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Point source

ϵ(z) = E0e
i(ϕ−kz) (1)

k = ω/c = 2π/λ and ϕ= arbitrary phase



Field due to several point sources

Field at point P:

ϵ = Ae−ikr1 + Ae−ikr2 + Ae−ikr3 + Ae−ikr4 ....Ae−ikrn (2)

where
r1 = r
r2 = r + d sinβ r3 = r + 2d sinβ
r4 = r + 3d sinβ rN = r + (N − 1)d sinβ



Field due to several point sources

Substituting r1...rN into Eq.(2):

ϵ = Ae−ikr (1+e−ikd sinβ+e−i2kd sinβ+e−i3kd sinβ+...e−ikd(N−1) sinβ)
(3)

Geometric series: ΣN−1
k=0 y

k = 1−yN

1−y
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Field due to several point sources

The field can be written as:

ϵ = Ae−ikr (
1− e−ikNd sinβ

1− e−ikd sinβ
) (4)

= Ae−ikr e
−ikN d

2
sinβ

e−ik d
2
sinβ

(
sin(kN d

2 sinβ)

sin(k d
2 sinβ)

) (5)



The intensity is given by

I = |ϵ|2 = |A|2
sin2(kN d

2 sinβ)

sin2(k d
2 sinβ)

(6)

For d → 0 and N → ∞, Nd = a =constant, and A0 = NA
Small angles β, the sinus term can be approximated as

sin(nθ) ≈ nθ (7)

sin(θ) ≈ θ (8)



Diffraction due to several point sources

Finally, the intensity can be expressed as:

I = |A0|2
sin2 u

u2
(9)

with u = ka sinβ
2



Diffraction pattern due to a single slit



Diffraction of an arbitrary aperture

z = distance between two planes
θ = angle between normal n̂ and the vector r01
cos θ = z

r01

U(P0) =
1

iλ

∫
aperture

U(P1)
e ikr01

r01
cos θdS (10)



Diffraction of an arbitrary aperture

U(x , y) =
z

iλ

∫
aperture

U(X ,Y )
expikr01

(r01)2
dXdY (11)

with r01 =
√
z2 + (x − X )2 + (y − Y )2

r01 = z
√
1 + ( x−X

z )2 + ( y−Y
z )2

Expanding the square root√
1 + b = 1 + b/2− b2/8 + ....

r01 = z(1 + (12
x−X
z )2 + 1

2(
y−Y
z )2)

r01 → denominator r01 ≈ z

r01 → exponent → retain since it is related to the phase
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Fresnel approximation

U(x , y) =
e ikz

iλz

∫
aperture

U(X ,Y )e
ik
2z
((x−X )2+(y−Y )2)dXdY (12)

Factoring out the exponential term:

U(x , y) =
e ikz

iλz
e

ik
2z
(x2+y2)

∫
aperture

U(X ,Y )e
ik
2z
(X 2+Y 2)e−

ik
z
(xX+yY )dXdY

(13)
This is the Fourier transform of the product of the field with a
quadratic phase potential

U(x , y) =
e ikz

iλz
e

ik
2z
(x2+y2)FT((U(X ,Y )e

ik
z
(X 2+Y 2)) (14)
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Fraunhofer approximation

Consider z >>> k(X 2+Y 2)max

2

quadratic phase factor becomes unity and the field can be written
as:

U(x , y) =
e iλz

ikz
e

ik(x2+y2

2z

∫
aperture

U(X ,Y )e
ik
z
(xX+yY )dXdY (15)

This is the Fourier transform of the aperture distribution evaluated
at frequencies:
fx = x/λz , fy = y/λz with λ = 2π/k



The circular aperture

Consider a screen of transmission function:

tA(q) = left{ circ(q/w) = 1, q ≤ w
0, q ≥ w

q= radius coordinate, and w = radius of the aperture
circular symmetry since g(r , θ) = g(r) → Fourier Bessel Function
q =

√
X 2 + Y 2,X = q cos θ,Y = q sin θ and θ = arctan(YX )

fx = ρ cosϕ, fy = ρ sinϕ, ρ =
√
f 2x + f 2y and ϕ = arctan( fxfy )



Circular aperture

The Fourier transform of an aperture g(X ,Y ) is given by:

G0(fx , fy ) =

∫
g(X ,Y )e−i2π(fxX+fyY )dXdY (16)

and in cylindrical coordinates:

G0(ρ, ϕ) =

∫ 2π

0

∫ ∞

0
g(q)e−i2πqp(cos θ cosϕ+sin θ sinϕ)qdqdθ (17)

Integral in θ is equal to the Bessel function of first kind, order 0
defined as:

J0(2πqρ) =

∫ 2π

0
e−i2πqp(cos(θ−ϕ))dθ (18)

Thus

G0(ρ, ϕ) = 2π

∫ ∞

0
g(q)J0(2πqρ)qdq (19)

FT of a circularly symmetric function is also circularly symmetric.
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The circular aperture

Substituting g(q) by the transmission function g(q) = circ(q/w)
we have that:

G0(ρ) = 2π

∫ w

0
J0(2πqρ)qdq (20)

Make the substitutions: 2πqρ = q′ we get:

G0(ρ) = 2π

∫ 2πρw

0

1

(2πρ)2
J0(q

′)q′dq′ = A
J1(2πρw)

ρwπ
(21)

where: A = πw2= area of the aperture and J1= Bessel function of
the first kind, order 1.
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The circular aperture

Finally we have that:

U(r) =
e ikz

iλz
e

ikr2

2z BT (U(q)ρ=r/λz) (22)

where BT= Bessel transform

U(r) =
e ikz

iλz
e

ikr2

2z
A

iλz
(2
J1(kwr/z)

kwr/z
) (23)

And the intensity

I (r) = (
A

iλz
)2(2

J1(kwr/z)

kwr/z
)2 (24)
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The circular aperture: Airy pattern

The width of the central lobe is given by: d = 1.22λz
w

where z is the distance between the aperture plane and
obeservation plane



Raileigh criterion

Rayleigh criterion: two incoherent point sources are barely resolved
by a circular pupil system when the center of the Airy pattern
generated by one point source falls on the first zero of the Airy
pattern of the second source. The minimum resolvable separation
will be ;

δ = 0.61λzi/w



Lenses

transmission function:

tl(x , y) = e−
ik
2f
(x2+y2) (25)

where
1

f
= (n − 1)(

1

R1
− 1

R2
) (26)

with R1,R2 the radius of curvature of the two surfaces of the lens



Lenses

Field at pupil: P(X ,Y ) =

{
1, inside lens aperture
0, outside lens aperture

Field just after the lens:

U ′
l (X ,Y ) = P(X ,Y )e−

ik
2f
(x2+y2) (27)

Propagate this field a distance f

Uf (x , y) =
e

ik
2f
(x2+y2)

iλf

∫
aperture

U ′
l (X ,Y )e

ik
2f
(X 2+Y 2)e−

ik
2f
(xX+yY )dXdY

(28)
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Lenses

Substituting U ′
l (X ,Y ), the phase factor cancels and we obtain

Uf (x , y) =
e

ik
2f
(x2+y2)

iλf

∫
aperture

P(X ,Y )e−
ik
2f
(xX+yY )dXdY (29)

This is the Fraunhofer pattern of the field at the input pupil of the
lens at the points:

fx = x/λf and fy = y/λf



Image formation

Consider h(x , y , ξ, η)= field produced at (x , y) by an unit
amplitude point source at (ξ, η)

Ui (x , y) =

∫
h(x , y , ξ, η)U0(ξ, η)dξdη (30)



Image formation

Field at the lens is a diverging spherical wave. In the paraxial
approximation we have:

Ul(X ,Y ) =
1

iλz
e
i k
2z1

((X−ξ)2+(Y−η)2)
(31)

and after the lens

U ′
l (X ,Y ) = Ul(X ,Y )e−i k

2f
(X 2+Y 2)P(X ,Y ) (32)
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Image formation

Propagate field U ′
l (X ,Y ) a distance z2

h(x , y , ξ, η) =
1

iλz2

∫
U ′
l (X ,Y )e

− ik
2z2

((x−X )2+(y−Y )2)
dXdY (33)

Substituting U ′
l (X ,Y ) we have

h(x , y , ξ, η) =

1

λ2z1z2

∫
P(X ,Y )e

ik
2
( 1
z1
+ 1

z2
− 1

f
)(x2+y2)

e
−ik( ξ

z1
+ x

z2
)X+( η

z1
+ y

z2
)Y
dXdY

(34)
where constant phase phase have been omitted
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Image formation

Lens law : 1
z1

+ 1
z2

− 1
f = 0, so that h(x , y , ξ, η) =

1

λ2z1z2

∫
P(X ,Y )e

−ik( ξ
z1
+ x

z2
)X+( η

z1
+ y

z2
)Y
dXdY (35)

and defining M = − z2
z1

h(x , y , ξ, η) =

1

λ2z1z2

∫
P(X ,Y )e

−ik
z2

((x−Mξ)X+(y−Mη)Y )
dXdY (36)

Impulse response is the Fraunhofer pattern of the lens aperture
centered in the coordinates x = Mξ, y = Mη
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Relation between object and image

Ui (x , y) =

∫
h(x , y , ξ, η)U0(ξ, η)dξdη (37)

where U0(ξ, η) can be seen as the geometrical optics prediction of
the image, as if the impulse function would be a delta function

U0(ξ, η) = amplitude transmitted by the object at point (ξ, η) and
h(x , y , ξ, η) = amplitude response to a point source at point (ξ, η)
given by:

h(x , y , ξ, η) =
1

λ2z1z2

∫
P(X ,Y )e

−ik
z2

((x−Mξ)X+(y−Mη)Y )
dXdY

(38)



Frequency response for diffraction limited coherent image

Amplitude transfer function (ATF or MTF)

H(fx , fy ) =

∫
h(x , y)e−i2π(fxx+fyy)dxdy (39)

Fourier transform of the amplitude response function
But h(x , y) is the Fourier transform of the pupil function, thus

H(fx , fy ) = P(λzi fx , λzi fy ) (40)



Example: circular pupil

P(X ,Y ) = circ(

√
X 2 + Y 2

w
) (41)

The MTF is straighforward:

H(fx , fy ) = circ(

√
f 2x + f 2y

w/λzi
) (42)

where f0 =
w
λzi



Incoherent imaging

Obey the intensity convolution integral and the Optical transfer
function (OTF) is defined as:

H (fx , fy ) =

∫
|h(x , y)|2e−i2π(fxx+fyy)dxdy∫

|h(x , y)|2dxdy
(43)

where the denominator is a normalisation factor
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Relationship between MTF and OTF

H (fx , fy ) =

∫
H(p + fx/2, q + fy/2)H

∗(p − fx/2, q − fy/2)dpdq∫
|H(p, q)|2dpdq

(44)
The OTF is the normalized autocorrelation function of the MTF

Geometrical interpretation:
denominator: area of the pupil
numerator: area of overlap of two displaced pupil functions: one
centered at (λzi fx/2, λzi fy/2) and the other at
(−λzi fx/2,−λzi fy/2)



OTF circular aperture

f0 =
w
λzi



Aberrations

Generalized pupil function

P(X ,Y ) = P(X ,Y )× e ikW (X ,Y ) (45)

W (X ,Y )= aberration function



Amplitude and Optical Transfer Functions

Amplitude transfer function (ATF or MTF)

H(fx , fy ) = P(λzi fx , λzi fy ) = P(λzi fx , λzi fy )e
ikW (λzi fx ,λzi fy ) (46)

Optical transfer function

H (fx , fy ) =

∫
e ik(W (x+λzi fx/2,y+λzi fx/2)−W (x−λzi fx/2,y−λzi fx/2))dxdy∫

A(0,0) dxdy

(47)



Zernike polynomials

The aberration function W (X ,Y ) can be written in polar
coordinates W (ρ, θ), with ρ being the radial coordinate within the
unit circle and θ the polar angle

For optical systems that have pupil with circular symmetry, the
aberrations can be represented in terms from Zernike polymonials
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Zernike polynomials

Zernike polynomials are orthogonal and normalized within unit
circle. The aberration function can then be written as:

W (ρ, θ) = Σk
nΣ

n
m=−nW

m
n zmn (ρ, θ) (48)

where zmn (ρ, θ) are the Zernike polynomials and Wm
n is the

coefficient of the expansion



Zernike polynomials

zmn (ρ, θ) = Nm
n R

|m|
n (ρ) cosmθ m ⩾ 0, 0 ⩽ ρ ⩽ 1, 0 ⩽ θ ⩽ 2π

(49)

= −Nm
n R

|m|
n (ρ) sinmθ m < 0, 0 ⩽ ρ ⩽ 1, 0 ⩽ θ ⩽ 2π

(50)

for a given n, m can take the values −n,−n + 2,−n + 4...n, and

Nm
n (ρ) is the normalization factor Nm

n =
√

2(n+1)
1+δm0

(δm0 = 1 for

m = 0 and 0 otherwise)

R
|m|
n (ρ) is the radial polynomial

R
|m|
n (ρ) = Σ

(n−|m|)/2
s=0

(1−)s(n−s)!
s!(0.5(n+|m|)−s)!(0.5(n−|m|)−s)!ρ

n−2s
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Zernike polynomials



Effects of aberrations in the PSF and image



Conclusion

▶ Propagation of Light

▶ Interference and Diffraction

▶ Fresnel and Fraunhofer Diffraction

▶ Image Formation

▶ Optical and amplitude tranfer functions

▶ Aberrations

References: Introduction to Fourier Optics, J. Goodman
Diffraction, Fourier Optics and Imaging, O. Ersoy
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