1000 Hz
(red), in the order of decreasing maxima. (c) A full trace of the
feedback control. Idet shows the measured occupation in the SEB.
(d) Energy diagrams of the process. The rapid feedback (left)
extracts work by lowering the energy. During the return back to
degeneracy (middle), net work is extracted from the thermal
excitations of n entering the higher energy state. If the rapid
feedback were performed incorrectly (right), excess work equal
toΔEwould be applied to add energy to the system. The return to
degeneracy would again follow the behavior of middle panel.
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Figure 2 | Experimental set-up29,30. a, The particle was pinned at a single point of the top glass surface and exhibited rotational Brownian motion. To
impose a tilted periodic potential on the particle, an elliptically rotating electric field (blue and pink curves) was induced (not to scale; see Methods and
Supplementary Information for details). b, Typical potentials with opposite phases to be switched in the feedback control. The particle experienced a tilted
periodic potential with a period of 180�. The height and slope were 3.05±0.03 kBT and 1.13±0.06 kBT/360� (mean±S.E., seven particles), respectively.
c, Feedback control. At time t= 0, the particle’s angular position is measured. If the particle is observed in the angular region indicated by ‘S’, we switch the
potential at t= " by inverting the phase of the potential (right). Otherwise, we do nothing (left). At t= ⌧ , the next cycle starts. The location of region S is
altered by the switching. The potential wells correspond to the steps of the spiral stairs in Fig. 1. The switching of potentials corresponds to the placement
of the block.

of free energy or work1. In other words, the second law is
generalized17 as follows:

h1F �W i  kBTI (1)

Here I is the mutual information content obtained by
measurements6,18 (see Methods). So far, the idea of a simple
thermal rectification by feedback control has found applications
such as the reduction of thermal noise15 and the rectification of
an atomic current at low temperature13. On the other hand, the
Szilárd-type Maxwell demon enables us to evaluate both the input
(used information content) and the output (obtained energy) of
the feedback control and relate them operationally. Therefore,
it has provided an ideal test-ground of information-to-energy
conversion and played the crucial role in the foundation of
thermodynamics. However, its experimental realization has been
elusive. In this experiment, we develop a newmethod to evaluate the
information contents and thermodynamic quantities of feedback
systems and demonstrate the Szilárd-type information-to-energy
conversion for the first time using a colloidal particle on a
spiral-staircase-like potential.

A dimeric particle comprising polystyrene beads (diameter =
287 nm) was attached to the top glass surface of a chamber filled
with a buffer solution (Fig. 2a). The particle was pinned at a
single point by a linker molecule; it exhibited rotational Brownian
motion (Supplementary Fig. S2). By using quadrant electrodes
imprinted on the bottom glass plate, we imposed 1MHz electric
fields to simultaneously create periodic potentials and constant
torque on the particle along the angle of rotation. By using this
new method, a tilted periodic potential with an ideal sinusoidal
shape for the particle can be achieved, which is a realization of
the spiral-staircase-like potential mentioned above (Fig. 2b, see also

Supplementary Information). A feedback control was carried out
under a microscope by constructing a real-time feedback system
including video capture, image analysis, potential modulation and
data storage.We repeated the following feedback cycle with a period
of ⌧ =44ms and aminimum feedback delay of 1.1ms, as illustrated
in Fig. 2c. At t = 0, the particle’s angular position is measured.
If the particle is observed at the angular region indicated as ‘S’,
the potential is changed to that with an opposite phase at t = ";
otherwise, no action is taken. At t = ⌧ , the next cycle begins with the
measurement of the angular position. Region S was chosen for its
energy advantage; in region S, the potential energy before switching
is always higher than that after switching. In the case of small ",
the particle is expected to be at rest around region S just before
the switching at t = " and then jump to the rightward well of the
switched potential after the switching. On the other hand, for large
", the particle falls down in the well away from region S before the
switching. In this case, with a large probability, the particle jumps
down to the leftward well of the switched potential after the switch-
ing. In this manner, the feedback delay " regulates the efficiency of
the feedback control. Note that, as ⌧ = 44 ms is sufficiently larger
than the relaxation time in each well (⇠10ms) and smaller than the
typical time to jump to neighbour wells (⇠1 s), each feedback cycle
is supposed to be a transition between equilibrium states.

In Fig. 3a, typical trajectories with the feedback control are
shown. The trajectories are stepwise with a step size of 90�, which
reflects the potential profile (Fig. 3b). We find that for small " the
particle rotates unidirectionally while climbing up the potential,
whereas for large " the particle goes down along the gradient. The
rotation rate decreasesmonotonicallywith ", as expected (Fig. 3c).

We then focused on the energetics during a cycle. In Fig. 3d, we
show the difference between the obtained free energy 1F and the
work done on the particle by the switching, W , which is averaged
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measurements6,18 (see Methods). So far, the idea of a simple
thermal rectification by feedback control has found applications
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systems and demonstrate the Szilárd-type information-to-energy
conversion for the first time using a colloidal particle on a
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287 nm) was attached to the top glass surface of a chamber filled
with a buffer solution (Fig. 2a). The particle was pinned at a
single point by a linker molecule; it exhibited rotational Brownian
motion (Supplementary Fig. S2). By using quadrant electrodes
imprinted on the bottom glass plate, we imposed 1MHz electric
fields to simultaneously create periodic potentials and constant
torque on the particle along the angle of rotation. By using this
new method, a tilted periodic potential with an ideal sinusoidal
shape for the particle can be achieved, which is a realization of
the spiral-staircase-like potential mentioned above (Fig. 2b, see also
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under a microscope by constructing a real-time feedback system
including video capture, image analysis, potential modulation and
data storage.We repeated the following feedback cycle with a period
of ⌧ =44ms and aminimum feedback delay of 1.1ms, as illustrated
in Fig. 2c. At t = 0, the particle’s angular position is measured.
If the particle is observed at the angular region indicated as ‘S’,
the potential is changed to that with an opposite phase at t = ";
otherwise, no action is taken. At t = ⌧ , the next cycle begins with the
measurement of the angular position. Region S was chosen for its
energy advantage; in region S, the potential energy before switching
is always higher than that after switching. In the case of small ",
the particle is expected to be at rest around region S just before
the switching at t = " and then jump to the rightward well of the
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", the particle falls down in the well away from region S before the
switching. In this case, with a large probability, the particle jumps
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typical time to jump to neighbour wells (⇠1 s), each feedback cycle
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the center of the fixed (F ) and moving (M) trap are
in the same position along x axis, the optical potential
is quadratic with sti�ness equal to the sum of the sti�-
nesses of both traps. When the center of the moving trap
separates from the center of the fixed trap with velocity
vtrap, the optical potential changes as follows: First, the
potential remains quadratic with an equilibrium position
that moves with velocity vtrap/2. Secondly, a barrier is
created in an intermediate position between the trap cen-
ters and the potential becomes bistable. For some time,
the bead can make Kramers transitions between the two
equilibrium positions of the potential. Third, the height
of the barrier is increased until the bead cannot jump be-
tween the two equilibrium positions of the potential. In
this situation, the phase space that the bead can explore
has been reduced and therefore the symmetry is broken.

We focus only on the symmetry breaking by analyzing
the dynamics of the bead from the moment when the bar-
rier starts to appear until the barrier is large enough such
that Kramers transitions are not observed. Our experi-
mental protocol, which is formed by four di�erent steps,
is illustrated in Fig. ??: In the first step, the two traps
are initially held fixed for ⌧1 = 0.5s with their centers
separated by Lini = 910nm. In the second step, one of
the traps is moved along the x�axis at constant veloc-
ity vtrap = 100nm/s during ⌧2 = 2s. In the third step,
the traps are not moved for ⌧3 = 0.5s with their centers
separated by Lfin = 1110nm. The fourth step consists
on moving the trap from Lfin to its initial position Lini

with �vtrap. The total time of the protocol is ⌧ = 5s. By
repeating this protocol cyclically, we can study both the
symmetry breaking (1 � 2 � 3 steps of the protocol)
and the symmetry restore (3 � 4 � 1 steps). When we
implement the symmetry breaking protocol (1 � 2 � 3)
the bead can end in two di�erent equilibrium positions,
one is closer to the fixed trap and the other is closed to the
final position of the center of the moving trap. We call F
realizations those where the bead ends closer to the fixed
trap and M realizations the others. We are able to track
the position of the bead X(t) with subnanometer preci-
sion with a time acquisition frequency of facq = 1kHz. In
Fig. 3b, we plot the average position of the bead of both
F and M realizations as a function of time, hX(t)iF,M,
which is calculated as an ensemble average over F and
M trajectories, respectively. In order to have good statis-
tics, we repeated the experimental protocol cyclically for
2400s. We observe that the average position of F and
M realizations coincide in the beginning of the proto-
col, where the velocity of the average position is around
vtrap/2. After t = 2s, the bead starts to make Kramers
transitions between two equilibrium positions. When the
3rd step of the protocol is finished, no Kramers transi-
tions are observed and the bead does not jump between
two equilibrium positions.

We can measure the probability density function of the
position of the bead to be in the position x at time t dur-
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FIG. 3: Experimental protocol of symmetry breaking and
symmetry restore. a. scheme of the experiment: a trap is
held fixed with its center in x = 0 and a second trap is moved
at constant velocity vtrap along the x�axis. The position of
the bead x(t) is monitored with sub-nanometer precision. b.
Position of centers of the two optical tweezers as a function
of time during the experimental protocol. The center of the
fixed trap F (blue dotted line) stays in x = 0 and the center
of the moving trap M moves as indicated in red dotted line.
The symmetry breaking experiment can be implemented with
the cycle formed by the subprocesses 1 ! 2 ! 3. The average
position of the bead after implementing the protocol cyclically
during t = 2400 is indicated in blue when the bead chooses the
F trap and in red when it chooses the M trap. c. Empirical
potential U(x, t) = � ln �(x, t) measured with �(x, t) obtained
from the statistics of trajectories of the bead during t = 2400s.

ing the protocol. We define by ⇢X(x, t) the probability
that a trajectory of the bead X(t) lies at time t within
a certain range close to x, between x � �x and x + �x,
where we used �x = 20nm (see Methods). We can define
a potential from the statistics of the trajectories, i.e. a
trajectory potential as follows U(x, t) = �kT ln ⇢X(x, t).
This potential is equivalent to the physical potential V

minus the free energy di�erence �F in the case in which
the protocol is done very slowly, and the probability den-
sity obtained from sampling the position during the pro-
tocol is similar to the equilibrium probability distribution
at time t, i.e. when ⇢X(x, t) � ⇢eq(x, t). In that case
U(x, t) � Ueq(x, t) = � ln ⇢eq(x, t) = V (x, t) � F (t). In
this experiment there are two characteristic time scales.
First, the relaxation time of the bead in a single trap is
given by ⌧r = �/� which in our experiment is ⌧r = ....
Second, the Kramers time ⌧K measures the average time
that the bead needs to jump between two equilibrium
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Figure 1 | Experimental protocol of symmetry breaking and symmetry
restoration. a, Positions of the fixed (F) trap (blue dashed line) and moving
(M) trap (red dashed line) as functions of time during the protocol.
Ensemble average position of the trapped bead after implementing the
protocol cyclically for t=2,400s over F trajectories (blue solid line) and M
trajectories (red solid line). b, Spatial–temporal mapping of the potential
U(x, t) obtained from the statistics of trajectories of the bead for t=2,400s
in the presence of an external force such that pF =0.8. The colour bar on
the right indicates the depth of the potential energy (in units of kT). A
single trajectory of the bead when it chooses the M trap is also plotted
(white line).

Owing to the presence of inherited electrical charges at the
surface of the bead, we can bias the motion of the bead towards the
M or F trap by applying a voltage to electrodes inserted in the fluid
chamber18 (Supplementary Section II).

The protocol can be considered quasistatic for velocities around
100 nm s�1 or lower, for which the heat dissipation due to friction
force is of the order of � v2

trap ⇡ 10�22 J s�1
⇡ 0.02 kT s�1, where

� =6⇡R⌘ is the friction coe�cient, R= 0.5 µm is the radius of
the bead, and ⌘ = 8.9⇥ 10�4 Pa s is the dynamic viscosity of water

at 25 �C. We have implemented two quasistatic protocols with
vtrap =100nm s�1, ⌧2 =2s, and vtrap =36.36nm s�1, ⌧2 =5.5s.

During step 2, Kramers transitions19 trigger the SB. This can be
seen clearly in the trajectory of the bead presented in the bottom
panel of Fig. 1. At the end of the SB protocol (steps 1–2–3),
Kramers transitions are not observable, and one can unambiguously
distinguish two final meso-states for the bead position: the particle
either stays at the F trap (F trajectories) or moves with the M trap
(M trajectories). In the top panel of Fig. 1, we show the ensemble
averages of the position of the bead calculated over F (blue curve)
and M (red curve) trajectories.

The potential U (x , t) along the protocol (bottom panel in
Fig. 1) was obtained from the empirical probability density function
(PDF) calculated combining data from both the SB and the SR.
In the SB, the potential changes smoothly from monostable to
bistable, with an energy barrier that increases with time. The
Kramers first-passage time from the F to the M trap, ⌧ F!M

K ,
calculated from the potential shown in Fig. 1 and assuming one-
dimensional motion, increases with time smoothly from ⌧min = 0 s
to ⌧max =5.7⇥105 s=6.62days. For the twoquasistatic protocols, the
total duration of the process is of the order of seconds. Consequently,
ergodicity is e�ectively broken because the particle does not have
enough time to jump from the F to the M trap at the end of the
process (Supplementary Section V).

From the energy landscape U (x , t), we were able to measure
the heat or energy transfer from the thermal reservoir to the
Brownian particle for individual trajectories20,21 and for di�erent
values of the external force and therefore of the probability of
choice pi (Methods and Supplementary Section III). The average
conformational entropy production over the M and F realizations
for the SB and SR is calculated from the heat and the Shannon
entropy, using equation (2), and plotted in Fig. 2 as a function
of ln pi for the SB (Fig. 2a) and ln p̃i for the SR (Fig. 2b). These
figures are the main result of the paper. The experiment confirms
the dependence of the entropy on the probability of adopting a
given instance given by equation (2). In the case of the SB, the
negative conformational entropy production is clearly observed
and the theoretical dependence is reproduced, except for very low
probabilities pi � e�2 '0.05. We have included error bars calculated
using the statistical dispersion of the heat over a large number
of cycles. The error in the empirical potential U (x , t) and in the
Shannon entropy of the initial and final states, however, has not
been taken into account and could be significant for small pi,
because the number of data points is low. This lack of statistics
could explain the discrepancy between the experimental result and
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Figure 2 | Energetics of symmetry breaking and symmetry restoration. a, Ensemble average conformational entropy production in the symmetry breaking
(SB), hSprodi

(SB)
i (in units of k) as a function of the probability pi of adopting instance i= fixed (F), moving (M). b, Ensemble average conformational entropy

production in the symmetry restoration (SR), hSprodi
(SR)
i (in units of k) as a function of p̃i. Results shown as open symbols were obtained using the fast

protocol (⌧2 =2s), and results shown as filled symbols were obtained using the slow protocol (⌧2 =5.5s). Blue squares represent the ensemble averages
over F trajectories, and red circles represent the averages over M trajectories. Error bars were obtained using a statistical significance of 90%.
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Figure 1: The Szilard engine and recent experimental realizations: a, Scheme of the original Szilard engine. A
partition is inserted into a box containing a single molecule and surrounded by a thermal reservoir at temperature T . The
half of the box where the molecule lies is measured and the partition is moved performing an isothermal expansion extracting
work. b, Experimental realization with a single electron box (SEB) controlled by a gate voltage Vg and monitored by a
single electron transistor (SET) [14]. The experimental setup is shown in the top figure. The lower plots show the energy
levels of the box, depending on the electron number (n = 0, 1), as a function of the normalized gate voltage ng. The electron
number n is measured, and ng is rapidly changed, decreasing the energy (left plot), and then slowly moved back to the initial
value (right plot). There is a net extraction of work in the process due to the thermal excitations of n occurring only when
ng changes slowly. c, Experimental realization using a colloidal particle and two optical traps [16]. The top figure shows
the experimental setup: One trap is kept fixed at position x = 0 and the other is shifted horizontally at a speed vtrap. A
controllable electrostatic field created by two electrodes biases the particle toward one of the traps. The bottom figure shows
a contour plot of the potential affecting the particle along a process where the moving trap is shifted and then moved back
to its initial position. A realization of the particle’s trajectory is visualized as a fluctuating white line. The Szilard cycle is
achieved by measuring the trap where the particle lies in the middle of the process and biasing that trap in the second half
of the process. d, Experimental realization using a rotating colloidal particle [13]. The top figure shows the experimental
setup, where two particles are attached to a cover glass. One of them is regarded as a rotating Brownian particle and is
controlled by the electric field induced by four electrodes. The bottom figure shows two shapes of the effective potential,
which is a superposition of a sinusoidal potential and a constant torque. The position of the particle is measured and the
potential is switched from one shape to the other when the particle crosses the potential minima in the uphill direction.

One can go further and define a nonequilibrium free
energy for a generic statistical state ⇢ of a system in
contact with a thermal bath and with Hamiltonian H0

[22–26]

F(⇢; H0) ⌘ hH0i⇢ � TS(⇢). (2)

It can be shown that the Shannon entropy and the

nonequilibrum free energy play an analogous role
as their equilibrium counterparts in nonequilibrium
isothermal processes. Here, isothermal signifies that the
system is in contact with a thermal reservoir at tem-
perature T , whereas the system itself may not have a
well-defined temperature. As shown in Box 1 for a par-
ticular but illustrative case, the minimal work, on av-
erage, necessary to isothermally drive the system from

S(X)

SG(ρ)

S(X) S(M) S(X, M)

S(X) S(M)S(X |M) S(M |X)

H) H

5. Definitions

kTS(ρ)



5.1 Second law and Information

Without information ΔSS +
QB

T
≥ 0 W ≥ ΔF

With information

Information is considered as a additional quantity to 
be incorporated in a new version of the second law S B

Or

W ≥ ΔF − kTI
ΔFS

tot = ΔFS + ΔFS
meas = ΔFS + kTI

The demon/memory is included as a new physical 
system in the description and the  
original second law applies to the full system.
The thermodynamic cost of the measurement and 
erasure must be taken into account.

S B

M



An information device is a physical system that can adopt one 
among several meso- or macroscopic states and stays in this 

state for a relatively long period of time.

Ergodicity breaking

�00

�01
�10

�11�

0
1

Information-bearing degrees 
of freedom  

(Bennett, Deffner and Jarzynski)

5.2 Memories and information reservoirs



Informa(onal states

�00

�01
�10

�11� Probability of state m: pm

5.2 Memories and information reservoirs

Fm = �kT lnZm

Zm =

Z

�m

dqdp e��H(q,p)

Partition function of state m:

Free energy of state m:

Non-equilibrium states locally in equilibrium
Depend on history and/or our knowledge

m  {00,01,10,11}∈



peq
m =

e��Fm

Z

Global equilibrium state: non-equilibrium states

5.2 Memories and information reservoirs

Informational state of the memory: pm

Phase-space state of the memory: p(x) =
pm

Zm
e−βH(x) if x ∈ Γm

pL = pR = 1/2

peqL = peqR = 1/2

pL = pR = 1/2

peqL < peqR

pL = 1 pR = 0

peqL < peqR

V (x) Measurement

=
Zm

Z



Non-equilibrium free energy of a memory:

“Bare” free energy

Minimal work for changing the non-equilibrium state of a memory isothermally:

pm ! p0m Wmin = F(M 0)� F(M)
M ! M 0

Informational entropy

5.2 Memories and information reservoirs

F(M) =
X

m

pmFm � kTH(M)−kTS(M)

= Feq + D(pm | |peq
M )

Wmin = F(M �) � F(M) = S(M) � S(M �)

For a symmetric memory: Fm = F
 if we order the memory  

(Landauer’s principle)
≥ 0

 can act as a“fuel"  
          (information reservoir)

≤ 0

Standard second law applied to the memory:

= kT( )



5.3 Measurement and erasure

System Observer

X M

X M �

measurement

uncoupled and 
uncorrelated

Correlated

Decoupled

F(M,X) = F (M) + F (X)� kTH(M)� kTH(X) = F(M) + F(X)F(M,X) = F (M) + F (X)� kTH(M)� kTH(X) = F(M) + F(X)

pm,x = pmpx ! p0m,x = p0(m|x)px
⟨HXM⟩ = ⟨HX⟩ + ⟨HM⟩
S(X, M) = S(X) + S(M)

Wmeas ≥ ΔF(M) + kTI(M′ ; X) reduction of entropy 
or increase of free energy 

due to measurement

= F(M 0) + F(X) + kTI(M 0;X)

pm,x = pmpx ! p0m,x = p0(m|x)px

S(X, M′ ) = S(X) + S(M′ ) − I(X, M′ )
⟨HXM′ ⟩ = ⟨HX⟩ + ⟨HM′ ⟩

F(X, M′ )
Non-equilibrium free energy of two correlated systems



System Observer

X M

X M �

feedback

M 0X

erasure

M

measurement

Minimal work

Non-equilibrium free energy

F(X) + F(M)

F(X) + F(M �) + kT I(X; M �)

F(X) + F(M �)

F(X) + F(M)

W feedback = �kT I(M �; X)

Wmeas = �F(M) + kT I(X; M �)

W eras = ��F(M)

Sagawa, Ueda. PRL (2009).

Cost of feedback

5.3 Measurement and erasure



5.3 Feedback 

WFeedback ≥ ΔFXM
Feedback = ΔFX

Fb + ΔFM
Fb + kT(I(S′ ; M′ ) − I(S, M′ ))

≥ ΔFX
Fb − kTI(S, M′ )

=0

System Observer

X M

X M �

feedback

M 0X

erasure

M

measurement

Start from a system of state X on which we have the information I (via M’)

Remaining 
mutual 

information

≥ 0

We can apply a process which can uses (or not) the obtained information 
i.e., the most general possible (given that it only acts on the system)

The second law on the free energy hence reads:

'



5.3 Second Law 

W ≥ ΔFX − kTI(S, M′ )
System Observer

X M

X M �

feedback

M 0X

erasure

M

measurement

The second law on a system on which we have information:

The second law on the full system SM:

Wtot = WMeas + WFb + WErasure

≥ ΔFX
Fb = ΔFX

'

≥ ΔFM + kTI(S, M′ ) ≥ − ΔFM

≥ ΔFX
Fb − kTI(S, M′ )

Because the system’ state only 
changes during the feedback step 

We retrieve the standard second law of the system S

Questions?: lea.bresque@protonmail.com



Additional content



T

Wextract =

Z Vfin

Vinit

PdV =

Z Vfin

Vinit

kT

V
dV = kT log

Vfin

Vinit

Work done on the system: W = �Wextract = �kT log 2

The Szilard engine



B

 One particle gas:

 Brownian particle:

 Ising model:

Measurement

Coupling

(J,B)

Field

(J, 0)(0, 0) (J,±B) (0,±B) (0, 0)

JMRP. Chaos 11, 725 (2001)

Kawai, JMRP, van den 
Broeck. PRL 98, 080602 
(2007). 

The Szilard engine



Landauer’s principle

0 0
1 1

RESTORE-TO-ZERO process (erasure):

 available phase space volume shrinks by two. 
 A heat kTlog 2 must be dissipated.


