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Soliton

Collision of solitons in shallow wa-

John Scott Russell (1834): observa-
tion of a solitary wave in water on
the Union Canal near Edinburgh
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| year | discovery
1973 Akira Hasegawa of AT and T Bell Labs.
1987 Emplit et al. the Universities of Brussels and Limoges
1988 Linn F. Mollenauer , optical gain
2008 | D. Y. Tang et al. higher-order vector soliton observation
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E(z,t) = £ exp(—ip(ikz — wt)) + c.c

Q = (33)¢ — Rabi Frequency

Area :ffoo Q(z, t')dt’
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« the linear optical attenuation coefficient b T~
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Pulse at resonance
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Resonant gas

lineshape of the resonant gas

FWHM= Aw
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Pulse at resonance
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Resonant gas
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lineshape of the resonant gas

f(w)

1 i X FWHM= Aw
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Pulse at resonance
Resonant gas
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lineshape of the resonant gas

FWHM= Aw

—4 4

if 7>1/Aw ——— Absorption x



le> . Eﬁ =tw1_

howy,

= flo— d- B(t)
E(t) = eEg cos(wt)
where d is the dipole moment, ¢ is the polarization vector and
Ey amplitude of the light field with frequency w.

The time dependent Schriodinger Eq;
il (t)) = Hlp(t))

We need stable relative phase between two states.



But usually we have phase fluctuation due to state preparation.

We need a new formalism which allows us to describe mixed states.
(imperfect state preparation, spontaneous emission, damping, incoherent pumping, ...)

One way to describe this, is through density operator(matrix) formalism!
p =2 Bilvi) (il
dubi=1

Time evolution (von Neumann equation)

ih% = [ﬂ,ﬁ]



The radiation emitted in atomic transition is not perfectly monochromatic.

The shape of the emission line is described by the spectrum lineshape function g, (w).
The function that peaks at the line center defined by
hwo = (E2 — E1),

and is normalized [ go(w)dw = 1.

Full width at half maximum (FWHM) Aw

The main broadening mechanism that can occur in gases:
Lifetime (natural) broadening
Collisional (pressure) broadening
Doppler broadening
The medium is classified of the broadening mechanisms:
Homogeneous: all individual atoms produce the same spectrum, (Lorentzian lineshape),

inhomogeneous: all individual behave differently , produce (Gaussian spectral lines).



Light is emitted when an electron in an excited state

drops to a lower level by spontaneous emission rate
Einstein A coefficient = spontaneous emission rate,
the radiative lifetime 7 = @
The finite lifetime of the excited state — broadening of the spectral line
accordance with the energy time uncertainty principle

AEAt > h, At =7, Aw >

3=

A
90 (@) = 32 GrmmET2e

where the FWHM is given by :

_ 1
Awlifetime =7



collision between atoms in gas —
shorten the effective lifetime of the excited state

if the mean time between collisons Teoyision < 7 (radiative life time)

leads to additional line broadening

Teollison ™~ & P
where o5 is collision cross section,

P is the pressure and T is the temperature.

1 (wmlsc:BT)l/2



Gaussian lineshape function

2/ \2
Jo(w) = \/ TrenT OXP(— chk(:Tgog) )
with a FWHM given by

AwDopple'r _ 26&) ( 2in 2!!kBT)1/2 (!2[77,2 kBT)1/2
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The main broadening mechanism that can occur in
gases:

» Lifetime (natural) broadening v/
» Collisional (pressure) broadening X

» Doppler broadening v/
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Coherent state
(AX1 AXy > 1),[X1, Xo] # 0

Phase Quadrature

Amplitude Quadrature
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Squeezed state

(AXy < 1/2)
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Hy= Hx+ Hy + Hg S —

=3, Shwu6r + hwala + 3, hogbfbe A

H; = Hap + Hyp + Hap

=hY, (09 6y + Dot + 0962)+h([0 6 + Teal)+h Y, (galey e~ on + Hee.)
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The size of the Hilbert space grows exponentially with the size of the system.

The density matrix, which describes the statistical state of a quantum system,

also grows exponentially in size as the system becomes larger. For example:

For a single qubit, the density matrix is a 2 X 2 matrix: <

POO
P10
P20
P30

For a N=2 , the density matrix is a 4 X 4 matrix:

Size of the density matrix o
w w

N

~

9

o

PO1
P11
P21
P31

POO

POL
P11

PO2
P12
P22
P32

)

PO3
P13
P23
P33
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Drummond. P.D. et al., PRA 44, 3 (1991)

Initial conditions and Measurements
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(% + (% — l)[,)@_F)Q(T, = —%K)Q(T, z)+ G [ p(z,w)R™ (1, z,w)dw
+F(1,2),
L RE(r, z,w) = —(y1 £ i(w — wo))RE(T, 2,w) + Q(7, 2) R*(T, 2,w)
+FR(1, 2,w),

L R*(1,2,w) = — [R*(1, 2,w) — 055] — % [Q(T, Z)R* (7, z,w)

+QI(7, 2) R (7, 2,0) | + F3(7,2,w0),




263 (2)\/ Grm/dz

7
(& + (& = 3)85)2(r2) = —§r0(r, 5>’+ G [ pj(z, @R} (1,2,w)dw

1—1;73(7-,%),/ 7
& (T)\/2QR; /Ny
L RE(r, 2,0) = —(v1 £ i(w — wo)) RE (7, 2,w) + 7, 2)RE (7, 2, ) +2§5(7') ’YP(RZ i 1)/Nn

+KI~:”‘;(;;\L‘Y) N +2£g(7')\/ ng/Nn

FRL(r 2, w) = — [Ri (7, 2,w) — 055] — %[n(f,z)nx(f,z,m)
o) 5 (7,2, 0)| L2 o (2 — 099 R?
01, R (7,5, >]+\Fn<, P s &(1) [(27”)(1 0°°R?)

L (RGO —RIQ)-3Wi R Ry 2

/ / N,

(ex(2)6 () = 3z — 2), 3
(e (r)) = o(r =782, - [ﬁg(T)Rz +&(TR, ]

(X mEr () = 8(r =782 vV Wia/Ny

(L) = 3(r—7)8,

(EME () =8(r =782,
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P(7,Q, 0" =@ Q" — QH)s?(Q - Q(0,7)), — (27, Q) Rabi
frequency

Q(0,7) = 2A sech [A(T — 70)] exp(i(67 + ¢(2)),

P(R) =PRI (R )IP(R?+1/2).— (R*, R?) Bloch
vectors
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S = 10logy, (1 + —Va"“f(M))

Atomic
Laser mercury
Atomic vapor lamp vapor cell
focused with
i ellipsoidal mirror Detection
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(b)

x

FIG. 3. At the top, we show the atomic evolution as both, a trajec-
tory of the Bloch vector and as the time evolution of the population
inversion (gray inset). At the bottom the phase-space representation
of the excitation of the pulse is shown: the coherent state before the
interaction (red) and the distorted state after the interaction (pink). In
(a) the initial pulse area is less than 2 and in (b) the pulse area is
larger than 2. The atomic excitation left behind corresponds to an
attenuation of the light pulse. In (a) larger amplitudes within the un-
certainty region are attenuated less than lower amplitudes resulting in
increased amplitude uncertainty. In (b) the roles are reversed: larger
amplitudes are attenuated more than lower ones, leading to squeezing

of the amplitude uncertainty.
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FIG. 4. Optimum squeezing as a function of the initial area of the

input pulse in the presence and absence of longitudinal damping. The

bottom subplots indicate the evolution of squeezing for pulses with
the initial area 2, 2. 37, and 2.8x. The blue curves are in the absence
of the longitudinal damping while the red curves capture the effect
of the damping. The transparent shaded color shows the uncertainty
of the achieved squeezing from 4000 samples in each grid point.
The longitudinal damping rate is taken to be y) = 5.013kHz, while
temperature is kept (o zero. The pulse duration r = 99.97 ns and the
atomic properties are the same as in Fig. 2.

Phys. Rev. Research 6, 023142




Mercury vapor lamp \\ I
</

Kagome hollow core PCF

Fig. 1. Experimental set-up. The mercury vapor in the hollow-core PCF is pumped
incoherently from the side by a mercury vapor lamp (main wavelength 254 nm, with
significant contributions at 405 nm, 436 nm, and 546 nm), which populates the &°P; level. The
E%— 6D, transition is probed with frequency-doubled light from a diede laser.

Vogl, U. et al., Opt 22, 24 (2014)
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Hyperfine structure for the 63Ds — 63 P, 3650 A line of natural Hg

Isotope Abundance transition
I
mass No. (%) F(*D3) - F(®*Dy)
196 0 0.15 3 2
198 0 10.02 32
200 0 23.13 3— 2
202 0 29.80 32
204 0 6.85 3 2
199 % 16.84 5/2 3/2 , 7/2— 3/2 , 5/2— 5/2,7/2— 5/2.
3/2 > 1/2,5/2 — 3/2,3/2 — 3/27/2 — 5/2
201 % 13.22 5/2 = 5/2,3/2 = 5/29/2 — 7/2,7/2 — 7/2
5/2 = 7/2.

The table presents data on the mass numbers, nuclear spins (I), abundances (as percentages),

and transitions of the most common isotopes found in a small sample of mercury vapor.
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Isotope 2?Hg

9.95

0.00

S%pt( dB)

Sq(dB)

0.0 0.1 0.2 0.3 0.4
L(m)

FIG. 3. The figure illustrates the quadrature squeezing characteristics
for a pulse with an initial area of ®; = 27 at resonance. In the
upper subplot, the squeezing values are presented at L = 0.1(m) for
various detection angles. The lower subplot depicts the evolution of
the optimum squeezing along the fiber length.
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Squeezing in the room temperature
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