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Apodization

Apodize means to introduce attenuation in the exit pupil of an
imaging system

We will consider two examples:

▶ softening of the edges of the pupil, with the objective to
suppress ringing effects caused by the edge waves

▶ “inverse” apodization: give more weight to the field at the
edge of the pupil
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Wavefront sensing

▶ Direct measurement of the wavefront: Shack Hartmann,
lateral shear

▶ Indirect measurement of the wavefront: Image sharpening
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Direct wavefront sensing

Zonal or Modal:
Zonal: wavefront slope is measured within a number of zones in
the pupil
Modal: Decompose the wavefront into different surface shapes and
modes



Indirect wavefront sensing

Wavefront errors are deduced from their effect on a related
parameter, for example the intensity distribution at or near the
image plane

Deducing the wavefront from measurement at the image plane
require deconvolution: computer intensive, ambiquities, does not
work well for large aberrations. Data at other than the image plane
(out-of-focus plane) are sometimes used to resolve ambiquities



Wavefront slope sensing

Relate angular deviations of rays with intensity variations



Wavefront slope sensing

Consider a field U(x , y , z) propagating along the z axis

U(x , y , z) = (I (x , y , z))1/2e ikW (x ,y ,z) (1)

where W (x , y , z) is the wavefront surface at distance z. The
change in irradiance is given by:

∂I

∂z
= −(∇I .∇W + I∇2W ) (2)

where ∇ = ∂/∂x + ∂/∂y
The first term is the irradiance variation caused by transverse shift
of the beam due to the local tilt of the wavefront
The second term is the irradiance variation caused by convergence
(divergence) of the beam, local curvature proportional to ∇2W



Wavefront slope sensing

Problem: measurement of ∇W and ∇2W

In principle, one can measure the intensity distribution at two
planes (z1 and z2)

If variations are small, the distance needs to be large to produce
measurable variations



Wavefront slope sensing: Shack Hartmann

Array of lenslets is placed in the pupil of the optical beam to be
measured
An array of spots are produced in the image plane.

▶ For plane wave, each spot will be located on the optical axis
of the corresponding lenslet

▶ Distorted wavefront produces a local gradient (α(x , y) over
the lenslets, displacing the spot a distance s(x , y) = α(x , y)Z ,
where Z if the focal length of the lenslet



Wavefront slope sensing: Shack Hartmann

Measurement errors:

▶ random errors in determining the positions of the spots:
photon noise, electrical noise, thermal noise, etc. →
unavoidable

▶ bias errors due to misalignment of the optics and variations in
the responsivity of the detectors → can be reduced or
calibrated



Wavefront slope sensing: Shack Hartmann

Calibration issues

▶ calibration of the null point of each subaperture with a plane
wave input

▶ dark frame



Shearing interferometers

Combines original phase front with a replica that is displaced with
respect to the original one so that interference occurs
Optical phase differences are converted into intensity variations

The field to be measured is given

U(x , y) = A(x , y)e ikW (x ,y) (3)



Shearing interferometers

The two copies of the wavefront that are generated are given by

U1(x , y) = A(x + s/2, y)e ikW (x+s/2,y) (4)

U2(x , y) = A(x − s/2, y)e ikW (x−s/2,y) (5)

and the corresponding intensity:

I (x , y) = 2(1 + |A(x + s/2, y)||A(x − s/2, y)| (6)

cos(kW (x + s/2, y)− kW (x − s/2))) (7)

when the shear distance is small compared to the spatial period of
W (x , y)

I (x , y) = 2(1 + |A(x , y)|2cos(ksdW /dx)) (8)

By measuring the intensity of the interference pattern and knowing
the shear distance, one can determine the wavefront slope in the
shear direction
Two measurements are needed to find the slope in two dimensions:
lateral shear in x and y directions



Shearing interferometers

Example; shearing interferometer using moving grating

Input field at aperture

U(x , y) = A(x , y)e ikW (x ,y) (9)



Shearing interferometers

Consider grating with amplitude transmittance M(x0, t)
The field after the grating is:

U(x0, y0, t) = Ũ(x0, y0)M(x0, t) (10)

where Ũ(x0, y0) is the Fourier transform of U(x , y)
The second lens produces an image of the pupil containing the
wavefront distortions at plane D

I (x , y , t) = |U ′(x , y , t)|2 (11)

where U ′(x , y , t) is the convolution of Ũ(x0, y0) with the Fourier
transform of M(x0, y)



Shearing interferometers

Example: Sine-wave amplitude grating in the x direction:

I (x , y , t) =
1

2
+

1

2
cos(k(W (x − s, y)−W (x + s, y)) + 2ωt) (12)

One shear pattern: interference of the +1 and -1 orders
The phase difference between the two beams is:

ϕ(x , y) = k(W (x − s, y)−W (x + s, y)) (13)

with s = λZ/g is the shear distance between orders.
measurement of the phase ϕ at x , y gives the wavefront difference
between points x + s and x − s. For small values of s, this is
equivalent to the wavefront slope



Curvature sensing

▶ wavefront curvature determined from 2 displaced focal planes

▶ local wavefront curvature error makes the light converge
closer to planes P1 or P2 → excess of illumination in one
plane and lack of illumination in the other.
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Curvature sensing

Consider wavefront fluctuations r0 (diffracts over an angle λ/r0
Plane P1 is a blurred pupil image with a blur size ≈ λ(f − l)/r0.
This should be small compared to the fluctuations to be measured
(r0 scaled down by a factor l/f . This gives the condition:

λ(Z − p)

r0
<<

r0p

Z
(14)



Curvature sensing

Suppose a incoming local wavefront curvature Cw = 1/rw , with rw
being the local radius of curvature over a small area a0.
The curved wavefront will focus at a distance

zc =
Zrw

Z + rw
(15)

The focal shift is

∆z = Z − zc =
Z 2

Z + rw
(16)



Curvature sensing

For a beam of area a0, at the lens, the area at planes P1 and P2
are

a1,2 = a0(
p ∓∆z

Z +∆z
)2 (17)

Consider H the irradiance in W /m2 at the aperture, the
irradiances at P1 andP2 are:

H1,2 = H(a0/a1,2)
2 (18)
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Curvature sensing

The normalized difference in irradiance at planes P1 andP2 are:

∆I =
H1 − H2

H1 + H2
=

a22 − a21
a22 + a21

=
2p∆z

p2 +∆z2
(19)

Using the approximation that rw >> Z and p2 >> δz2, we can
simplify ∆I as:

∆I =
2Z 2

prw
=

2Z 2Cw

p
(20)
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