
Onf consistibility of the data and y r-process studies with laser-driven neutron source

Vojtěch Horný (ELI NP)

17th April 2024 Trieste (Italy)

Laurent Gremillet, Xavier Davoine

Joint ICTP-IAEA Workshop on Advanced Technologies in Laser-Driven Radiation Sources and Their Applications

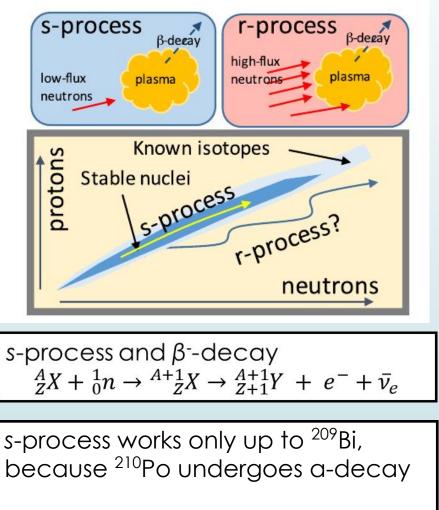
Contents

- □ What is *r*-process?
- Contemporary neutron sources
- Laser-driven neutron source
 - Considered nuclear reactions
 - Experimental state-of-the-art

Anticipated progress with a new generation of the high-power laser

PHYSICAL REVIEW C 109, 025802 (2024)

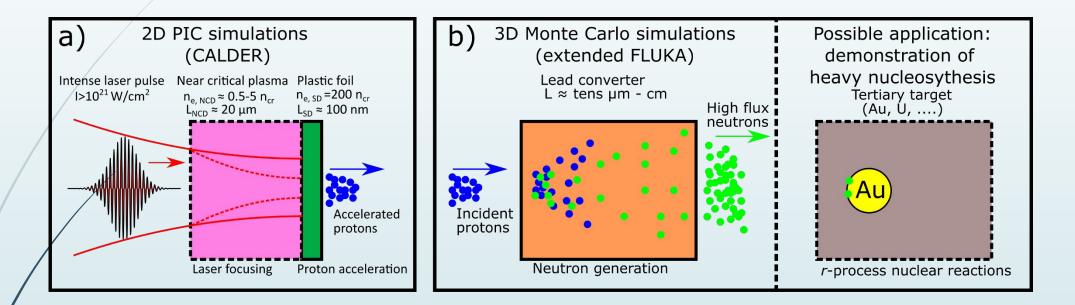
Featured in Physics


Quantitative feasibility study of sequential neutron captures using intense lasers

 Vojtěch Horný D,^{1,2,3,4,*} Sophia N. Chen,⁴ Xavier Davoine,^{2,3} Laurent Gremillet D,^{2,3} and Julien Fuchs D
 ¹LULI - CNRS, École Polytechnique, CEA, Université Paris-Saclay, UPMC Université Paris 06, Sorbonne Université, F-91128, Palaiseau Cedex, France
 ²CEA, DAM, DIF, F-91297 Arpajon, France
 ³Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France
 ⁴Extreme Light Infrastructure - Nuclear Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Bucharest-Magurele, Romania

(Received 12 April 2023; revised 9 October 2023; accepted 21 December 2023; published 14 February 2024)

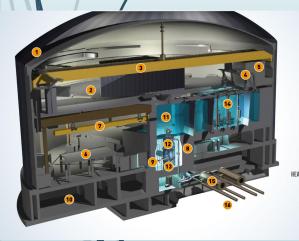
s-process and astrophysical r-process

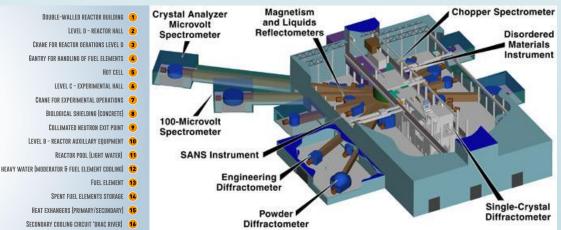

 $^{210}Po \rightarrow ^{206}Pb + ^{4}a$

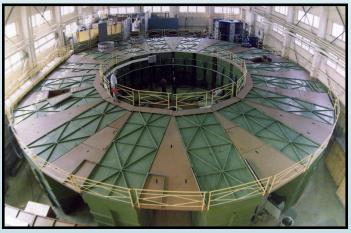
Rapid neutron capture:

capture of two or more neutrons on the seed nucleus within the lifetime of the intermediate product.

- Origin of half of the atomic nuclei heavier than iron, and of the heavier isotopes of heavy elements.
- Occurs in neutron star mergers, probably not during core-collapse of supernovae as though till LIGO.
- Astrophysical conditions: extreme neutron density of >10²⁰ cm⁻³, temperature of ~keV.
- On Earth observed by the thermonuclear explosion.

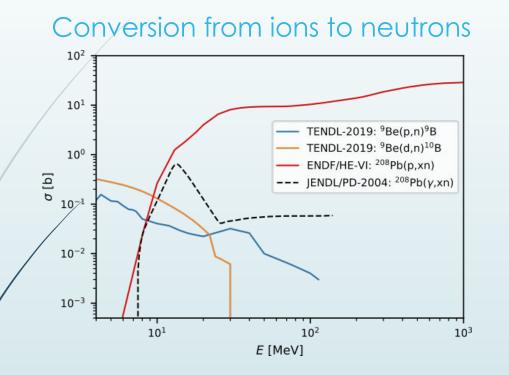

Idea of laboratory r-process study



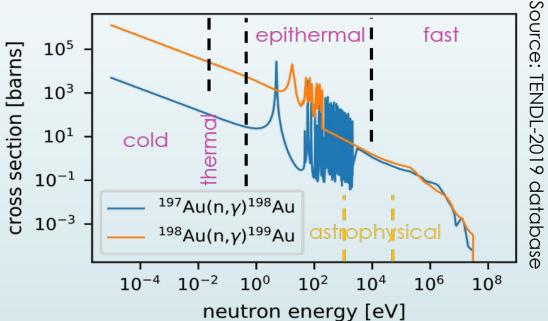

- □ Ion acceleration: TNSA, RPA, shock acceleration
- Conversion in the neutron converter: Be(d,n), Li(p,n) fusion reactions, spallation on heavy nuclei
- Neutron capture on an appropriate nucleus: e.g. ¹⁹⁷Au+2n -> ¹⁹⁹Au within the lifetime of intermediate product of ¹⁹⁸Au
- Measurement of decay of final product ¹⁹⁹Au

Contemporary neutron sources

	Facility	Peak neutron flux [n cm ⁻² s ⁻¹]	Average neutron flux [n cm ⁻² s ⁻¹]	Neutron bunch duration	Repetition rate	Spectrum
	Institut Laue–Langevin (reactor)	10 ¹⁵	10 ¹⁵	continuous	continuous	thermalised
	Spallation Neutron source (accelerator)	10 ¹⁶	10 ¹²	1 µs	60 Hz	thermalised
/	National Ignition Facility (fusion devoted laser)	10 ²⁶	10 ¹⁰	100 ps	once a day	MeVs
	GIT-12 (Z-pinch)	10 ¹⁸	106	10 ns	once a day	MeVs
/	Current lasers	10 ¹⁸	106	1 ns	once per hour	broad



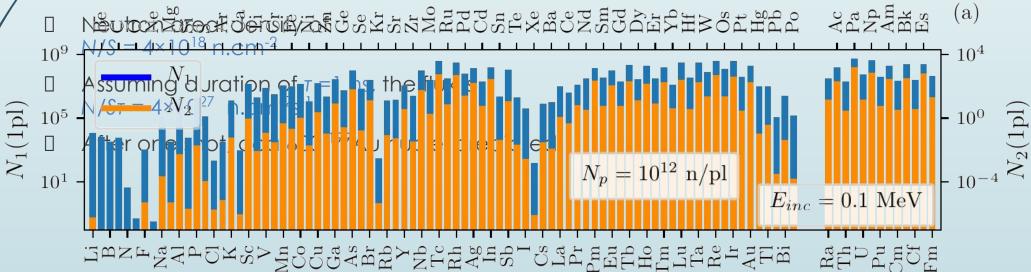
Cikhardt, J., et al. Physics of Plasmas 27.7 (2020): 072705.


Neutron generation and capture cross-sections

Generation of neutrons

- E Fusion reaction on light nuclei (keV-MeV).
- Spallation on heavy nuclei (MeVs)
- Photonuclear reactions from bremsstrahlung or synchrotron radiation (keV-MeV).
- Nuclear fission (MeV)

Neutron capture

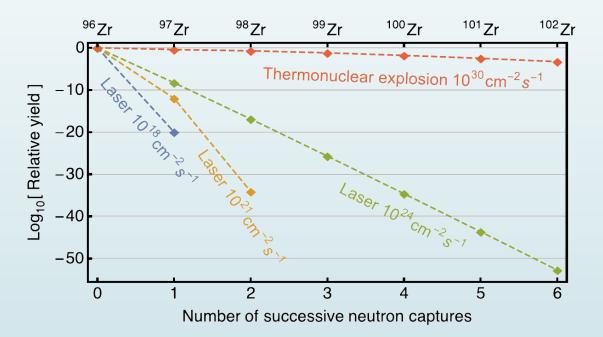


Uncertainities

- □ Lacking data especially A+1 isotopes \rightarrow TALYS modelling.
- In astrophysics, increased cross-section
 - stellar enhancement factor

r-process with LDNS: recent literature

- P. Hill & Y. Wu, PRC, 103, 014602 (2021)
 - $N = 10^{12}$ neutrons per pulse
- Gaussian energy spectrum
 - □ 100 keV 5 MeV
 - ∕□ 10% relative width
- Uniform flux through $S = 25 \,\mu m^2$
- Converter thickness $L=100 \ \mu m$



r-process with LDNS: recent literature

S. N. Chen et al., MRE, 4.5, 054402, 2019.

Neutron capture on ⁹⁶Zr

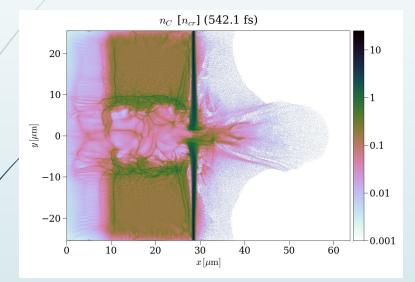
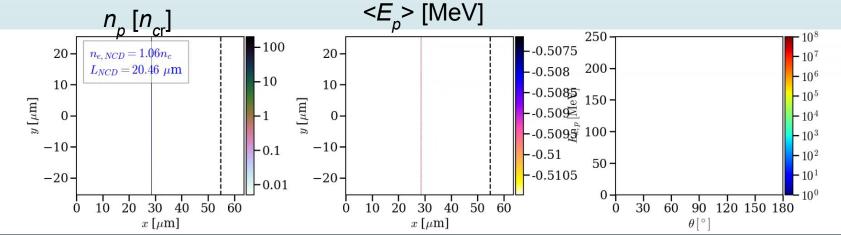

- Neutrons from LDNS
- In their estimation, it is assumed constant $\sigma=1b$ (corresponds to ≈ 0.3 keV, for fast newtrons order of magnitude lower)
- Abundance of respective neutron-rich isotopes calculated.
 - Taking similar parameters as previously
 - $D L = 100 \,\mu m$
 - \square S = 25 μm^2
 - \square N = 10¹² neutrons per pulse
 - 10⁻⁴ ⁹⁸Zr isotopes per shot is predicted.
- 10⁵ neutron-rich isotopes in needed for measurement.

FIG. 8. Relative yields of isotopes produced by successive multi-neutron captures, i.e., by the r-process. The seed target is ⁹⁶Zr. The peak neutron flux is indicated for each curve. Laser experiments are calculated for a pulse duration of 1 ns. Also shown are the relative yields produced by a 1 μ s long thermonuclear explosion.

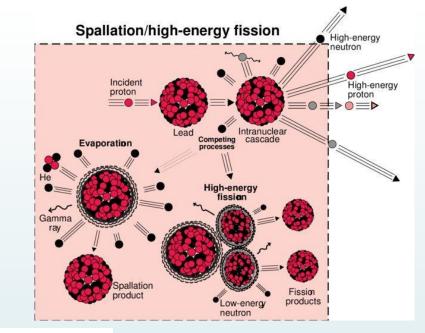
Realistic proton source: an optimized double-layer target for 1 PW Apollon



Horný, V., Chen, S.N., Davoine, X., Lelasseux, V., Gremillet, L. & Fuchs, J. (2022). <u>High-flux neutron generation by laser-accelerated</u> ions from single- and double-layer targets. *Scientific Reports, 12*, 19767

• Plasma:
$$n_{e,SD} = 200 n_{cr}, n_{e,NCD} = 1.06 n_{cr}$$

 $L_{SD} = 25 \mu m_{L_{NCD}} = 115 n m$


• Laser:
$$D_0 = 5 \,\mu\text{m}$$
, $a_0 = 30.6$, $\tau = 20 \,\text{fs}$

Tight laser self-focusing in near-critical plasma significantly enhances the proton acceleration.

Spallation

A nuclear reaction in which the high-energy level of incident particles causes the nucleus to eject more than three particles, thus changing both its mass number and its atomic number.

cylinder

r = 50 cm

Al

0.315

1.08

3.70

17.9

55.0

152

1000

Cu

0.117

0.391

1.31

6.28

19.1

52.9

Ag

0.115

0.380

1.26

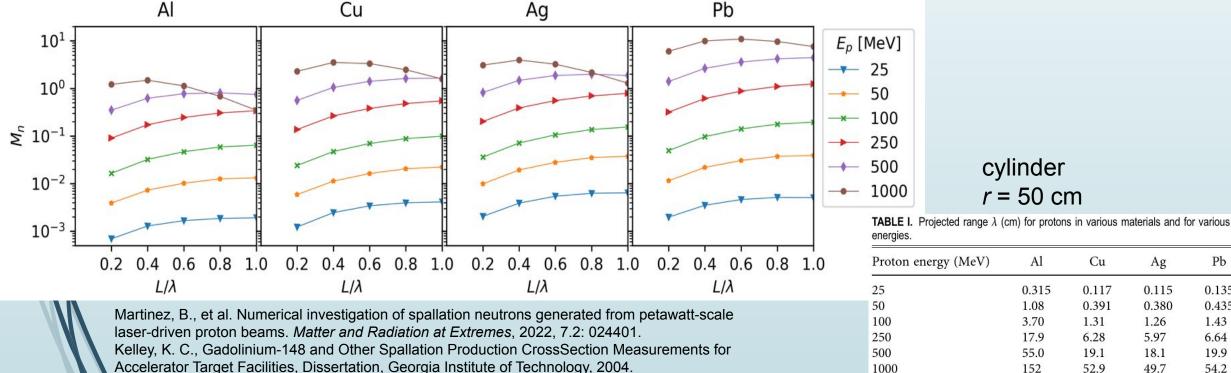
5.97

18.1

49.7

Pb

0.135

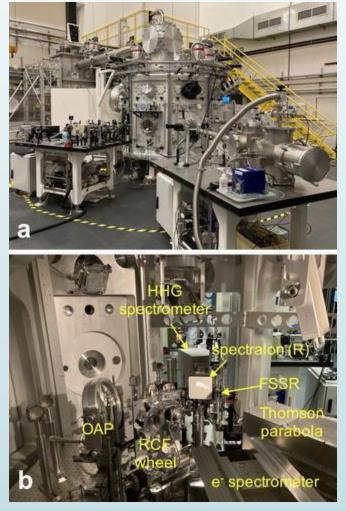

0.435

1.43

6.64

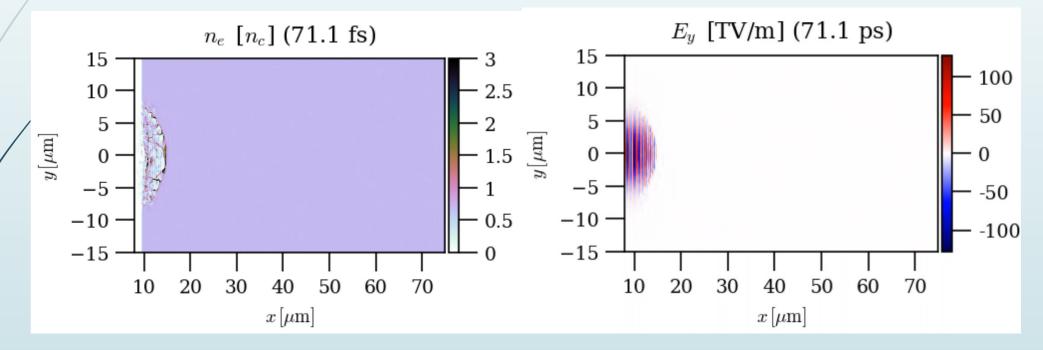
19.9

54.2



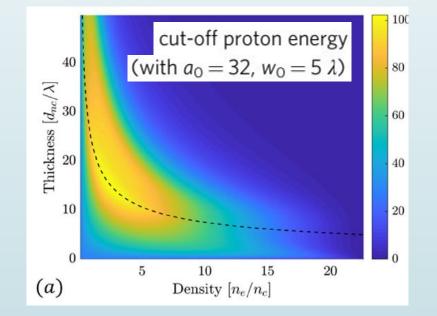
Expectation on the enhanced ion acceleration by Apollon or ELIs

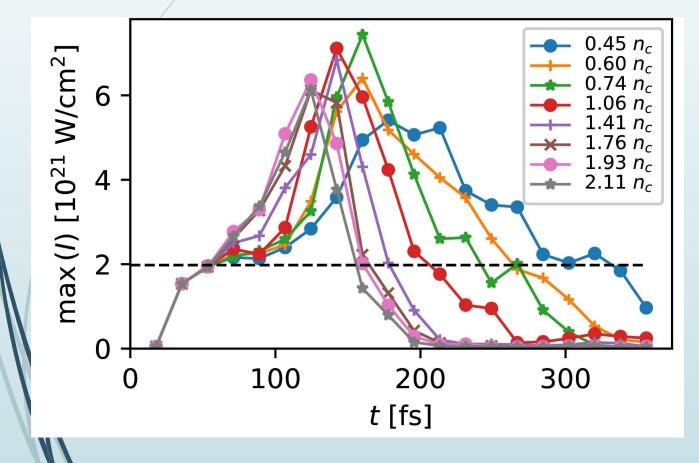
- We aim at the highest possible proton energies
 - Relativistic transparency regime
 - Mitigation of pre-pulses by **double plasma mirrors**.
 - Near Critical Density preplasma layer to intensify the laser pulse
- Apollon is already operational at 1 PW level.
- ELI NP operates at 1 PW and 10 PW.


Apollon's Short Focal Area

Burdonov, K., et al. "Characterization and performance of the Apollon Short-Focal-Area facility following its commissioning at 1 PW level." *Matter and Radiation at Extremes* 6.6 (2021): 064402.

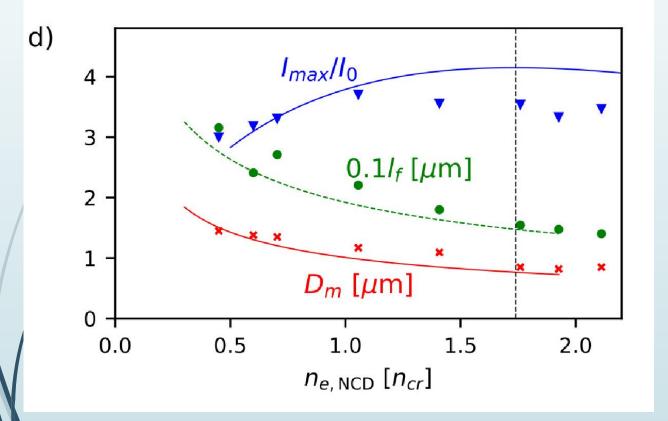
- D 2D PIC CALDER simulation of laser propagation in an uniform plasma with $n_e=0.74 n_{cr}$.
- □ Initial maximum intensity is 2×10^{21} W/cm².


After 25.2 µm of propagation in the NCD plasma, the laser reaches a maximum intensity of 7.4×10^{21} W/cm², within a spot size of D = 1.33 µm.


$$L_{\rm NCD} = 0.88 \frac{D_0^2 / \lambda_0}{(\tau_0 c / \lambda_0)^{1/3}},$$
$$n_{e,\rm NCD} = 0.91 \gamma_0 n_{\rm cr} \frac{\lambda_0^2}{D_0^2} (\tau_0 c / \lambda_0)^{2/3}$$

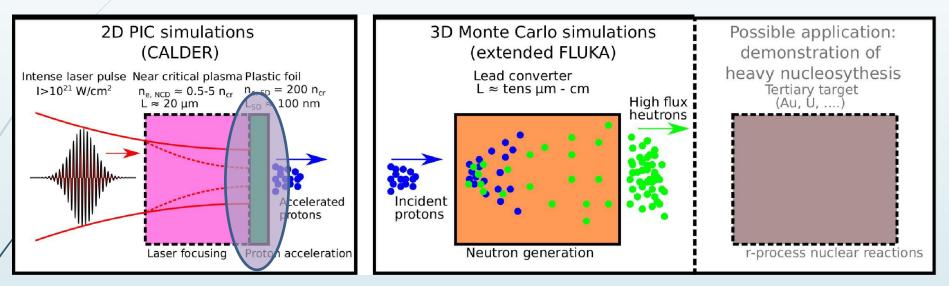
$$\gamma_0 = \sqrt{1 + a_0^2/2}$$

 $n_{\rm cr} \,[{\rm cm}^{-3}] = 1.1 \times 10^{21} / \lambda_0^2 \,[{\rm \mu m}]$


- Thin lens approximation predicts optimal focusing for Apollon 1 PW laser parameters:
 - □ n_e=1.93 n_{cr}
 - D D₀=0.73 μm
 - \Box L = 14.1 µm

Pazzaglia, A., Fedeli, L., Formenti, A., Maffini, A., & Passoni, M. (2020). A theoretical model of laser-driven ion acceleration from near-critical double-layer targets. *Communications Physics*, 3(1), 1-13.

- Maximum intensification is around factor of three for NCD densities in range (0.60,2.11) n_{cr}.
- Optimum achieved for lower density of 0.74 n_{cr}.



- Maximum intensification is around factor of three for NCD densities in range (0.60,2.11) n_{cr}.
- Optimum achieved for lower density of 0.74 n_{cr}
- Best focusing agrees with model.
- The smallest laser spot does not necessarily lead to the highest intensity.

Pazzaglia, A., Fedeli, L., Formenti, A., Maffini, A., & Passoni, M. (2020). A theoretical model of laser-driven ion acceleration from near-critical double-layer targets. *Communications Physics*, 3(1), 1-13.

Ultraintense-laser-based neutron generation

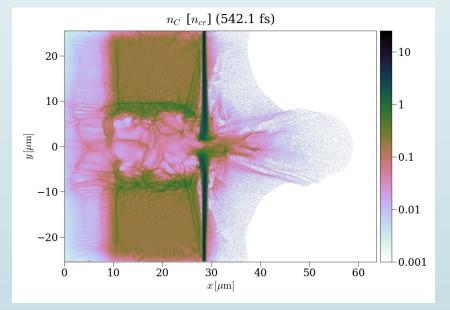
High-energy protons from single-/double-layer targets driven by 1 PW Apollon laser

• *E* = 22 J

- $a_{0,d} = 30.6$
- $\lambda_0 = 0.8 \, \mu m$
- $D_0 = 5 \ \mu m$ (FWHM of intensity)
- $\tau = 20$ fs (FWHM of intensity)
- Apollon or ELI NP systems operate once per minute it is rather a nuclear security concern.
- □ In fact, similar systems could be capable of running at 10 Hz.

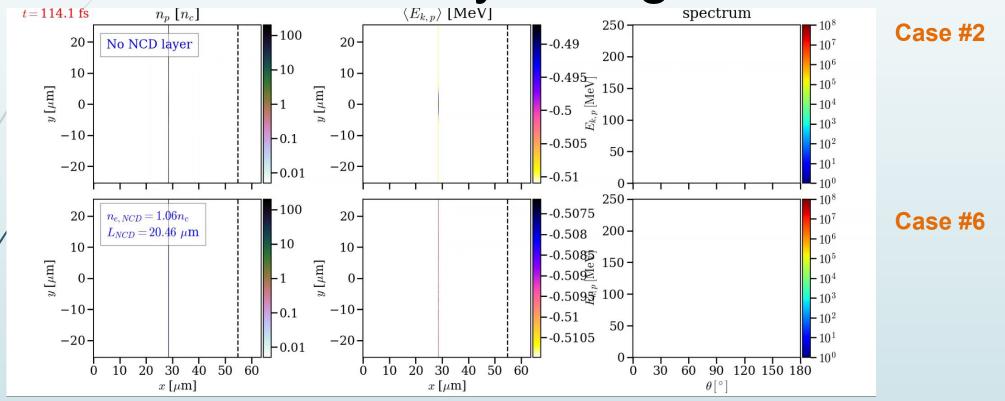
- 1. nm-thick solid CH foil target, n_{e} =200 n_{cr}
- 2. μ m-thick near-critical plasma layer + nm-thick solid CH foil target, n_e =200 n_{cr}

PIC simulations of proton acceleration

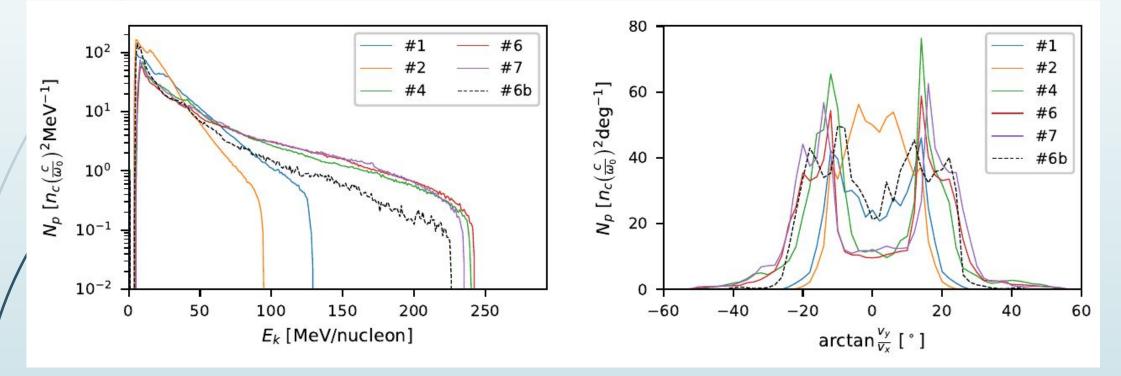

#	$L_{\rm NCD}$ [µm] $L_{\rm SD}$ [nm]		$n_{e,\text{NCD}}[n_{\text{cr}}]$ SD material		N_p or N_d]
1	-	64	-	CH ₂	2.94×10^{11}] E
2	-	115	-	CH ₂	$3.84 imes10^{11}$	
4	20.46	115	1.06	CH ₂	2.16×10^{11}	
6	25.19	115	0.74	CH_2	1.96×10^{11}	
7	18.19	115	0.74	CH ₂	$1.95 imes 10^{11}$	
6b	25.19	115	0.74	CD ₂	1.22×10^{11}	1

Brantov L

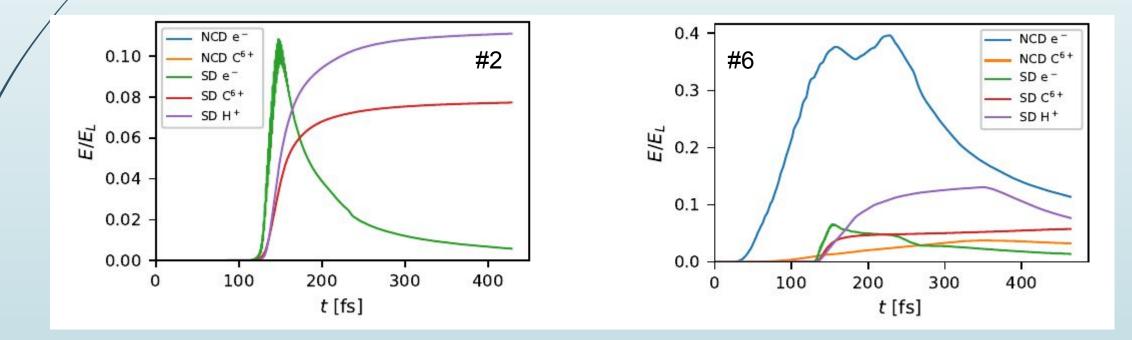
Other parameters are the same:


• Plasma: $n_{e,SD} = 200 n_{cr}$ • Laser: $D_0 = 5 \mu m$, $a_0 = 30.6$, $\tau = 20 \text{ fs}$

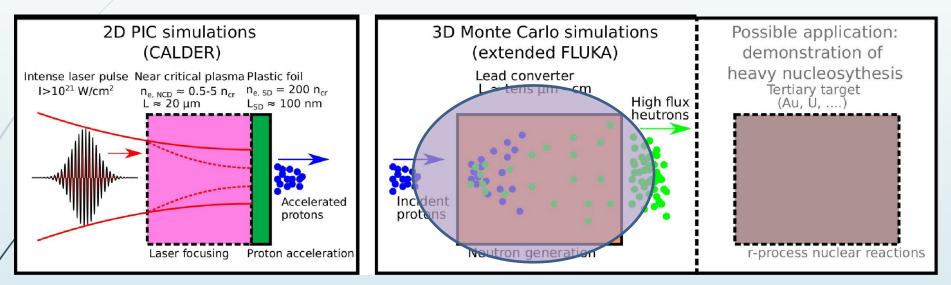
Last column shows total number of accelerated protons or deuterons with energy above 1 MeV.


Proton acceleration with a singleand double-layer targets

Tight laser self-focusing in near-critical plasma leads to significantly faster protons but with reduced number and larger angular divergence!


Ion acceleration with a single- and double-layer targets

- NCD layer greatly enhances the final ion energy.
- NCD decreases the total ion number and worsens the divergence.


Laser energy conversion to particles

- Optimum near-critical plasma (NCP) can absorb over 40% of laser energy
- Fast electrons from NCP enhance proton acceleration from solid foil
- 10 12 % laser energy conversion into protons

Ultraintense-laser-based neutron generation

High-energy protons from single-/double-layer targets driven by 1 PW Apollon laser

- *E* = 22 J
- $a_{0,d} = 30.6$
- $\lambda_0 = 0.8 \, \mu m$
- $D_0 = 5 \ \mu m$ (FWHM of intensity)
- $\tau = 20$ fs (FWHM of intensity)

- 1. nm-thick solid CH foil target, n_{e} =200 n_{cr}
- 2. μ m-thick near-critical plasma layer + nm-thick solid CH foil target, n_e =200 n_{cr}
- □ Apollon or ELI NP systems operate once per minute it is rather a nuclear security concern.
- In fact, similar systems could be capable of running at 10 Hz.

Monte Carlo simulation with FLUKA

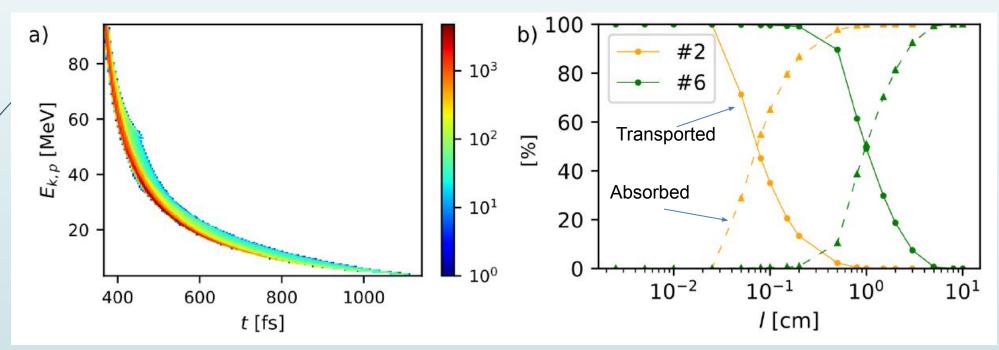
Extensions of the FLUKA code

- Loading of the primary particles from CALDER produced input
 - Transformation from 2D to 3D assuming the cylindrical symmetry
 - Each position (*x*, *y*) and momentum (*p_x*, *p_y*) rotated by a random azimuthal angle
 Particle weight divided by the radial distance from the axis
- Implementation of the routine for the tracking of the particle flux temporal profile
 - Temporal profile considered both at the primary particles and all secondaries.

Simulation parameters

- Always at least 3.6×10⁸ primary particles used.
- Convergence tests conducted up to 3.6×10^{10} primaries.
- Converter is a cylinder of r = 3 cm.

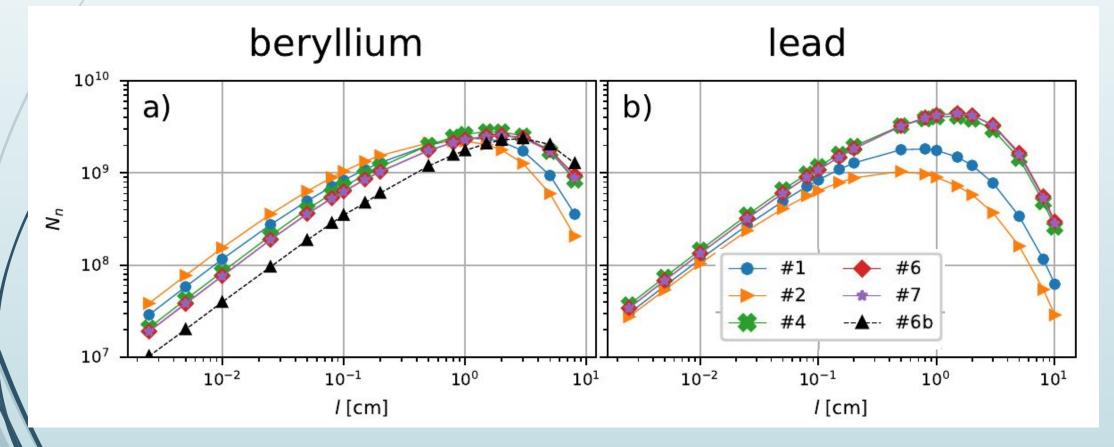
Further studies on the effect of the laser accelerated electrons and generated x-rays


• their contribution to the final neutron yield is negligible.

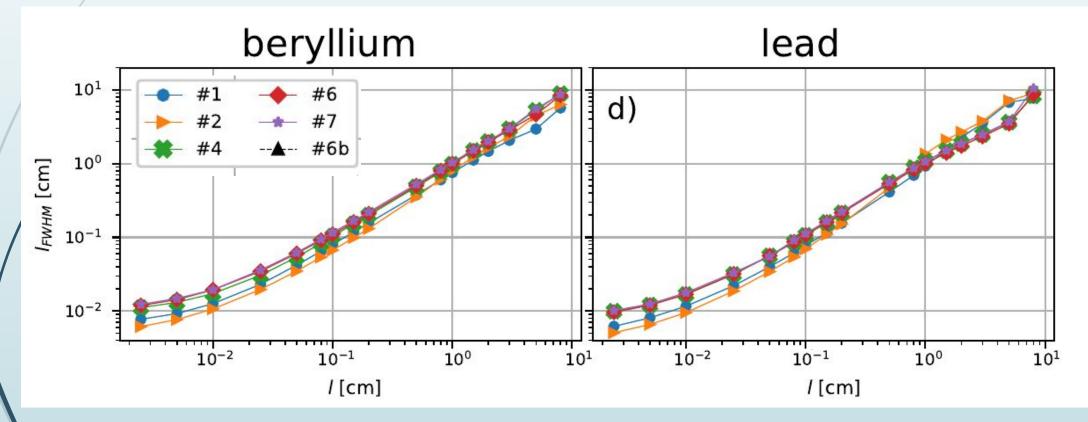
Kudos to Bertrand Martinez for his contribution to the implementation of those routines.

Proton transport through Pb converter

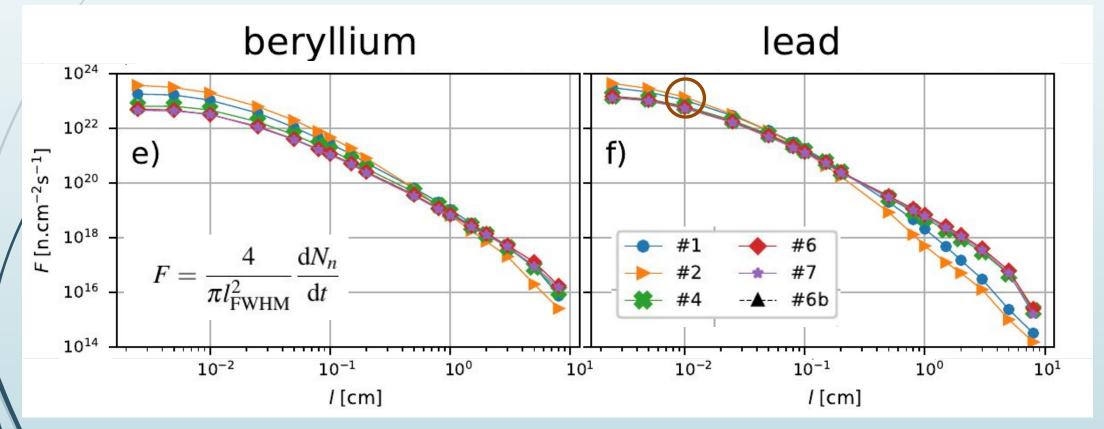
Incident proton spectrogram #2


Monte Carlo simulation

Thin converters: *I* ≤ 250 µm (#2) or 2 mm (#6), ≤ 1% of incident energy deposited
 Thick converters: *I* > 0.5 mm (#2) or 5 cm (#6), all incident energy deposited

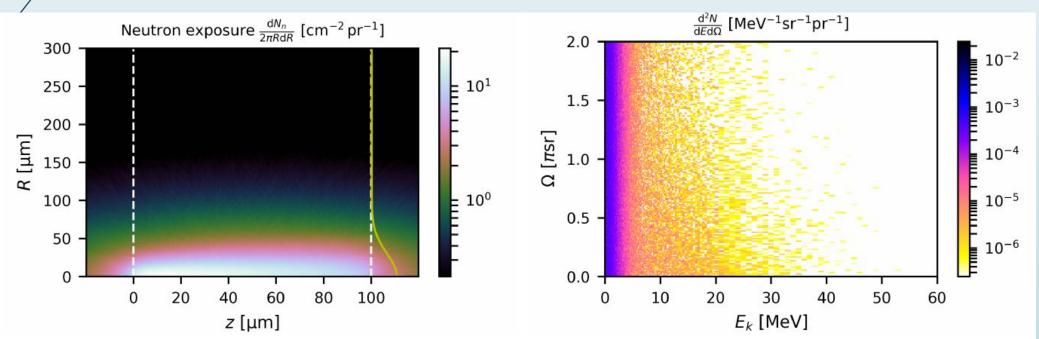

Total neutron number emitted from the rear side of the converter (i.e. in 2π sr)

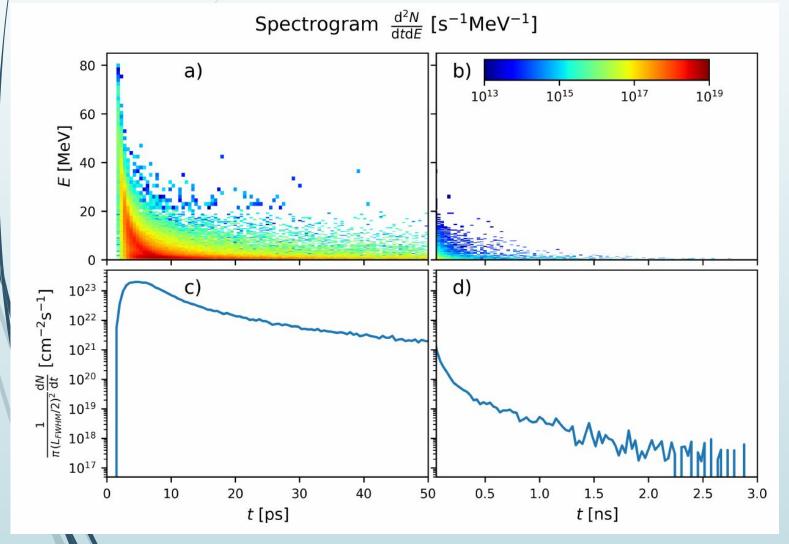
- Highest neutron production already in primary double layer target and lead converter.
- Only a weak dependence on the exact parameters of the front NCD layer.


Neutron source FWHM at the rear side of the converter

- The dependence $N_n(l,r)$ fitted by the Gaussian distribution.
- For converter thicknesses higher than ~0.5 mm source size depends linearly on *I*.

The highest immediate neutron flux

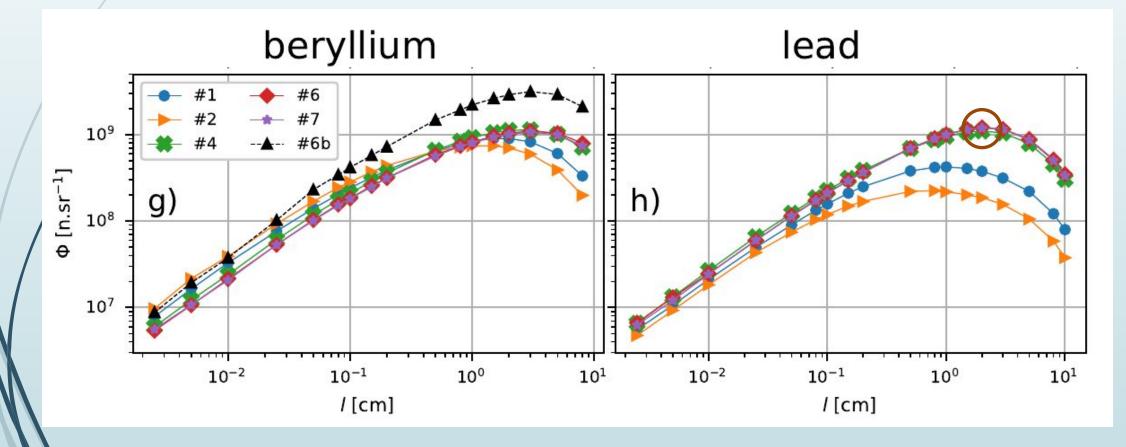

- Single layer proton acceleration targets in combination with thin converters can provide immediate flux above 10²³ neutrons cm⁻²s⁻¹.
- The strong dependence on the source size surpasses the relatively low neutron number.



Neutron fluence and energy-angle spectra

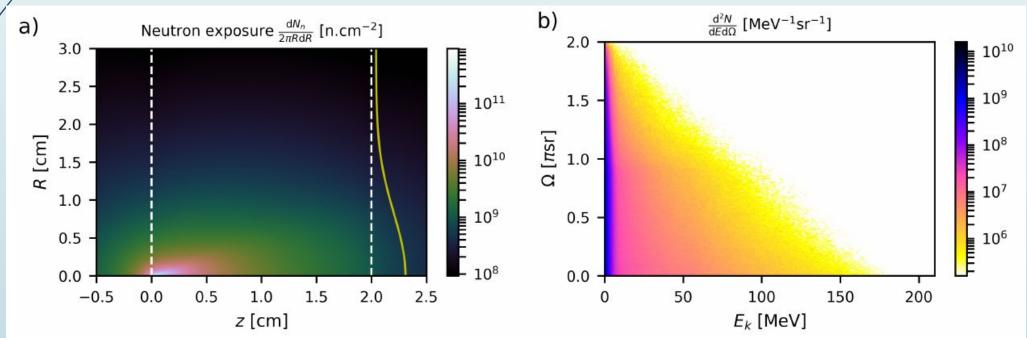
Proton acceleration #2 + 100 µm thick Pb converter

- 1.54×10^8 neutrons emitted per shot
- Transverse neutron source size ~ 95 μm
- Maximum immediate neutron flux ~ 1.41×10^{23} n cm⁻² s⁻¹
- Maximum integrated neutron flux ~ 1.27 × 10⁶ n sr⁻¹

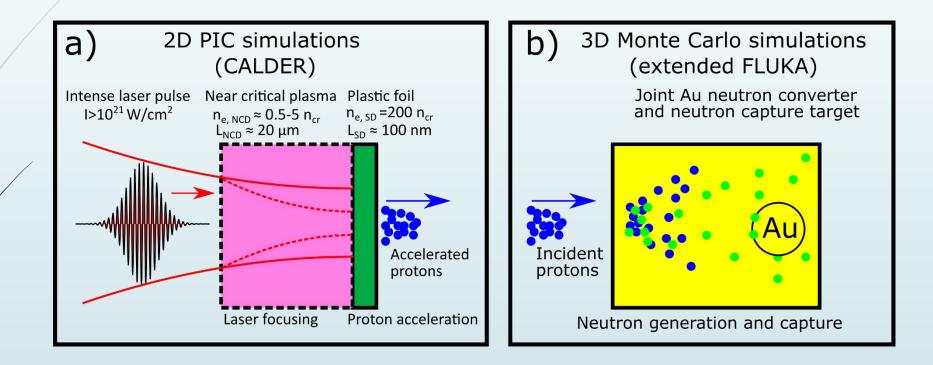


- A relatively high $N_n = 1.54 \times 10^8$
- $F = 1.98 \times 10^{23}$ neutrons cm⁻²s⁻¹
- The most energetic neutrons are delivered within a few ps.
- After 1 ns, $F \approx 10^{19}$ neutrons cm⁻²s⁻¹,
- The less energetic neutrons continuously arrive.
- A flux higher than 10²⁰ neutrons cm⁻²s⁻¹ is maintained for 240 ps in this case.

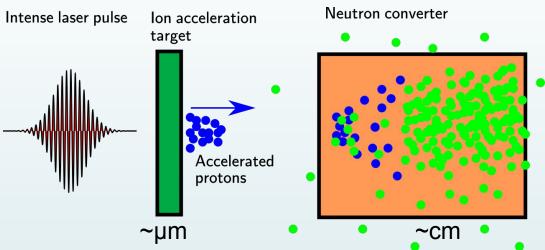
The neutron flux at the axis: the quantity important for applications


- In 1 PW regime, neutron generation is still slightly better for accelerated deuterons and a Be converter.
- The strong forward directionality of the nucleons released by the deuteron break-up.

Neutron fluence and energy-angle spectra

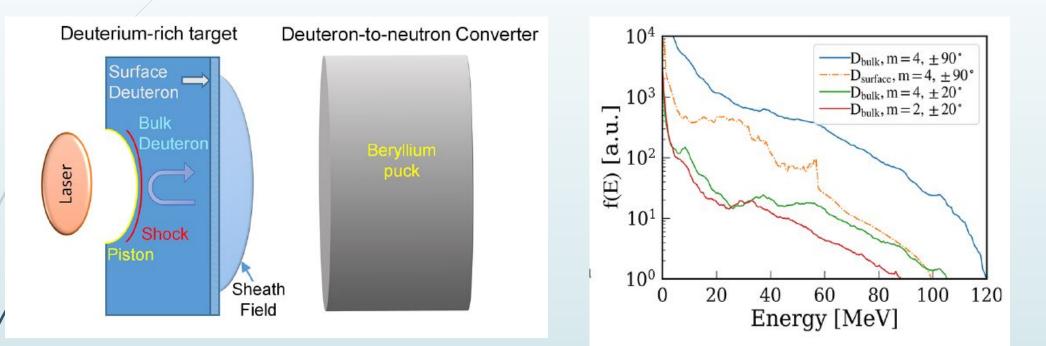

Proton acceleration #6 + 2 cm thick Pb converter

- 4.25×10^9 neutrons emitted per shot
- Transverse neutron source size ~ 1.74 cm
- Maximum immediate neutron flux ~ 1.27×10^{18} n cm⁻² s⁻¹
- Maximum integrated neutron flux ~ 8.40 × 10⁷ n sr⁻¹



Simplified scheme for neutron capture

High Z material can be used for both neutron generation and capture with >20 MeV protons from advanced acceleration schemes.


Laser-driven neutron source

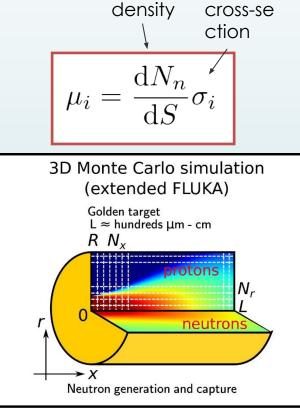
State-of-the-art results achieved at PHELIX@GSI, TRIDENT@LANL or LFEX@ILE Osaka.

	E [J]	т[fs]	f		F [N/sr]	F/E[N/sr/J]	fF [N/sr/s]
Roth, et al. PRL (2013)	80	600	once per hour	CD ₂ +Be	4.40×10 ⁹	5.50×10 ⁷	1.22×10 ⁶
Kleinschmidt et al., Phys. Plasmas (2018)	150	500	once per 90 minutes	CD ₂ +Be	1.42×10 ¹⁰	9.47×10 ⁷	2.63×10 ⁶
Huang et al., APL (2022) –theoretical suggestion	282	1000	once per hour	CD2+Be	1.70×10 ¹¹	6.03×10 ⁸	4.72×10 ⁷
Günther et al., Nat Com. (2022)	20	700	once per hour	CHO+Au	4.93×10 ⁹	2.47×10 ⁸	1.37×10 ⁶
Mirfayzi et al., SciRep (2020)	300	1200	once per hour	CD ₂ +Be+PET+H	8×10 ⁵ cold		
Horný et al., SciRep (2022)	22	20	once per minute	CH ₂ +Pb	1.2×10 ⁹	5.5×10 ⁷	2.0×10 ⁷

LANL shock acceleration design

- Collisionless shock shifts the deuteron spectrum towards higher energies.
- In principle, no need of inclusion of vacuum between target and converter.
- Efficient collisionless shock acceleration yet to be demonstrated.

Huang, C. K., Broughton, D. P., Palaniyappan, S., Junghans, A., Iliev, M., Batha, S. H., ... & Favalli, A. (2022). High-yield and high-angular-fluence neutron generation from deuterons accelerated by laser-driven collisionless shock. *Applied Physics Letters*, *120*(2), 024102.


Neutron-rich isotopes abundance model

Based on Zagrebaev, V. I., et al. PRC 84.4 (2011): 044617.

Abundance of
(A+i)-th isotope
$$b_1 = \frac{N_1}{N_0^0} = \mu_1 \exp(-\mu_1) \simeq \mu_1,$$
$$b_2 = \frac{N_2}{N_0^0} = \frac{\mu_1 \mu_2}{2} \exp(-\mu_2) \simeq \frac{\mu_1 \mu_2}{2}$$

Generalisation: radially and energy dependent flux

$$\mu_i(x,r) = \int \frac{\mathrm{d}^2 N_n}{\mathrm{d}S \mathrm{d}E} (x,r,E) \sigma_i(E) \mathrm{d}E.$$

neutron

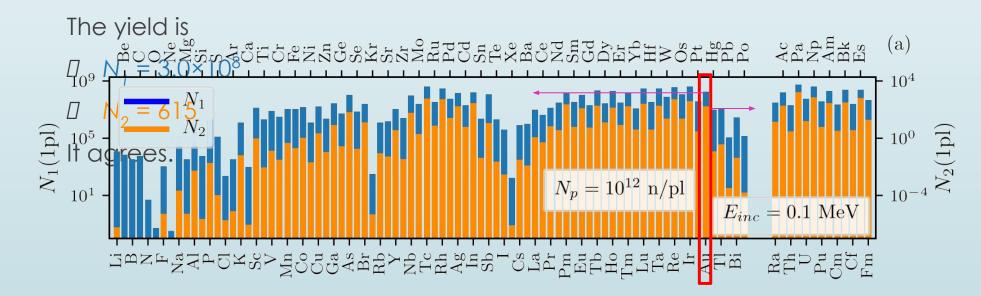
areal

neutron capture

Number of (A+2) isotope nuclei scales with

can be taken e.g. from FLUKA simulation

- \Box Square of the neutron flux \rightarrow spatially small sources
- □ Square of the neutron capture cross-section → slower than epithermal neutrons


Neutron-rich isotopes calculation

Calibration: Hill & Wu parameters

- □ 100 keV neutrons
- $D = N_n = 1.0e12$
- □ No divergence!
- \Box S = 25 um²
- \Box Au converter, I = 100 um

Implementation details:

- Written Python
- Neutron cross sections from TENDL-2019 library.

Laser-driven neutron source

Optimised proton and neutron spectra predicted for Apollon@1 PW

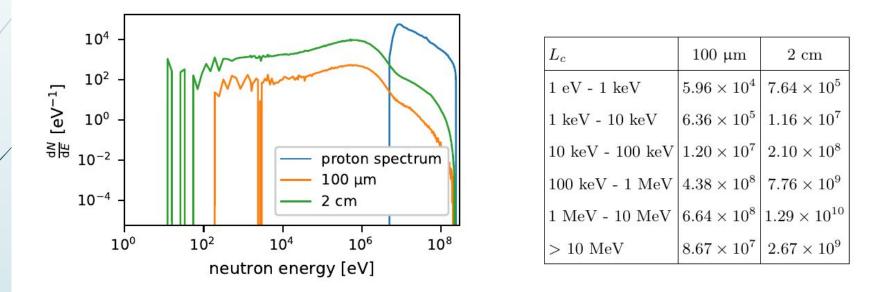
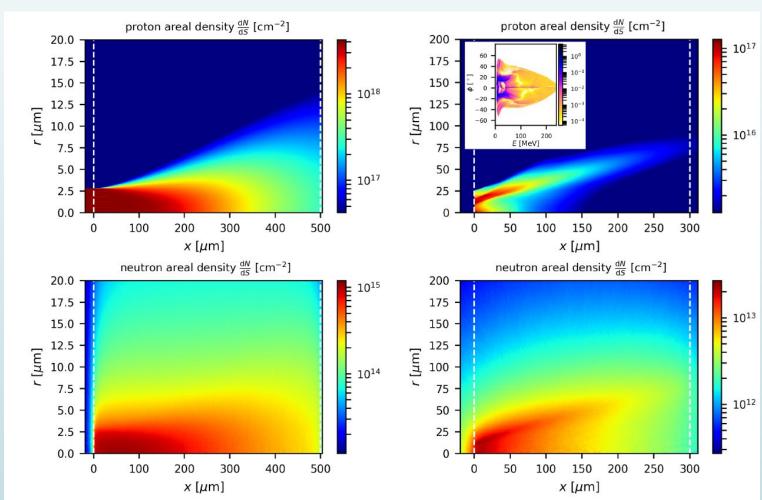


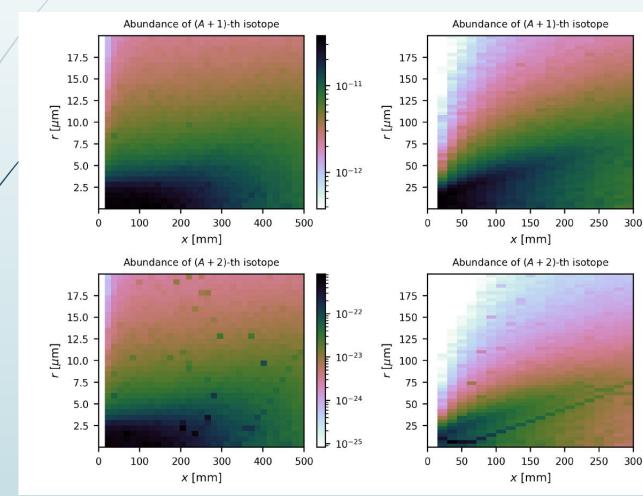
Figure 3. LDNS neutron energy spectra predicted for 20 fs, 1 PW laser system according to 17. Protons are accelerated from the double-layer target comprised of 20 µm, 1 n_c front plasma layer and 115 nm, 200 n_c solid foil in the relativistic transparency regime. Conversion to neutrons is conducted in the lead neutron converter of length of 100 µm and 2 cm, respectively, exploiting the higher neutron multiplicity of > 20 MeV protons in high-Z materials.


Neutron source size is comparable to converter length!

Horný, V. et al. (2022). High-flux neutron generation by laser-accelerated ions from single- and double-layer targets. Scientific Reports, 12,

Proton transport and neutron generation

simulated double layer case



10^{12} protons of *E* = 100 MeV

Neutron-rich isotopes generation

10^{12} protons of *E* = 100 MeV

simulated double layer case

Generated isotopes 10^{12} protons of E = 100 MeV - 10-13 • $N_1 = 1.8 \times 10^5$ • $N_2 = 7.3 \times 10^{-7}$

Double layer primary target • $N_1 = 4.7 \times 10^5$ • $N_2 = 8.8 \times 10^{-8}$

10-24

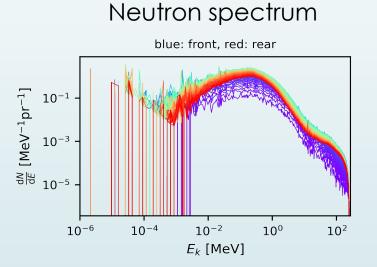
■ 10⁻²⁵

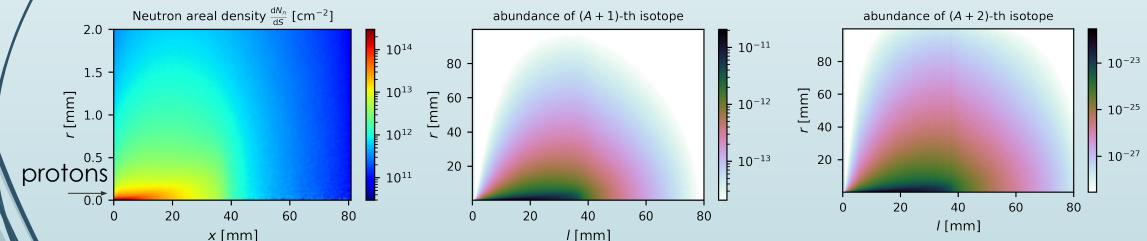
- 10-26

F 10^{−27}

250

300


Orders of magnitude lower than with idealized neutron source from literature.


Neutron-rich isotopes calculation

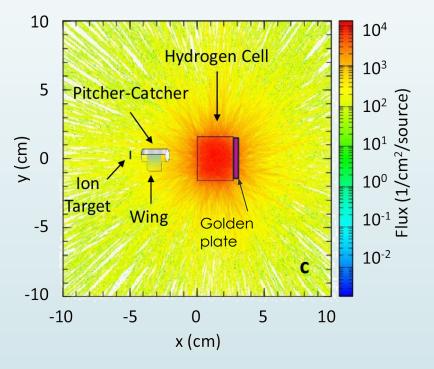
Scholar case: spallation of 1 GeV protons in a golden bulk

- \square Proton beam area, S = 25 um²
- $\square N_p = 1.0 \times 10^{13}$
- \Box Au converter, L = 8 cm

$$N_1 = 9.5 \times 10^{12}$$

 $N_2 = 4.6$

Neutron-rich isotopes calculation


Mirfayzi, S. R., et al., Scientific Reports 2020 10(1), 1–8.

Standard LDNS

- TNSA with 300 J, 1.2 ps system and 5 µm C₂D₄ target.
- Be converter
- Fast neutron flux 1×10⁹ n/sr.

Let Jxosstage moderation

- 100 Hz, 8 hours operation attached to converter
- □ Cold heginolis, He_megdernetor
- \Box 1×10⁷ cold neutrons per shot
- 1 total integrated flux at the moderator surface: 1×10^{12} n/cm²

Discussion

What was ignored?

- Decay of (A+1)-isotopes.
 - ¹⁹⁸Au half-life is 2.7 days.
- Fact that ¹⁹⁹Au decay is hardly observable.

Potential improving effect

(A+1)-isotopes are for up to 1 ns in excited state Π neutron capture cross-section might be higher

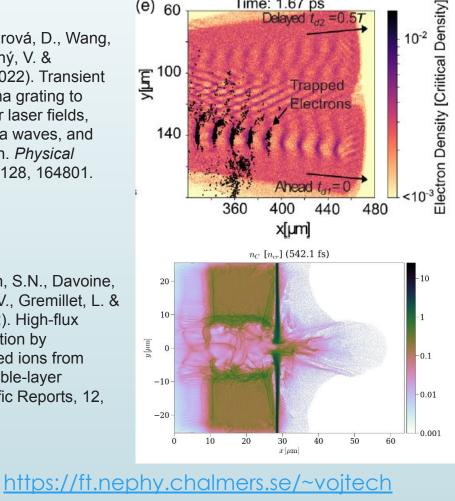
Conclusion

- Recent literature overestimate the Π potential of the laboratory studies of astrophysical r-process.
- Generation of neutron-rich ($\geq A+2$) isotopes \Box at laser systems in principle possible, but makes no sense.

Dr Vojtěch Horný

vojtech.horny@eli-np.ro

Advertisement


Horný, V., & Veisz, L. (2021). Generation of single attosecond relativistic electron bunch from intense laser interaction with a nanosphere. Plasma Physics and Controlled Fusion, 63(12), 125025.

Chen, Q., Mašlárová, D., Wang, J., Li, S. X., Horný, V. & Umstadter D. (2022). Transient relativistic plasma grating to tailor high-power laser fields, wakefield plasma waves, and electron injection. Physical Review Letters, 128, 164801.

[100 [파]

140

Horný, V., Chen, S.N., Davoine, X., Lelasseux, V., Gremillet, L. & Fuchs, J. (2022). High-flux neutron generation by laser-accelerated ions from single- and double-layer targets. Scientific Reports, 12, 19767

0.20 b) $\phi = 90^{\circ}$ 0.15 2 . / [μμ] 0.10 0.05 -2 0.00 -4 0 2 4 x [µm] Time: 1.67 ps (e) ₆₀

Delayed $t_{d2} = 0.57$

Trapped

ectrons