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In the two previous chapters, we have discussed the e↵ects of information
on the second law, in particular how information increases the capacity
of a Maxwell demon to extract energy from a thermal bath. However,
we have not yet addressed the more fundamental issue of how to restore
the validity of the second law by exploring the thermodynamic cost of
the demon’s operations. This corresponds to the second task of the
thermodynamics of information, as stated in the introduction and in
chapter 1.

Now we discuss this issue by considering the physical nature of the
demon, which can be a single degree of freedom that interacts with the
original system or a complex device comprising a measurement appara-
tus, a processing unit to infer the feedback action from the measurement
outcome, and some machinery to operate on the original system and im-
plement that action.

To model such a variety of situations, we first distinguish between
autonomous and non-autonomous or driven demons. In the first case,
system and demon evolve without any external driving. To keep the
global system out of equilibrium, it is necessary to couple it with sev-
eral thermal baths and chemostats with di↵erent temperatures and/or
chemical potentials. Then, the global system reaches a non-equilibrium
steady state where one of the two subsystems, the demon, monitors the
other one and a↵ects its dynamics. We will explore, at the end of the
chapter, the concept of information flow, which allows one to interpret
along those lines a non-equilibrium bipartite system as a demon-system
pair.

On the other hand, the original Szilárd engine consists of a sequence
of steps that cannot be modeled as a non-equilibrium steady state. An
external agent is necessary to initiate and terminate the interaction that
correlates the system and the demon in the measurement, as well as to
implement the feedback protocol. This external agent can be seen as
a part of the demon. However, the corresponding driving cannot use
explicitly the information gathered in the measurement; it must be a
“blind” protocol that only activates the demon’s machinery. Notice also
that this blind protocol can be converted into an autonomous Maxwell
demon replacing the driven parameters by degrees of freedom with a big
mass and a non-zero initial velocity, as explained in the box From driven
to autonomous systems, section 3.3.1.
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In non-autonomous Maxwell demons, such as the Szilárd engine and
other feedback motors, the di↵erent stages —namely: measurement,
feedback protocol, and memory resetting— can be analyzed separately.
We first study in detail the energetics of an ideal classical measurement in
section 6.1. For this purpose, we use non-equilibrium free energy and the
second law (3.53). Then, we combine in section 6.2 this analysis and the
results of previous chapters on the minimal work in feedback processes
and in the manipulation of information devices to derive bounds for the
minimal work needed to carry out the di↵erent stages of the Szilárd
engine and other generic feedback processes. Our analysis will reveal
that the correlation between the system and the demon, as measured
by mutual information, is in fact a form of free energy and that the
Szilárd engine can be interpreted as the creation and exploitation of
those correlations. This interpretation can be extended to autonomous
bipartite systems evolving in continuous time, with the introduction of
information flows, a concept that we discuss in section 6.3 and apply to
a specific example in section 6.4.

6.1 Classical ideal measurements

In this section, we analyze the energetics of an ideal measurement, where
an observer or demon interacts with a system and the probabilistic in-
formational state M of the former correlates with the microscopic state
X of the latter. We model the demon as an information device like
the ones introduced in section 4.2. Accordingly, the phase space of the
demon � is partitioned into M regions �m, which define the function
m(y) = m if y 2 �m, y being a microscopic state of the demon.

The measurement is characterized by the conditional probability dis-
tribution pM |X(m|x), relating the microscopic state of the system x and
the measurement outcome m. For instance, in an error-free measure-
ment, the outcome is a deterministic function µ(x) of the micro-state
x of the system, and pM |X(m|x) = �m,µ(x). Other situations where the
measurement is a↵ected by noise are well described by pM |X(m|x), as
illustrated in exercises 1.2, 2.6, and 4.1.

We define an ideal classical measurement as an interaction that cor-
relates the demon and the system while keeping the latter unaltered.
This is the main characteristic of an ideal classical measurement, but it
is useful to add extra assumptions that simplify the analysis. To for-
mulate in a precise form these assumptions, we denote by X0 and Y0

the random variables representing respectively the micro-state of the
system and the demon before the measurement and by X1 and Y1 the
corresponding micro-states after the measurement. An ideal classical
measurement is characterized by the following properties:

i) System and demon are independent before the measurement:

⇢X0Y0(x, y) = ⇢X0(x)⇢Y0(y). (6.1)

ii) System and demon do not interact before and after the measure-
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ment, i.e., the Hamiltonian of the global system before and after
the measurement reads, respectively:

Htot(x, y) = Hsys(x) + Hdem(y) (6.2)

H
0

tot(x, y) = H
0

sys(x) + H
0

dem(y) (6.3)

iii) The system is not altered by the measurement:

⇢X1(X) = ⇢X0(X) and Hsys(x) = H
0

sys(x) (6.4)

iv) The micro-state of the demon Y1 depends on X1 only through the
outcome M , i.e.,

⇢Y1|MX1
(y|m, x) = ⇢Y1|M (y|m). (6.5)

This condition implies that three variables, X, Y , and M , form a
Markov chain X $ M $ Y (Cover and Thomas, 2006).

v) The micro-state of the demon Y1 determines the informational state
M , i.e.,

M = m(Y1) ) ⇢Y1|M (y|m) =

8
<

:

⇢Y1(y)

pM (m)
if m = m(y)

0 otherwise.
(6.6)

These properties determine the joint probability density for the micro-
states after the measurement. The joint distribution can be written as

⇢X1Y1(x, y) =
X

m

⇢MX1(m, x)⇢Y1|MX1
(y|m, x)

=
X

m

⇢X1(x)pM |X1
(m|x)⇢Y1|MX1

(y|m, x). (6.7)

In this expression we can directly use (6.4) and (6.5), yielding

⇢X1Y1(x, y) =
X

m

⇢X0(x)pM |X1
(m|x)⇢Y1|M (y|m). (6.8)

We can now compute the non-equilibrium free energy of the global
system before and after the measurement. Since system and demon are
initially uncorrelated, Eq. (6.1), and do not interact, Eq. (6.2), the free
energy is additive:

F(X0, Y0) = F(X0) + F(Y0). (6.9)

After the measurement, the average energy is again additive, accord-
ing to Eq. (6.3), and the joint Shannon information can be expressed in
terms of the individual Shannon entropies and the mutual information
using Eq. (2.18):

F(X1, Y1) = hHsys(X1)i + hH
0

dem(Y1)i � TS(X1, Y1)

= F(X0) + F(Y1) + TI(X1; Y1)

= F(X0) + F(Y1) + TI(X1; M). (6.10)
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Here we have used that I(X1; M) = I(X1; Y1), a relationship that follows
from Eq. (6.5) and Eq. (6.6) (see exercise 6.2), and express the fact
that the demon only gathers information of the state of the system X1

through the measurement outcome M .
Finally, we can apply the second law for processes involving non-

equilibrium states, Eq. (3.53), to find the minimal work needed to com-
plete the measurement:

Wmeas = �F = �FY + TI(X1; M) (6.11)

where �FY ⌘ F(Y1) � F(Y0). Since I(X1; M) is positive, we see that
measuring or, more generally, creating correlations between two systems,
increases the free energy and, if not counterbalanced by �FY , needs
work and heat dissipation to be completed. Recall that these work is
done by the external agent that initiates and terminates the interaction
between system and the memory of the demon.

6.2 The Szilárd engine revisited

We can now analyze the Szilárd engine considering the physical nature
of both the single-particle gas and the demon. The Szilárd cycle consists
of a measurement and the corresponding feedback protocol, in which a
maximum work TI(X1; M) can be extracted. As first noticed by Ben-
nett (Bennett, 1982), to check the validity of the second law we have to
complete the cycle by resetting the demon to its initial state. The three
stages of the whole cyclic process are depicted in figure 6.1. The energet-
ics of the measurement has been analyzed in the previous section. Here
we continue by analyzing the second subprocess: the feedback protocol.
The final non-equilibrium free energy after this protocol reads

F(X2, Y2) = F(X2) + F(Y2) + TI(X2; Y2) (6.12)

where X2 and Y2 denote respectively the micro-states of the system and
the demon after the feedback protocol. Since this protocol is a cycle for
the system in the Szilárd engine, its marginal probability density and
Hamiltonian are equal at the beginning and at the end; hence F(X2) =
F(X1) = F(X0). We also assume that the state of the demon is not
a↵ected by the feedback protocol, F(Y2) = F(Y1). Then, the minimal
work to complete it is

Wfb = F(X2, Y2) � F(X1, Y1) = T [I(X2; Y2) � I(X1; M)] . (6.13)

As explained in sections 4.1 and 5.3, in an optimal feedback protocol,
like the original Szilárd cycle, the work is Wfb = �TI(X1; M). Then, we
conclude that such optimal protocol is not only reversible, as discussed in
section 5.3, but should also destroy all correlations between the system
and the demon to satisfy I(X2; Y2) = 0.

System Demon

feedback

resetting

measurement

Fig. 6.1 Schematic representation of a
feedback engine.

Here a clarification on the origin of this work is in order. In the
first chapters, the demon is visualized as a conscious being or compli-
cated device that is able to measure and manipulate the system using
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the information of the measurement. This manipulation is accompa-
nied by the feedback work, bounded by �TI(X1; M) in Eq. (6.13). On
the other hand, in the analysis of the measurement carried out in the
previous section, we were forced to include an external agent to initi-
ate the interaction needed to correlate the demon’s memory with the
state of the system. This external agent could be a part of the whole
device that acts as a demon in the Szilárd engine. We then distinguish
the memory and the operating machinery that constitutes the demon.
This external agent can manipulate both the demon’s memory and the
system, but it cannot use the information stored in the memory, i.e., it
must implement non-feedback protocols. This is why we use the second
law for non-feedback processes Eq. (3.53), and not (4.8), to bound the
work done by the external agent in Eq. (6.13). Finally, let us recall
that this non-feedback driving could be converted into an autonomous
Maxwell demon by introducing a degree of freedom with a large mass, as
explained in the box From driven to autonomous systems, section 3.3.1.

Finally, the minimal work to reset the demon to its initial state Y0 is

Wreset = F(Y0) � F(Y2) = ��FY . (6.14)

The total minimal work Wmeas + Wfb + Wreset, where the terms are
given respectively by (6.11), (6.13), and (6.14), is zero if all the correla-
tions are exploited, i.e., if I(X2; Y2) = 0. We then recover the standard
second law for non-feedback cycles. Therefore, by incorporating the
physical nature of the demon, we are able to restore the validity of the
second law of thermodynamics for isothermal processes. Notice that the
cost that compensates the extracted work Wmeas+Wreset = �Wfb can be
distributed between the measurement and the resetting of the demon’s
memory, depending on the characteristics of the demon or, more pre-
cisely, on the free energy di↵erence �FY . For instance, if the demon is
a symmetric memory in local equilibrium with two informational states,
L (left) and R (right), and its initial probabilistic informational state
is given by pL = 0 and pR = 1, then �FY = �kT ln 2. In this case,
the measurement can be carried out at zero energy cost, but resetting
the demon’s memory is a Landauer’s overwriting that requires a work
kT ln 2 and dissipates the same amount of heat to the thermal bath. On
the other hand, if the initial state is pL = pR = 1/2, we have �FY = 0.
Resetting is not necessary but the minimal work to measure is kT ln 2.

Our analysis shows that the Szilárd engine or any generic feedback
process can be interpreted as the creation of correlations between the
system and the demon in the measurement, with the corresponding ther-
modynamic cost, followed by the exploitation of the free energy stored
in those correlations.

This interpretation can be extended to systems that evolve in contin-
uous time as X(t), Y (t), creating and destroying correlations. In fact,
the analysis is easier and more general if we use the Shannon entropy
S(X(t), Y (t)) of the global system. If we di↵erentiate with respect to
time the equation relating the mutual information and the joint entropy,
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we get
Ṡ(X, Y ) = Ṡ(X) + Ṡ(Y ) � İ(X; Y ), (6.15)

then the entropy production rate can be written as

Ṡprod = Ṡ(X) + Ṡ(Y ) � İ(X; Y ) + Ṡenv � 0 (6.16)

where Ṡenv is the change of the entropy of the environment per unit of
time. In the case of a single thermal bath at temperature T , this change
is Ṡenv = �Q̇/T , and the previous equation is equivalent to

T Ṡprod = T Ṡ(X) + T Ṡ(Y ) � T İ(X; Y ) � Q̇

= Ẇ � Ḟ(X) � Ḟ(Y ) � T İ(X; Y ) � hḢinti (6.17)

where Hint(X, Y ) is the interaction energy between the two systems.
Here we have used the first law: hḢX + ḢY + Ḣinti = Ẇ + Q̇. If this
interaction energy vanishes at the beginning and at the end of a process,
the integral over time of (6.17) yields

TSprod = W � �F(X) � �F(Y ) � T�I(X; Y ) � 0. (6.18)

This expression includes as special cases the bounds found for the work
needed to measure, complete a feedback cycle, and reset the memory,
i.e., Eqs. (6.11), (6.13), and (6.14). Notice, however, that (6.18) is a
special case of (6.16). The latter can be applied to more complicated
cases where the global system (X(t), Y (t)) evolves in contact with several
thermal baths with di↵erent temperatures and/or chemostats or particle
reservoirs with di↵erent chemical potentials.

6.3 Information flows

Eq. (6.16) provides a simple picture of the Szilárd engine and generic
non-autonomous Maxwell demons. For autonomous systems, on the
other hand, this approach is not useful, because, if the system reaches
a stationary state, even far from equilibrium, the mutual information
I(X(t); Y (t)) between any pair of variables that describe parts of the
system and the corresponding Shannon entropies, S(X(t)) and S(Y (t)),
are constant. Hence, all the terms on the right-hand side of Eq. (6.16)
vanish, except Ṡenv. An interesting attempt to overcome this issue is to
decompose the change in mutual information

İ(X(t); Y (t)) = İ
X(t) + İ

Y (t) (6.19)

into information flows, which are defined as

İ
X(t) =

d

dt0

����
t0=t

I(X(t0); Y (t)) (6.20)

İ
Y (t) =

d

dt0

����
t0=t

I(X(t); Y (t0)). (6.21)
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This decomposition is only possible if X(t + �t) and Y (t + �t), condi-
tioned to X(t) and Y (t), are independent up to order (�t)2, i.e.

⇢(x0
, y

0; t + �t|x, y; t) = ⇢(x0; t + �t|x, y; t)⇢(y0; t + �t|x, y; t)

+ o
�
�t

2
�
. (6.22)

Here, we have employed the abbreviated notation for the conditional dis-
tribution: ⇢X(t0)Y (t0)|X(t)Y (t)(x

0
, y

0
|x, y) = ⇢(x0

, y
0; t0|x, y; t), and a simi-

lar notation for the marginal distributions. This condition is equivalent
to 1 (see exercise 6.3):

@

@t0

����
t0=t

⇥
⇢X(t0)Y (t)(x, y) + ⇢X(t)Y (t0)(x, y)

⇤
=

d

dt
⇢X(t)Y (t)(x, y). (6.23)

The condition is fulfilled by continuous Markov processes that are solu-
tions of stochastic di↵erential equations with uncorrelated noises, as well
as by bipartite Markov chains (X(t), Y (t)), defined as those in which
transitions that simultaneously change the state of X and Y are for-
bidden (see exercise 6.5). We study this case in detail below following
(Horowitz and Esposito, 2014)

For a generic bipartite system, the first term in the decomposition
(6.19), İ

X(t), is the increase of the mutual information between the two
systems due solely to the evolution of X. If this flow is positive, then the
evolution of X(t), keeping Y (t) fixed, increases the mutual information.
We can interpret this behavior as system X measuring system Y . On
the other hand, if İ

X(t) is negative, the evolution of X decreases the
mutual information and this decrease can be used to extract energy
from reservoirs. In this case, the evolution of system X is exploiting
the free energy stored in the correlations, like the working substance
of a feedback engine. In the stationary regime İ(X(t); Y (t)) = 0 and
İ

X(t) = �İ
Y (t); hence, according to the sign of the information flow,

we can identify one of the two systems as the sensor or demon, and
the other one as the working substance on which the feedback action is
applied. For instance, if İ

X(t) is positive, then system X acts as the
demon and system Y as the working substance.

6.3.1 Bipartite Markov chains

To further clarify the interpretation of the information flow and show its
utility, let us focus on a bipartite Markov chain (X(t), Y (t)). The reader
can find a brief review of Markov chains in Appendix D. In the case of
a bipartite system, the simultaneous change of both random variables is
forbidden; therefore, the transition rate from state (x, y) to state (x0

, y
0)

is of the form:

�[(x, y) ! (x0
, y

0)] = 0 if x 6= x
0 and y 6= y

0
, (6.24)

1This expression is valid for any di↵erentiable function f(t, t0). However, the joint
probability distribution ⇢X(t0)Y (t)(x, y) is not di↵erentiable on the line t0 = t. For
instance, for stationary Markov processes ⇢X(t0)Y (t)(x, y) is a function of |t � t0| and
min{t, t0}. It is therefore continuous in the whole plane (t, t0) but not di↵erentiable
on the line t = t0, even for bipartite systems.
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and can be written as the rate of a jump in X, given a value of Y :

�y

x!x0 ⌘ �[(x, y) ! (x0
, y)] (6.25)

and vice versa:
�x

y!y0 ⌘ �[(x, y) ! (x, y
0)]. (6.26)

In a bipartite system, one can easily split the global evolution into two
terms, each attributed to the respective system. The contribution due
to the evolution of system X is

@

@t0

����
t0=t

⇢X(t0)Y (t)(x, y) =
X

x0

J
y

x0!x
(t) (6.27)

where

J
y

x0!x
(t) = �y

x0!x
⇢X(t)Y (t)(x

0
, y) � �y

x!x0⇢X(t)Y (t)(x, y). (6.28)

Similarly, the contribution due to system Y is

@

@t0

����
t0=t

⇢X(t)Y (t0)(x, y) =
X

y0

J
x

y0!y
(t) (6.29)

where

J
x

y0!y
(t) = �x

y0!y
⇢X(t)Y (t)(x, y

0) � �x

y!y0⇢X(t)Y (t)(x, y). (6.30)

Notice that these two equations, (6.27) and (6.29), contain the terms
in the master equation (D.15) corresponding to the jumps on system
X and Y , respectively. The sum of the two yields the master equation
ruling the evolution of the global probability distribution ⇢(x, y; t) ⌘

⇢X(t)Y (t)(x, y).
Now, every term in Eq. (6.16) can be decomposed into two parts

accounting for the contributions of transitions in systems X and Y ,
respectively. For transitions in system X, this contribution is

Ṡ
X

prod(t) ⌘ Ṡ(X(t)) � İ
X(t) + Ṡ

X

env(t). (6.31)

Each derivative here is expressed in terms J
y

x0!x
(t). Let us discuss the

three terms in Eq. (6.31). Using similar arguments as in the derivation
of Eq. (D.33), one can obtain expressions for the Shannon entropy

Ṡ(X(t)) = k

X

y

X

x>x0

J
y

x0!x
(t) ln

⇢X(t)(x
0)

⇢X(t)(x)
(6.32)

and the information flow

İ
X(t) = k

X

x,y

X

x0

J
y

x0!x
(t) ln

⇢X(t)Y (t)(x, y)

⇢X(t)(x)⇢Y (t)(y)

= k

X

x,y

X

x0

J
y

x0!x
(t) ln

⇢X(t)Y (t)(x, y)

⇢X(t)(x)

= k

X

y

X

x>x0

J
y

x0!x
(t) ln

⇢X(t)Y (t)(x, y)⇢X(t)(x
0)

⇢X(t)Y (t)(x0, y)⇢X(t)(x)
. (6.33)
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The entropy increase in the environment due to jumps in X is given by

Ṡ
X

env(t) = k

X

y

X

x>x0

J
y

x0!x
(t) ln

�y

x0!x

�y

x!x0
. (6.34)

This expression is a consequence of local detailed balance, as explained
in section D.5. Introducing Eqs. (6.32), (6.33), and (6.34) into (6.31),
we obtain:

Ṡ
X

prod(t) = k

X

y

X

x>x0

J
y

x0!x
(t) ln

⇢X(t)Y (t)(x
0
, y)�y

x0!x

⇢X(t)Y (t)(x, y)�y

x!x0
� 0. (6.35)

The inequality is valid for every term in the sum since the current and
the logarithm have equal signs.

Fig. 6.2 Sankey diagram of a
bipartite system.

In the stationary state, the two inequalities corresponding to transi-
tions of system X and Y read respectively

Ṡ
X

prod = Ṡ
X

env + İ
Y

� 0 (6.36)

Ṡ
Y

prod = Ṡ
Y

env � İ
Y

� 0. (6.37)

If İ
Y is positive, Y acts as a demon that measures and operates on

X. System Y uses the entropic resources of its environment, Ṡ
Y

env �

İ
Y , whereas system X can reduce the entropy of the corresponding

reservoirs: Ṡ
X

env � �İ
Y . This use of resources can be represented in a

simple flow diagram (also called a Sankey diagram), as the one depicted
in figure 6.5. The bipartite is a machine fueled by the Y-environment.
The increase of entropy in the Y-environment is transmitted to system
X through correlations. The information flow İ

Y quantifies this transfer
and is a resource for system X, which uses it to reduce the entropy of its
environment. The losses in each stage are the entropy productions S

X

prod

and S
Y

prod. The diagram clearly illustrates that mutual information is
equal to the exchange of entropy between two subsystems that comprise
a bipartite system.

6.4 A case study: feedback vs. chemical
motors

In this section, we illustrate the ideas discussed in this chapter with a
simple example of a feedback engine that admits di↵erent interpretations
depending on the physical mechanism implementing the feedback.

Fig. 6.3 The feedback engine
discussed in the text. A Brownian
particle moves in a potential that
consists of a constant bias and

barriers, and switches between two
shapes, A and B.

The model consists of a Brownian particle in a potential that alter-
nates between two profiles, A and B, as shown in figure 6.3. The po-
tentials A and B have a staircase shape plus infinite barriers that create
separate compartments where the particle moves. The barriers of each
potential are shifted with respect to the other. One can induce an uphill
motion if the potential is switched from B to A when the particle is in
the rightmost step of a compartment generated by potential B (labeled
as R in Fig. 6.3) and from A to B when the particle is in the rightmost
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Fig. 6.4 Representation of the feed-
back engine of Fig. 6.3 as a bipartite
Markov chain. Transitions are biased
towards the direction indicated by the
solid arrow.

step of a compartment generated by potential A (labeled as L in the
figure). These switches can be interpreted as transitions between two
internal states of the particle, A and B. Fig. 6.3 shows the transitions
between these internal states (vertical arrows) and the transitions be-
tween compartments induced by the Brownian motion of the particle
(horizontal arrows). The figure’s solid arrows indicate the direction to-
wards which the transitions are biased. The staircase potential creates
a bias towards the left, whose intensity is modulated by the potential
energy gain per step, �E. The transitions between internal states are
biased in a way that favors the uphill motion, as seen in Fig. 6.3, and can
be induced by di↵erent mechanisms, which we explore in this section.

6.4.1 Information flows in a chemical motor

The first mechanism is a non-equilibrium reaction that mediates tran-
sitions between internal states A and B, as explained in section D.4.
Notice however that the mediation depends on the position of the par-
ticle:

C C
0

RB RA

C C
0

LA LB

Here C and C
0 are chemical species from a non-equilibrium chemo-

stat. This means that the concentration of C and C
0 are fixed to

non-equilibirum values yielding a chemical potential di↵erence �µ ⌘

µC � µC0 > 0 that keeps the reactions out of equilibrium and induces a
bias towards transitions that convert C into C

0, providing the fuel that
pumps the Brownian particle.

The corresponding rates are depicted in figure 6.4, where we can also
check that the resulting Markov chain is bipartite. Since the system is
periodic in space, we can focus on a single period described by a bipartite
Markov chain with four states, LA, LB, RA, and RB. The rates obey
local detail balance, as explained in Appendix D:

�RB!RA = qe
��µ �RA!RB = q

�RA!LA = r �LA!RA = re
��E

�LA!LB = qe
��µ �LB!LA = q

�LB!RB = r �RB!LB = re
��E

(6.38)

where � is the inverse temperature and r and q are rates that determine
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the time scale of the di↵usion and the chemical reaction, respectively.
The system is e↵ectively one-dimensional. Then, in the steady state, pi,
the current J is the same at every link:

J = pRBqe
��µ

� pRAq

J = pRAr � pLAre
��E

J = pLAqe
��µ

� pLBq

J = pLBr � pRBre
��E

.

(6.39)

The solution reads:

pRB = pLA =
J(q + r)

qr(e��µ � e��E)
(6.40)

pRA = pLB =
J(qe��µ + re

��E)

qr(e��µ � e��E)
. (6.41)

The current can be obtained by imposing the normalization of the sta-
tionary probability distribution. The result is

J =
qr(e��µ

� e
��E)

2[q(1 + e��µ) + r(1 + e��E)]
. (6.42)

The sign of the current is the same as the sign of the di↵erence �µ��E.
Hence, the particle moves uphill if �µ > �E, i.e., if the fuel provides
su�cient energy to balance the bias due to the potential.

We can now apply the ideas presented in the previous section. Let
us denote as X = L, R the position and as Y = A, B the internal state
of the particle. These are the two variables of our bipartite Markov
chain. They are correlated in the stationary state and their marginal
probability distributions are very simple: pX(R) = pX(L) = 1/2 and
pY (A) = pY (B) = 1/2. The entropy production in the stationary regime
is the entropy increase in the environment, given by Eq. (D.32), is

Ṡ
(XY )
prod = Ṡenv = Jk


2 ln

qe
��µ

q
+ 2 ln

r

re��E

�

= 2J
�µ � �E

T
(6.43)

and one can immediately identify Ṡ
X

env = �2J�E/T as the entropy in-
crease in the thermal bath that generates the Brownian di↵usive motion
in space, and Ṡ

Y

env = 2J�µ/T as the entropy increase in the chemostats
due to the changes in the internal state of the particle.

According to (6.33), the information flow reads

İ
X = �İ

Y = Jk ln
pRApL

pLApR

+ Jk ln
pLBpR

pRB/pL

= 2Jk ln
q + r

qe��µ + re��E
< 0. (6.44)

We see that İ
Y is positive, indicating that system Y , the internal state,

acts as a demon on system X, the position of the particle. The internal
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Fig. 6.5 Total entropy production Ṡ
(XY )
prod (thick dashed line), information flow İY (solid line), partial entropy productions

(dotted lines) for the chemical motor, with ��µ = 2 in units of the Boltzmann constant k. The left plot corresponds to the case
where di↵usion is much faster than the potential switch, q = 0.3, r = 50, whereas the right plot corresponds to the opposite
case, q = 10, r = 1. We also plot the entropy production due to the di↵usion, ṠX

env = �J�E/T (lower dotted line), which is
negative and proportional to the power of the motor.

state measures the position of the particle, due to the spatial dependence
of the reaction. Finally, the entropy production can be split into two
terms:

Ṡ
X

prod = İ
Y

� 2J
�E

T

Ṡ
Y

prod = �İ
Y + 2J

�µ

T
.

(6.45)

As discussed above, the internal state Y consumes an amount of free
energy per unit of time 2J�µ to measure the position of the parti-
cle, i.e., to correlate its state with the state of X. These correlations
are used to extract an energy �E per uphill step from the thermal
bath, which is converted into potential energy of the particle. One
can assess the e�ciency of each process —measurement and correla-
tion exploitation— by comparing the two contributions to the entropy
production. For instance, if q � r, i.e., if the dynamics of the internal
state (i.e., the chemical reactions) is much faster than the spatial di↵u-
sion, then, according to Eq. (6.44), İ

Y
' 2J�µ/T . Hence, Ṡ

Y

prod ' 0

and Ṡ
X

prod ' Ṡ
(XY )
prod = 2J(�µ��E)/T . In this case, the “measurement”

is very e�cient and all the entropy is produced by the “feedback” part
of the bipartite system. On the contrary, if q ⌧ r, then İ

Y
' 2J�E/T ,

and all the dissipation is produced by the measurement. A particular
case is shown in figure 6.5, where we depict the di↵erent contributions
to the entropy production (in units of the Boltzmann constant k) as
a function of the load ��E for ��µ = 2 and di↵erent values of the
di↵usion rate r and the chemical rate q.

6.4.2 Non-autonomous feedback

We now analyze the model as an information engine without any as-
sumption about the physical nature of the demon, in the spirit of our
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discussion in chapter 4. An external agent measures the position of the
particle and chooses potential A or B to induce the uphill motion. This
system is similar to the experimental realization of a Maxwell demon
reported in (Toyabe, Sagawa, Ueda, Muneyuki and Sano, 2010). To
study the system quantitatively, we need to specify the measurement
and feedback schedule. It is interesting to consider a particular protocol
that induces the same dynamics as the chemical motor discussed above
(Horowitz, Sagawa and Parrondo, 2013). In this way, we can compare
the chemical motor, interpreted as an exchange of free energy and infor-
mation between the spatial and the internal states of the particle, with
a pure information motor based on feedback.

The dynamics induced by the chemical reaction consists of Poissonian
jumps between internal states. The potential is switched at a rate qe

��µ

when the particle is in the rightmost half of the container created by the
current potential, A or B, and at a rate q when it is in the leftmost half.
The latter transition can be interpreted as an erroneous measurement.
To reproduce the dynamics of the chemical motor, we assume that the
demon measures the position of the particle at random times distributed
as Poissonian events with a rate ↵ and an error probability ✏, such that
↵(1 � ✏) = qe

��µ and ↵✏ = q, i.e. (Horowitz, Sagawa and Parrondo,
2013):

✏ =
1

1 + e��µ

↵ = q
�
1 + e

��µ
� (6.46)

Notice that an equilibrium chemostat, �µ = 0, is reproduced by a demon
with an error probability ✏ = 1/2 in the measurement.

The demon can take two actions in each small interval of time2 of
duration �t: either switching the potential (S) or doing nothing (N).
The relevant quantity in the second law for feedback processes is the
mutual information between the possible actions of the demon, M =
S, N , and the state of the system. In this analysis, we do not need to
specify the internal state A or B, but only the switches. These switches
occur when the particle is in the rightmost half of the container formed
by the two potential barriers acting at the moment of the measurement.
Then, for the state of the system, it is enough to consider two states
X = L, R, corresponding to the leftmost or rightmost half of the current
container, respectively. Notice that this random variable X does not
coincide with the one that we have used in the previous subsection to
analyze the motor as a bipartite system. The conditional probabilities

2There are two ways of generating Poissonian events at a rate ↵. The first is placing
events at a distance T , where T is a random time whose probability density is
exponential: ⇢T (t) = ↵e�↵t. The second is discretizing time in small intervals
of size �t and generating an event in each interval with a probability ↵�t ⌧ 1.
Here, we consider the second scheme, which is more suitable for calculating mutual
information.
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of these two random variables read

pM |X(S|R) = ↵(1 � ✏)�t (6.47)

pM |X(S|L) = ↵✏�t

and pM |X(N |R) = 1�pM |X(S|R), pM |X(N |L) = 1�pM |X(S|L). Then,
the mutual information between the demon and the system after each
measurement attempt in an interval of duration �t is3

I(X; M) = S(M) � S(M |X)

= S(ps↵�t) � pX(R)S(↵(1 � ✏)�t) � pX(L)S(↵✏�t) (6.48)

where S(p) is the Shannon entropy of a binary variable, as defined in
(2.2), and ps is the probability of switching in a given measurement:

ps ⌘
pM (S)

↵�t
= pX(R)(1 � ✏) + pX(L)✏. (6.49)

Since, for p ⌧ 1, S(p) ' p � p ln p, Eq. (6.48) for �t ! 0 can be
simplified to

I(X; M) ' ↵k�t


pX(R)(1 � ✏) ln

1 � ✏

ps

+ pX(L)✏ ln
✏

ps

�
. (6.50)

To calculate the probability distribution pX of the position of the
particle we can use the results of the chemical motor since the dynamics
of both models is the same. Hence

pX(R) =
q + r

q(1 + e��µ) + r(1 + e��E)
(6.51)

and pX(L) = 1 � pX(R). The entropy production rate finally reads

Ṡ
fb
prod = lim

�t!0


I(X; M)

�t

�
�

2J�E

T
. (6.52)

3 One could also calculate the mutual information between the state of the system
X and the outcome of the measurement M = L, R: I(X; M) = S(M) � S(M|X) =
h(ps) � h(✏). Then the average information gain in an interval of duration �t is
↵�t I(X; M), which is larger than the mutual information calculated in Eq. (6.50).
To understand the di↵erences between these two di↵erent ways of calculating the
mutual information between the system and the demon, consider the following sce-
nario: a measurement is carried out in every interval of time �t, with three possi-
ble outcomes M

0 = ;, L, and R: we obtain ; (null measurement) with probability
1 � ↵�t independent of the state of the system, and R and L with probabilities
pM0|X(m|x) = ↵�t (1 � ✏) if x 6= m and pM0|X(m|x) = ↵�t ✏ if x = m. The mutual
information is I(X; M0) = S(M0) � S(M0

|X) = ↵�tI(X; M) = ↵�t(h(ps) � h✏).
On the other hand, Eq. (6.50) yields the value of the mutual information between
the system and the actions that the demon can take, which are only two: N and S.
These two actions are the result of lumping the measurement outcomes M

0 = ;, R
into a single action N , i.e.: M = N if M

0 = ;, R, and M = S if M
0 = L. Then, it is

clear that I(X; M)  I(X; M0) (see Exercise 6.4 for a rigorous proof). To assess the
performance of the motor, we use the actions M and the mutual information (6.48),
since they comprise all information used in the feedback.
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Fig. 6.6 Entropy production Ṡfb
prod and Ṡ

(XY )
env , for the feedback and the chemical motor respectively, with ��µ = 2. The

leftmost plot corresponds to the case where di↵usion is much faster than the potential switch, q = 1, r = 100, whereas the
rightmost plot corresponds to the opposite case, q = 10, r = 1.

We can compare this entropy production with the entropy production
of the autonomous system, given in (6.43): Ṡ

(XY )
prod = 2J(�µ � �E)/T .

We show two interesting cases in Fig. 6.6. The most remarkable feature
can be seen in the leftmost plot, where the entropy production in the
feedback engine is zero. This occurs for ��E = 1 and ��µ = 2 and
r � q. For these values the power of the machine is finite:

P = 2J�E =
qr�E(e2

� e)

q(1 + e2) + r(1 + e)
' q�E (6.53)

, i.e., the machine can transport particles against the bias �E at finite
power with zero entropy production.
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Exercises

(6.1) The mild Szilárd paper Mass

(6.2) Data-processing inequality (Cover and Thomas,
2006). Consider three random variables X, M0

,

and M that form a Markov chain X $ M0 $ M ,

i.e., ⇢M|M0X(m|m0, x) = ⇢M|M0(m|m0
). Prove

that I(X; M)  I(X; M0
) and that the equality

is reached if M = f(Y ). Apply this to the sys-

tem discussed in section 6.4.2, where X = L, R is

the position of the particle, M0
= ;, L, R is the

outcome of the measurement and M = N, S is the

action taken by the demon (see footnote 3 in page

108 and figure 6.7).

Fig. 6.7 Random variables involved in the feedback mo-
tor: the position of the particle X, the outcome of the
measurement M

0 (where ; is the absence of measure-
ment), and the action M taken by the demon. Here
a = ↵�t is the probability of measuring in an interval of
duration �t and ✏ is the error probability (see footnote
3). The conditional probability pM0|X(m0

|x) is given by
the arrows connecting the values of X and M

0: solid
arrows indicate correct measurements, gray dashed lines
indicate wrong measurements, and dotted line indicate
null measurements.

(6.3) Prove that Eq. (6.22) implies Eq. (6.23). Hint:

calculate the conditional average

d
dt0

����
t0=t

⌦
A(X(t0

))B(Y (t0
)) | x, y, ; t

↵
.

where A(x) and B(y) are arbitrary functions.

(6.4) Consider two stochastic processes X(t) and Y (t).
Prove that the derivative of the mutual informa-

tion between X(t) and Y (t0
) can be written as

d
dt

I(X(t); Y (t0
)) = k

Z
dxdy

@⇢X(t)Y (t0)(x, y)

@t

⇥ ln
⇢X(t)Y (t0)(x, y)

⇢X(t)(x)⇢Y (t0)(y)

Use this result to prove Eq. (6.19) from Eq. (6.23).

(6.5) Prove that a bipartite Markov chain verifies

Eq. (6.23).

(6.6) Prove Eq. (6.27) for a bipartite system.

(6.7) Consider the following Markov chain that describes

the state of two binary systems X, Y = 0 or 1:

0 0 1 0

0 11 1

↵ and � being transition rates. Prove that

Eq. (6.23) is satisfied if and only if � = 0.


