Ultra-Intense Laser I *Basics – rel plasma physics*

Professor M. Roth Institut für Kernphysik, S2/14/307 Schlossgartenstr. 9 markus.roth@physik.tu-darmstadt.de

1

Intro: From photon to laser

What does it need to build a laser?

Interaction of matter and radiation (1)

Basics:

An electron in an excited state in an atom decays into a lower level by sptontaneous or stimulated emission

In a thermal equilibrium be n_1 and n_2 the number of atoms in ground level 1 or excited level 2 with the energy E_1 and E_2 .

 $\hbar \omega = E_2 - E_1$

LASER transition: Q.M. emission no different from inducing field. (direction, energy, polarization, phase)

Interaction of matter and radiation (2)

Population of levels in thermal equilibrium

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp\left(-\frac{E_2 - E_1}{k_B T}\right)$$

Е

.

Interaction of matter and radiation (3)

The population follows the rate equations:

$$\frac{dn_2}{dt} = -An_2 - B_{21}U_p(\omega)n_2 + B_{12}U_p(\omega)n_1$$

$$\frac{dn_1}{dt} = +An_2 + B_{21}U_p(\omega)n_2 - B_{12}U_p(\omega)n_1$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{21}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_{22}$$

$$B_{21}$$

$$B_{22}$$

$$B_$$

with A, B_{21} and B_{12} as the Einstein-coefficients. $B_{21}n_2U_p(\omega)$ is the rate of stimulated emission, and $B_{12}n_1U_p(\omega)$ the rate of stimuliated absorption, and An_2 is the rate of spontaneous emission Interaction of matter and radiation (4)

In thermal equilibrium we have:

So for the Einstein coefficient it leads to:

$$B_{12}(\frac{g_1}{g_2}) = B_{21} = B \qquad \frac{A}{B} = \frac{\hbar\omega^3}{\pi^2 c^3} \qquad \frac{A}{BU_p(\omega)} = exp(\frac{\hbar\omega}{k_B T}) - 1$$

This makes it so much harder to pump lasers in the short wavelength range

Interaction of matter and radiation (5)

As line profiles we have to take into account: nat. lifetime, doppler broadening, stark-broadening.

To achieve a population inversion in a medium, we have to pump energy into the system.

Population inversion and thermal equilibrium exclude each other

Interaction of matter and radiation (6)

For absorption and stimulated emission we have to take line profiles into account. We separate homogeneous and inhonogeneous broadened line profiles.

Homogeneous broadened lines:

- Each atom has the same line shape and frequency response.
- Each atom has the same probability for a transition.
- Lorentz-line shape.

Important difference to inhomogeneous broadened line shapes:

Saturation

Natural LB, pressure broadening.

Interaction of matter and radiation (7)

Inhomogeneous broadened line shape:

- Each central wavelength of an atom is shifted.
- Different atoms have different resonance frequencies
- Signal pulse interacts only with a fraction of the atoms
- Gauss-Line shape

Spectral Hole Burning

Doppler broadening, Crystal inhomogenities

Interaction of matter and radiation (8)

Example for spectral hole burning zum spectral hole burning:

Bild2.2.2 Linewidth-broadened atomic transition line centered at ν_0 and narrow band signal centered at ν_s

TECHNISCHE UNIVERSITÄT Interaction of matter and radiation (10)

For the change of fluence in the medium we get

$$F = F_0 \exp\left[\frac{hv_s g(v_s, v_0)B_{21}}{c}\left(n_2 - n_1 \frac{g_2}{g_1}\right)x\right]$$

With the absorption coefficient

$$\alpha(v_s) = \left(\frac{g_2}{g_1}n_1 - n_2\right)\sigma_{21}(v_s)$$

(function g is the line shape signal and levels)

And the cross section for stimulated emission

$$\sigma_{21}(v_s) = \frac{h v_s g(v_s, v_0) B_{21}}{c}$$

Interaction of matter and radiation (11)

 $F = F_0 \exp[-\alpha(v_s)x]$

• Well known absorption behaviour in a medium.

Population inversion: α gets negative ->

 $\partial F(v)/\partial x > 0$

- Population inversion is a non-natural state
- Threshold, where upper and lower levels are equally populated are called inversion threshold
- Dependend on laser material this can be reach only temporary (pulsed lasers) or stable (cw lasers)
- 2 level systems are no laser medium as the lower level will be populated too fast
- Real lasers are 3 level and 4 level lasers.

Interaction of matter and radiation (12)

Interaction of matter and radiation (13)

Pulse amplification:

- Neglect pump rate and flourescency within pulse duration
- 4 level system, length l

Stored energy density:

$$F_s = h v n_2 l$$

 σ_{12} : cross section

 $dF = -hvdN_2 = \sigma_{21}Fn_2dx$

Interaction of matter and radiation (14)

if $dn_2/n_2 \ll 1$, we get by simple integration:

$$F_{aus} = F_{ein} \exp\left(\frac{hvn_2l}{hv}}{\frac{hv}{\sigma_{21}}}\right) = F_{ein} \exp\left(\frac{F_s}{F_{sat}}\right)$$

With F_{sat} as saturation fluence and G_0 the small signal gain

$$F_{sat} = \frac{h\nu}{\sigma_{21}} \qquad \qquad G_0 = \frac{F_{aus}}{F_{ein}} = \exp\left(\frac{F_s}{F_{sat}}\right)$$

Interaction of matter and radiation (15)

In real life there is a deviation between small signal gain and gain \Box saturation effects

TECHNISCHE

UNIVERSITÄT DARMSTADT

Interaction of matter and radiation (16)

Taking saturation effects into account we get the time integrated Frantz-Nodwik equation:

$$F_{aus} = F_{sat} \log \left(1 + G_0 \left(\exp(\frac{F_{ein}}{F_{sat}}) - 1 \right) \right)$$

High intensity lasers

Energy Time Space

04/15/2024 | IAEA LDRS Workshop| Prof. M. Roth

High power lasers

High power lasers

UHI lasers world-wide

a look back on 50 years of high peak power lasers

2 TW compares to the 2008 world average electrical power production

Energy, Power, Intensity

Energy [J]

Power = Energy /time W= J/s

Intensity = power / area W / cm^2

High power is crucial for experiments in basic research

Therefore the goal is to quench the energy in time and to focus the energy to a very small spot:

todays lasers:

Energy (from wall plug) MJ -> stored in capacitors in minutes

Flashlamps pump the medium within microseconds (efficiency ~ 0.1 %)

Laser light is compressed to 25 fs (0.000 000 000 000 025 s) / factor 10¹⁵ and focused from 50 cm beam diameter down to 5 micrometer / factor 10⁹

Energy is compressed by factor of 10²⁴ in space and time!

most powerful laser in the world (so far) (ELI-NP, Romania, 25fs) 04/15/202 Energy is 2x250, Jrof. Power: 20 PW Intensity: 10²³ W/cm²

TU Darmstadt

How to do A LOT of laser light

MOPA- scheme:

Time/frequency equivalence with short pulse lasers

A description of short laser pulses can be made advantageously in the spectral domain

Heisenberg principle

Laser pulse

4.1.5 Oszillator - longitudinale Moden (3)

FIGURE 5.18. Schematic diagram of spectral output of a laser without mode selection.

A beam with multiple longitudinal modes is highly modulated.

Short pulse generation: the mode-locked laser

The effect of mode locking explained in the spectral domain

In a normal laser, the longitudenal modes are not in phase Laser cavity

Effect of mode locking on the temporal behavior of the laser

In a mode-locked cavity, the phase between modes follows deterministic laws Time intensity of a laser with locked modes

04/15/2024 | IAEA LDRS Workshop| Prof. M. Roth

Techniques for locking modes together

• SESAM (Saturable absorber) that introduces a few % losses in CW mode Kerr Lens Mode locking (operation mode dependent losses)

 AOM that modulates the losses in the cavity (active)

Part 2: Amplification of short pulses

04/15/2024 | IAEA LDRS Workshop| Prof. M. Roth

A view of the PHELIX 31.5 cm amplifier section

Non-linear refraction index

Strong laser beam in medium: Change in refractive index to first order:

$$n = n_0 + n_2 < E^2 > = n_0 + \gamma$$

With n_0 as linear and n_2 as nonlinear refractive index and the intensity I.

The intensity I results from the temporal average $\langle E^2 \rangle$ in electrostat. units (esu)

$$I = (n_0/4\pi c) < E^2 >$$

Example: (Ti:Saphhire) $n_0 = 1.76$ $n_2 = 3 \times 10^{-20} \text{ m}^2/\text{W}$

In literature the refractive index is shown as $n_2 \text{ or } \gamma$.

$$\gamma$$
 [cm²/W] = (4 π n₂)/(n₀c) (x10⁷) = 4,19 x 10⁻³ n₂/n₀ [esu]

Effect on the E-Field:

$$\widetilde{E}(x,t) = \int_{\infty}^{-\infty} E_0(\Delta\omega) \cdot e^{-i(\omega t - kx)} d(\Delta\omega) = \int_{\infty}^{-\infty} E_0(\Delta\omega) \cdot e^{-i\omega \left(t - \frac{x}{c}(n_0 + \Delta n(I))\right)} d(\Delta\omega)$$

Non-linear refractive index

Example for non-linear refractive:

Nd:Glass: in 10⁻¹³ esu

Q-246 (Silicate)		LG-670 (Silicate) Q-88 (Phosphate)			LHG-8 (Phosphate)	LG-760 (Phosphate)
	1.4	1.41	1.1	1.13	1.04	
					<u> </u>	
ED-2	(Silicate)	LHG-5 (Phosphate)	EV-1(Phosphate)		Fluorphosphate	
	1.41	1.16	0.91	0.71		
γ=	3.77	3.15	2.53	2.0	[10 ⁻¹⁶ cm ² /W]	

The non-linear refractive index has two components acting on different time scales :

Electronic part: Distortion of the electron cloud around the nucleus. Relaxation times are typically a few optical cycles. Nuclear part: nucleus attempts to minimize local field-matter interaction. Relaxation times: rotation or vibration cycles. In glass: electronic part 70-85%.

Nonlinear refractive index in glass is smaller for circularly polarized light compared to linear polarized light by about 2/3.

B-Integral

Phase difference of a wave in vacuum and in a medium with index n:

$$\Delta \phi = \frac{2\pi}{\lambda} \int_{0}^{L} n(z) dz \qquad (5.3)$$

With λ as vacuum-wavelength and optical path L

$$\Delta \phi = \frac{2\pi}{\lambda} n_0 L + \frac{2\pi}{\lambda} \int \gamma I(z) dz \qquad (5.4)$$

Also constant term Φ_0 and intensity dependent part with phase B:

$$B = \frac{2\pi}{\lambda} \int_{0}^{L} \gamma I(z) dz = \frac{8\pi^{2} \times 10^{7}}{\lambda c} \int_{0}^{L} \frac{n_{2}}{n_{0}} I(z) dz \qquad (5.5)$$

B-Integral (Breakup Integral)

B-Integral

The B-Integral is main parameter describing the non-linear effects.

B-integral creates self-focussing on small and large scales.

For Fusion lasers values of B-Integral exceeding 9 (1.5 wavelength) are not to be tolerated

For UHI laser we need to minimize the B-integral

For ultra-short pulses: B-Integral below 1

Small-Scale Self Focusing

Results of SSSF

G3887

Figure 70.2

A malfunctioning spatial filter pinhole assembly caused the accidental damage to this liquid crystal polarizer component (135-mm diameter).

Damage of laser material

Damage to laser material result in deterioration of the beam profile

Laser systems try to operate at highest possible intensities

Limit: Damage Threshold of the material

Costs proporational to optics aperture (non-linear)

Cause of damage not fully understood so far

Many possible reasons

Lots of experimental data

Transparent media Idea: Free electrons by multi-photon ionization and avalanche-like grow of electrons

Plasma transports absorbed energy in surrounding material.

Damage in bulk, at the surface or at dielectric coatings

Single-pass amplification is limited by fluorescence

- \rightarrow Longitudinally, amplification is creating an ASE pedestal
- $\rightarrow\,$ Transversally, the fluorescence is depleting the gain medium
 - → Transverse gain parameters $(F_{stored}/F_{sat} \text{ or } g_0 I)$ of 3 to 4 are maximum $(G_0 \text{ of } 20 \text{ to } 50)$
 - \rightarrow High gain materials are not favorable to energy storage
 - \rightarrow Large width/length ratio are prohibited

 $E_{\max} \approx F_{saturation}.S$

Amplification in multi-pass is a solution to mitigate problems

04/15/2024 | IAEA LDRS Workshop| Prof. M. Roth

In the end

How far can one go with amplification?

Edge of the gain medium

TECHNISCHE UNIVERSITÄT DARMSTADT

PHELIX Single pass gain:10, Aspect ratio : 0.7

A ride on the beamline of the National Ignition Facility

Part 3: Manipulation of short Pulses

Introduction to the spectral phase

In the spectral domain, the electric field may be defined by its complex amplitude and a phase around the central frequency ω_0

The natural or controlled dispersion of laser components is used to modify the shape of laser pulses

The best example of spectral phase modification is the CPA

A short laser pulse can be chirped (temporally stretched) into a longer pulse using a "dispersive" element **Reduced Peak Intensity Dispersive element** Short pulse Long "chirped" pulse A long pulse can be amplified without the risk of damage amplifier Long "chirped" pulse Long "chirped" pulse Pulse compression technique have been known for 35 years compresso Long "chirped"

04/15/2021 SCAEA LDRS Workshop| Prof. M. Roth

Modern PW short pulse lasers incorporate mostly pulse shaping devices

Example of a big CPA system

Relativistic Plasma physics

Basics

The Petawatt opens a new regime of ultra-relativistic laser-matter interactions

Enormous EM fields at I = 10^{21} W/cm² : $E \sim I^{1/2} \lambda = 10^{14}$ V/m $B = E/c = 3x10^5$ Tesla $P_{rad} = I/c = 3x10^{10}$ J/cm³

= 300 GBar

Relativistic Electron Motion

Cycle-averaged oscillation energy:

$$\begin{split} E_{avg} &= mc^2 [1 + a_o^2/2]^{1/2} \\ a_o &= eA/mc^2 = [I/(1.37 \times 10^{18})]^{1/2} \lambda(\mu m) \\ \text{at } 10^{21} \text{ W/cm}^2, a_o \sim 27, E_{avg} > 10 \text{ MeV} \end{split}$$

pair-creation thresholds

04/15/2024 | IAEA LDRS Workshop| Prof. M. Roth

032499_APS_tec_103

Electrons in a laser field

Electron trajectory in plane laser pulse

Relativistic plasmas

drift in rel. laser field: compare laboratory system and co-moving system

Lawson-Woodward Theorem!

Relativistic plasmas

ponderomotive acceleration of a free electron

angular distribution:

parallel, longitudinal momentum component is conserved

t

 $p_{\parallel} = \frac{p_{\perp}^2}{2m_ec}$

relation to perpendicular

angular distribution:

$$\operatorname{an}(\theta) = \frac{p_{\perp}}{p_{\parallel}} = \sqrt{\frac{2}{\gamma - 1}}$$

the higher the gamma-factor, the smaller the emission angle

"Surfing" on plasma waves – Wake Field Acceleration

Charles and the state of the st

A COL

2D PIC Resonant LWFA Simulation

A. Pukov et al, MPI - Quantenoptic, Germany

I=4 x 10^{18} W/cm², t=70 fs, ne=3 x 10^{17} cm⁻³

Electron acceleration

- Plasma Wake Field Accelerator(PWFA)
 A high energy electron bunch
- Laser Wake Field Accelerator(LWFA)
 A single short-pulse of photons
- Plasma Beat Wave Accelerator(PBWA)
 Two-frequencies, i.e., a train of pulses
- Self Modulated Laser Wake Field Accelerator(SMLWFA)
 Raman forward scattering instability

evolves to

Resonant Laser Wakefield Generation:

For the optimum plasma condition, $\lambda_p = \pi \sigma_z$

Diffraction limitation:

$$L_{diff} = \pi Z_R = \frac{\pi^2 r_0^2}{\lambda_0}$$

$$\Delta W_{dif} [\text{GeV}] \approx 0.85 P[\text{TW}] \lambda_0 [\mu\text{m}] / (\gamma_0 \tau_L [\text{fs}])$$

Dephasing limitation:

 $L_d[\text{cm}] = 0.18 \times 10^{-4} \tau_L^3 [\text{fs}] \gamma_0 / \lambda_0^2 [\mu\text{m}]$ $\Delta W_d[\text{GeV}] \cong 0.01 P[\text{TW}] \tau_L^2 [\text{fs}] / r_0^2 [\mu\text{m}]$

Pump depletion:

$$L_{pd}[cm] = 1.06 \times 10^{-6} \tau_L^3 [fs] r_0^2 [\mu m] \gamma_0^3 / (\lambda_0^4 [\mu m] P[TW])$$

$$\Delta W_{pd}[GeV] = 0.91 \times 10^{-3} \tau_L^2 [fs] \gamma_0^2 / \lambda_0^2 [\mu m]$$

e.g. $\lambda_0 = 0.8 \mu m$, P = 2TW. $\tau = 100 \mathrm{fs}$, $r_0 = 10 \mu m$ $Z_R \cong 0.4$ mm $a_0 = 0.77(\gamma_0 = 1.14)$ $n_0 \simeq 3.5 \times 10^{17} {\rm cm}^{-3}$ $\lambda_p \cong 60 \mu \mathrm{m}$ **Diffraction limit:** $L_{diff} \cong 1.2 \text{mm}$ $\Delta W_{dif} \cong 12 \,\mathrm{MeV}$ Dephasing limit: $L_d \cong 32 \text{cm}$ $\Delta W_d \cong 2 \,\mathrm{GeV}$ Pump depletion limit: $L_{pd} \simeq 192 \text{cm}$ $\Delta W_{pd} \cong 18.5 \, \text{GeV}$

Scaling

Limit: Wave breaking

Wave breaking E-field

$$E_{wb} / E_0 = \sqrt{2(\gamma_{ph} - 1)} \propto \sqrt{\omega_L / \omega_p}$$

Akhieser, Polovin (1956)

Bulanov et al. PRL 78 (1997)

Generating monenergetic bunches

"Bubble Regime"

Wakefield Bubbles

Pukhov, MtV, Appl.Phys. B (March 2002)

Plasma density:

1.0×1019 /cm3

Laser pulse :

33 fs 12 J 350 TW a=10

Current record: around 10 GeV

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. Rousseau, F. Burgy, V. Malka, submitted to Nature (June 2004)

Ion Beams

Number of accelerated protons: 10¹³ (LLNL- Petawatt)

Pulse duration: several Picoseconds

Maximum energy: 60 MeV (LLNL Petawatt)

Divergence: <a><10° for high energy part

always normal to the rear surface

origin of protons: surface contaminants

04/15/2024 | IAEA LDRS Workshop| Prof. M. Roth

Proton acceleration with lasers : Static electric fields

TV/m fields lead to:

ps pulse duration excellent beam quality high particle numbers no space charge

Initial Target Conditions may be altered by pre-pulse

High contrast Lasers (PHELIX)

Proton acceleration with lasers : Static electric fields

