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Soliton

John Scott Russell (1834): observa-

tion of a solitary wave in water on

the Union Canal near Edinburgh

Collision of solitons in shallow wa-

ter
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Solitons development in optical fiber

year discovery

1973 Akira Hasegawa of AT and T Bell Labs.

1987 Emplit et al. the Universities of Brussels and Limoges

1988 Linn F. Mollenauer , optical gain

. . . ...

2008 D. Y. Tang et al. higher-order vector soliton observation

3 / 45



Introduction
From master equation to phase space formalism

Results
Experiment

The width and shape of spectral lines

Atom Field interaction

4 / 45



Introduction
From master equation to phase space formalism

Results
Experiment

The width and shape of spectral lines

Pulse area

E(z, t) = E exp(−iϕ(ikz− ωt)) + c.c

Ω = (2dℏ )E −→ Rabi Frequency

Area =
∫ t

−∞ Ω(z, t
′
)dt

′
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Area theorem

dθ
dz = −α

2 sin(θ),
α the linear optical attenuation coefficient for the material

13 / 45



Introduction
From master equation to phase space formalism

Results
Experiment

The width and shape of spectral lines

+ = ???

Pulse at resonance
Resonant gas

(τ)
lineshape of the resonant gas
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+ = SIT

Pulse at resonance

Resonant gas

(τ) lineshape of the resonant gas

if τ < 1/∆ω Transparent ✓
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+ = ✗

Pulse at resonance

Resonant gas

(τ) lineshape of the resonant gas

if τ > 1/∆ω Absorption ✗
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two level atom

Ĥ = Ĥ0 − d̂ · Ê(t)
E(t) = εE0 cos(ωt)

where d̂ is the dipole moment, ε is the polarization vector and
E0 amplitude of the light field with frequency ω.

The time dependent Schrödinger Eq;
iℏ ∂

∂t |ψ(t)⟩ = Ĥ|ψ(t)⟩
We need stable relative phase between two states.
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two level atom

But usually we have phase fluctuation due to state preparation.

We need a new formalism which allows us to describe mixed states.
(imperfect state preparation, spontaneous emission, damping, incoherent pumping, ...)

One way to describe this, is through density operator(matrix) formalism!

ρ̂ =
∑

i Pi|ψi⟩⟨ψi|∑
i Pi = 1

Time evolution (von Neumann equation)

iℏ∂ρ̂
∂t =

[
Ĥ, ρ̂

]
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The spectral lineshape function

The radiation emitted in atomic transition is not perfectly monochromatic.

The shape of the emission line is described by the spectrum lineshape function gω(ω).

The function that peaks at the line center defined by

ℏω0 = (E2 − E1),

and is normalized
∫∞
0 gω(ω)dω = 1.

Full width at half maximum (FWHM) ∆ω

The main broadening mechanism that can occur in gases:

Lifetime (natural) broadening

Collisional (pressure) broadening

Doppler broadening

The medium is classified of the broadening mechanisms:
Homogeneous: all individual atoms produce the same spectrum, (Lorentzian lineshape),

inhomogeneous: all individual behave differently , produce (Gaussian spectral lines).
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Lifetime broadening

Light is emitted when an electron in an excited state

drops to a lower level by spontaneous emission rate

Einstein A coefficient = spontaneous emission rate,

the radiative lifetime τ = ln(2)
γ0

The finite lifetime of the excited state −→ broadening of the spectral line
accordance with the energy time uncertainty principle

∆E∆t ≥ ℏ, ∆t = τ , ∆ω ≥ 1
τ

gω(ω) =
∆ω
2π

1
(ω−ω0)2+(∆ω/2)2

where the FWHM is given by :

∆ωlifetime =
1
τ
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Collisional (pressure) broadening

collision between atoms in gas −→
shorten the effective lifetime of the excited state

if the mean time between collisons τcollision ≤ τ (radiative life time)

leads to additional line broadening

τcollison ∼ 1
σsP

(πmkBT
8 )1/2

where σs is collision cross section,
P is the pressure and T is the temperature.
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Doppler broadening

Gaussian lineshape function

gω(ω) =
c
ω0

√
m

2πkBT exp(−mc2(ω−ω0)
2

2kBTω2
0

)

with a FWHM given by

∆ωDoppler = 2ω0(
(2ln(2))kBT

mc2 )1/2 = 4π
λ ( (2ln2)kBT

m )1/2
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The main broadening mechanism that can occur in
gases:

▶ Lifetime (natural) broadening ✓

▶ Collisional (pressure) broadening ✗

▶ Doppler broadening ✓
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Amplitude Quadrature

P
h
a
se

Q
u
a
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ra

tu
re

∆X1

∆X2

Coherent state

(∆X1 ∆X2 ≥ 1
4),[X1, X2] ̸= 0

X̄1

X̄2
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Amplitude Quadrature

P
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X
θ+ π

2

θ

∆
X θ

Squeezed state

( ∆Xθ < 1/2)

X̄1

X̄2
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Model

Ĥ0 = ĤA + ĤF + ĤB

=
∑

µ
1
2ℏωµσ̂

z
µ + ℏωâ†â+

∑
k ℏωk b̂

†
k b̂k

ĤI = ĤAB + ĤFB + ĤAF

= ℏ
∑

µ(Γ̂
σ†
µ σ̂

−
µ + Γ̂σ

µσ̂
+
µ + Γ̂σ

µσ̂
z
µ)+ℏ(Γ̂a† â+ Γ̂aâ†)+ℏ

∑
µ(gâ

†σ̂−µ e
−ik·xµ +H.c.)

ωµ

|1⟩

|2⟩

z
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∂ρ̂
∂t =

1
iℏ [Ĥint, ρ̂] + (∂ρ̂∂t)field + (∂ρ̂∂t)atoms

[
−i(ω − ω0)â

†â, ρ̂
]
+
[
−i

∑
µ(ωµ − ω0)σ̂

z
µ, ρ̂

]
+[

−ig
′
â†

∑
µ σ̂

−
µ +H.C, ρ̂

]

cκ
2 (1+ n)

([
âρ̂, â†

]
+
[
â, ρ̂â†

])
+n

([
â†ρ̂, â

]
+
[
â†, ρ̂â

])
.

W21

2

∑
µ

([
σ̂−
µ ρ̂, σ̂

+
µ

]
+
[
σ̂−
µ , ρ̂σ

+
µ

])
+

W12

2

([
σ+
µ ρ̂, σ̂

−
µ

]
+
[
σ+
µ , ρ̂σ̂

−
µ

])
+

γp
4

∑
µ

([
σ̂z
µ, ρ̂σ̂

z
µ

]
+
[
σ̂z
µρ̂, σ̂

z
µ

])

W21 = γ0(1 + n), relaxation rate
W12 = γ0(n), incoherent pumping
γP = 3γ0, dephasing
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Hilbert space
The size of the Hilbert space grows exponentially with the size of the system.

The density matrix, which describes the statistical state of a quantum system,

also grows exponentially in size as the system becomes larger. For example:

For a single qubit, the density matrix is a 2 × 2 matrix:

(
ρ00 ρ01
ρ10 ρ11

)

For a N=2 , the density matrix is a 4 × 4 matrix:


ρ00 ρ01 ρ02 ρ03
ρ10 ρ11 ρ12 ρ13
ρ20 ρ21 ρ22 ρ23
ρ30 ρ31 ρ32 ρ33



The size of density matrix grows exponentially by system size 29 / 45
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Self-induced transparency (SIT)
McCall, S. L. et al., PRL 18, 21 (1967)

Quantum model

Phase-space methods

Wigner (W ) Husimi (Q) Glauber-Sudarshan (P)

+P Representation
Drummond, P.D. et al., JPA 13, 7 (1980)
Drummond, P.D. et al., JPA 23, 5 (1981)

Avoid negativity
Include full nonlinearity

Convenient for direct detection

Linearization method
Lai. Y. et al., PRA 42, 5 (1990)

Lee. Ray-Kuang. et al., PRA 80, 3 (2009)

Perturbation approach

(neglect higher order terms)

Semiclassical model
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∂ρ̂
∂t =

1
iℏ [Ĥint, ρ̂] + (∂ρ̂∂t)field + (∂ρ̂∂t)atoms

[
−i(ω − ω0)â

†â, ρ̂
]
+
[
−i

∑
µ(ωµ − ω0)σ̂

z
µ, ρ̂

]
+[

−ig
′
â†

∑
µ σ̂

−
µ +H.C, ρ̂

]

cκ
2 (1+ n)

([
âρ̂, â†

]
+
[
â, ρ̂â†

])
+n

([
â†ρ̂, â

]
+
[
â†, ρ̂â

])
.

W21

2

∑
µ

([
σ̂−
µ ρ̂, σ̂

+
µ

]
+
[
σ̂−
µ , ρ̂σ

+
µ

])
+

W12

2

([
σ+
µ ρ̂, σ̂

−
µ

]
+
[
σ+
µ , ρ̂σ̂

−
µ

])
+

γp
4

∑
µ

([
σ̂z
µ, ρ̂σ̂

z
µ

]
+
[
σ̂z
µρ̂, σ̂

z
µ

])

W21 = γ0(1 + n), relaxation rate
W12 = γ0(n), incoherent pumping
γP = 3γ0, dephasing
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Drummond. P.D. et al., PRA 44, 3 (1991)

Replace:

Ω̂ = 2ig
√

V
∆V â,

Ω̂† = 2ig
√

V
∆V â

†,

R̂± = 1
N

∑
µ σ̂

±
µ ,

R̂z = 1
N

∑
µ σ̂

z
µ.

Transfer to
the phase

space

complex
c-numbers:

Ω̂ ↔ Ω,
Ω̂† ↔ Ω∗,
R̂± ↔ R±,

R̂z ↔ Rz.

Fokker
Planck Eq

Ito Eqs
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(
∂
∂z + (1c −

1
vg
) ∂∂τ

)
Ω(τ, z) = −1

2κΩ(τ, z) +G
∫
ρ(z, ω)R−(τ, z, ω)dω

+FΩ(τ, z),

∂
∂τR

±(τ, z, ω) = −(γ⊥ ± i(ω − ω0))R
±(τ, z, ω) + Ω(τ, z)Rz(τ, z, ω)

+FR(τ, z, ω),

∂
∂τR

z(τ, z, ω) = −γ∥
[
Rz(τ, z, ω)− σSS

]
− 1

2

[
Ω(τ, z)R+(τ, z, ω)

+Ω†(τ, z)R−(τ, z, ω)

]
+ F z(τ, z, ω),
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(
∂
∂z

+ ( 1
c

− 1
vg

) ∂
∂τ

)
Ωj(τ, z) = − 1

2
κΩj(τ, z) + G

∫
ρj(z, ω)R−

j (τ, z, ω)dω

+FΩ
n (τ, z),

2ξαj (zj)
√

Gκn/dz

∂
∂τ

R±
n (τ, z, ω) = −(γ⊥ ± i(ω − ω0))R

±
n (τ, z, ω) + Ω(τ, z)Rz

n(τ, z, ω)

+FR
n (τ, z, ω),

ξJn (τ)
√
2ΩR−

n /Nn

+2ξPn (τ)
√
γP (Rz

n + 1)/Nn

+2ξon(τ)
√
W12/Nn

∂
∂τ

Rz
n(τ, z, ω) = −γ∥

[
Rz

n(τ, z, ω) − σSS]
− 1

2

[
Ω(τ, z)R+

n (τ, z, ω)

+Ω†(τ, z)R−
n (τ, z, ω)

]
+ Fz

n(τ, z, ω), ξzn(τ)
[
(2γ∥)(1− σSSRz

n)

+ (R−
nΩ

†−R+
nΩ)−2W12R

+
nR

−
n

Nn

]1/2
−
[
ξon(τ)R

+
n + ξo∗n (τ)R−

n

]
√
W12/Nn

⟨ξα(z)ξα∗(z′
)⟩ = δ(z − z

′
),

⟨ξon(τ)ξo∗n′ (τ
′
)⟩ = δ(τ − τ

′
)δ2

n,n′

⟨ξPn (τ)ξP∗
n′

(τ
′
)⟩ = δ(τ − τ

′
)δ2

n,n′
,

⟨ξJn (τ)ξJn′ (τ
′
)⟩ = δ(τ − τ

′
)δ2

n,n′

⟨ξzn(τ)ξzn′ (τ
′
)⟩ = δ(τ − τ

′
)δ2

n,n
′
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The initial conditions

P(τ,Ω,Ω†) = δ(2)(Ω∗ −Ω†)δ(2)(Ω−Ω(0, τ)), −→ (Ω†,Ω) Rabi
frequency

Ω(0, τ) = 2A sech [A(τ − τ0)] exp(i(δτ + ϕ(z)),

P(R) = δ(2)(R+)δ(2)(R−)δ(2)(Rz + 1/2).−→ (R±, Rz) Bloch
vectors
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Direct detection M̂(z) =
∫∞
−∞ Ω̂†(τ, z)Ω̂(τ, z)dτ,

  

Laser

Detection

Atomic vapor lamp
focused with 

ellipsoidal mirror 

     Hollow core PCF

Atomic 
mercury 
vapor cell

S = 10 log10

(
1 +

var+P (M)

<M̂>

)

37 / 45



Introduction
From master equation to phase space formalism

Results
Experiment

Amplitude squeezing

Phys. Rev. Research 6, 023142
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Experiment

Vogl, U. et al., Opt 22, 24 (2014)
39 / 45



Introduction
From master equation to phase space formalism

Results
Experiment

Hyperfine structure for the 63D3 → 63P2 3650 Å line of natural Hg

Isotope
mass No.

I
Abundance

(%)
transition

F (3D3) → F (3D3)

196 0 0.15 3→ 2

198 0 10.02 3→ 2

200 0 23.13 3→ 2

202 0 29.80 3→ 2

204 0 6.85 3→ 2

199 1
2 16.84 5/2→ 3/2 , 7/2→ 3/2 , 5/2→ 5/2,7/2→ 5/2.

201 3
2 13.22

3/2 → 1/2 , 5/2 → 3/2 , 3/2 → 3/2 7/2 → 5/2

5/2 → 5/2 , 3/2 → 5/2 9/2 → 7/2 , 7/2 → 7/2

5/2 → 7/2.

The table presents data on the mass numbers, nuclear spins (I), abundances (as percentages),

and transitions of the most common isotopes found in a small sample of mercury vapor.
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Homodyne detection M̂ = f †
loΩ̂e

−iθ + floΩ̂
†eiθ

  

SHG
365 nm

PBS

λλ/2/2

λ/2
PBS

Detection

Hg

Local Oscillator

Mercury vapor lamp

Kagome hollow core PCF
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Isotope 202Hg
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Squeezing in the room temperature
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