## **Optics and quantum information** – introduction to field quantization

Gerd Leuchs

Emeritus group @ Max Planck Institute for the Science of Light University of Erlangen-Nürnberg University of Ottawa

09 May 2024

## **Optics and quantum information**

- field quantization
  - $\circ$  wavization
    - > optics
    - mechanics
  - $\circ$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - quantum computing
  - $\circ$  sensing
  - $\circ~$  communication

## **Optics and quantum information**

- field quantization
  - o wavization
    - > optics
    - mechanics
  - $\circ$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - > quantum computing
  - $\circ$  sensing
  - $\circ~$  communication

## Quantum Statistical Properties of Radiation

## 1.10 QUANTIZATION; EXAMPLE OF CONTINUOUS SPECTRUM

. . .

In this section we solve an eigenvalue problem in which the eigenvalue spectrum is continuous. This simple example demonstrates how to treat quantum-mechanically a system that has a classical analog.

the operators must obey. This requires an additional *postulate* for the theory; it is given in terms of the commutation relations for p and q, namely,

$$[q,q] = 0 [p,p] = 0 (1.10.3) [q,p] \equiv (qp - pq) = i\hbar,$$

q and p satisfy (1.10.3). The justification for the quantum postulate is the remarkable agreement between theory and experiment. It is possibly the most profound and fundamental postulate in the theory.

WILLIAM H. LOUISELL Professor of Physics and Electrical Engineering University of Southern California

Wiley Classics Library Edition Published 1990

Copyright © 1973, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

## **Optics and quantum information**

- field quantization
  - o wavization
    - optics
    - mechanics
  - $\circ~$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - quantum computing
  - $\circ$  sensing
  - $\circ~\mbox{communication}$



09 May 2024

#### Fermat's principle $\rightarrow$ ray optics

 $ec{p}$  = direction of ray  $|ec{p}|^2 = 1$ 

#### now: experimental observation of diffraction at a slit



09 May 2024

It is clear from the experiment, that there is a minimum area in phase space. The product of the variances of x and  $p_x$  has a lower bound, so there must be a **Fourier transform relationship** !!!!

dynamics of rays  $\rightarrow$  dynamics of distributions

Are the marginal distributions P(x) and  $\tilde{P}(p_x)$  the functions related by Fourier transformation?



marginal probability distributions:

 $P(x) = \int_{-\infty}^{\infty} W(x, p_x) dp_x, \quad P(p_x) = \int_{-\infty}^{\infty} W(x, p_x) dx$ 

09 May 2024

conjugate variables have inverse dimensions... so p has not the right dimension to be conjugate to x:  $k_i \equiv (2\pi/\lambda)p_i$ 

Are the marginal distributions P(x) and  $P(k_x)$ the functions related by Fourier transformation?

1,00

$$\widetilde{P}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx P(x) e^{-ikx} \qquad P(x)$$

$$P(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dp \tilde{P}(k) e^{ikx}$$

$$k \text{ (and } p \text{ ) is related to } \frac{-i\partial}{\partial x}, \text{ because } k P(x) = \frac{-i\partial}{\partial x} P(x)$$
  
est:  
$$\int dx \frac{-i\partial}{\partial x} P(x) = \int dx \frac{-i\partial}{\partial x} \frac{1}{\sqrt{2\pi}} \int dk \tilde{P}(k) e^{ikx} = \frac{1}{\sqrt{2\pi}} \int dx \int dk \, k \, \tilde{P}(p) e^{ikx} = \int dk \, k \, \tilde{P}(k) \, \delta(0) = 0$$

how about:  $P(x) = \Psi^*(x)\Psi(x) ? \rightarrow \Psi(x) = \frac{1}{\sqrt{2\pi}} \int dk \widetilde{\Psi}(k) e^{ikx}$ ,  $\widetilde{\Psi}^*(k) = \frac{1}{\sqrt{2\pi}} \int dx \widetilde{\Psi}^*(x) e^{ikx}$ 2<sup>nd</sup> test:

$$\int dx \Psi^*(x) \frac{-i\partial}{\partial x} \Psi(x) = \frac{1}{\sqrt{2\pi}} \int dx \Psi^*(x) \int dk \, k \, \widetilde{\Psi}(k) e^{ikx} = \int dk \, \widetilde{\Psi}^*(k) k \, \widetilde{\Psi}(k) = \int dk \, k \, P(k) = \langle k \rangle$$

09 May 2024

#### experiment: diffraction at a slit

#### Fermat's principle $\rightarrow$ ray optics

varying refractive index  $n^2(x, y, z) - p_x^2 - p_y^2 - p_z^2 = 0$ 



Now we have everything

to turn this into a differential equation:

$$p_x \to \frac{\lambda}{2\pi} \frac{-i\partial}{\partial x}, \quad p_y \to \frac{\lambda}{2\pi} \frac{-i\partial}{\partial y}, \quad p_z \to \frac{\lambda}{2\pi} \frac{-i\partial}{\partial z}$$

$$\frac{2\pi}{\lambda}\Big)^2 n^2(x, y, z)\Psi + \left(\frac{\partial}{\partial x}\right)^2 \Psi + \left(\frac{\partial}{\partial y}\right)^2 \Psi + \left(\frac{\partial}{\partial z}\right)^2 \Psi = 0$$

$$\Rightarrow \qquad \vec{\nabla}^2 \Psi + \left(\frac{2\pi n}{\lambda}\right)^2 \Psi = 0 \qquad \text{Helmholtz equation}$$

09 May 2024

## Wigner function and diffraction

- examples -



09 May 2024

East African Summer School in Optcs and Lasers - Leuchs

11

 $W(x,k) = \int dy \,\psi^*\left(x+\frac{y}{2}\right) \,\psi\left(x-\frac{y}{2}\right) e^{iky}$ 





Phase space description of diffraction:

$$W(x,k) = \int_{-\infty}^{\infty} dy \,\psi^* \left(x + \frac{y}{2}\right) \,\psi\left(x - \frac{y}{2}\right) e^{iky}$$

 $\rightarrow$  two slit interference

see: "Wigner distribution
function and its application
to first order optics",
M J Bastiaans, J.Opt.Soc.Am.
69, 1710 (1979)



09 May 2024

## summary of first part: wavization

"classical" phase space description

#### experiments give hints for

- lower bound for occupied volume in phase space
- FT relationship between phase space variables
- typical interference pattern

→ "wave" phase space description

• non-commuting conjugate variables

#### → works also for 1st quantization, we will use it for 2nd quantization

## **Optics and quantum information**

- field quantization
  - o wavization
    - optics
    - mechanics
  - $\circ~$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - quantum computing
  - $\circ$  sensing
  - $\circ~\mbox{communication}$

other example of "wavization"

Newtonian mechanics  $\rightarrow$  quantum mechanics



... and others

#### G Leuchs Wave phenomena and wave equations

Lecture at the Enrico Fermi Summer School at Varenna, Course 197 'Foundations of Quantum Theory', 2016, Organizers: Ernst M Rasel, Wolfgang P Schleich and Sabine Wölk (published in the proceedings)

09 May 2024

#### phase space description

## Other names in other fields ...

- Wigner function Moyal:
- Ville function
- ambiguity function
- Woodward's ambiguity fct.

quantum physics evolution of Wigner function

RADAR Electrical engineering space / angle versus momentum

time versus frequency

J. Ville, "Théorie et Applications de la Notion de Signal Analytique." Câbles et Transmissions 2, 61 (1948)

J. E. Moyal, "Quantum mechanics as a statistical theory", Math. Proc. Cambr. Phil. Soc. 45, 99 (1949)

P.M. Woodward, "Probability and Information Theory with Applications to Radar", Norwood, MA: Artech House, (1980)

CLEO/Europe-EQEC 2023

Practical quantum optics - short course – Gerd Leuchs

## **Optics and quantum information**

- field quantization
  - $\circ$  wavization
    - > optics
    - mechanics
  - application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - > quantum computing
  - $\circ$  sensing
  - $\circ~$  communication



 $\left(\vec{\nabla}^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\vec{E}(\vec{r},t) = 0$ 

travelling mode

Maxwell's equations  

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
  
 $\vec{\nabla} \cdot \vec{B} = 0$   
 $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$   
 $\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ 



separation of variables  

$$\vec{E}(\vec{r},t) = \vec{u}(\vec{r})q(t) \longrightarrow \int_{V} \mathcal{E}_{0}\vec{u}^{2}(\vec{r})dV = 1$$
  
 $\Rightarrow q^{2}$  has dimension  
energy  

$$\begin{cases} (a) \quad \vec{\nabla}^{2}\vec{u}(\vec{r}) + k^{2}\vec{u}(\vec{r}) = 0 \\ (b)\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}q(t) + k^{2}q(t) = 0 \end{cases} \xleftarrow{\text{Helmholtz}}_{equation}$$

Equations describing spatio-temporal evolution

$$\begin{cases} (a) \quad \vec{\nabla}^2 \vec{u}(\vec{r}) + k^2 \vec{u}(\vec{r}) = 0\\ (b) \frac{1}{c^2} \frac{\partial^2}{\partial t^2} q(t) + k^2 q(t) = 0 \end{cases}$$

excitation of mode

 $\rightarrow$  Harmonic oscillator





abstract phase space

where excitation lives

 $q(t) = q(0)\cos(\omega t) + \frac{\dot{q}(0)}{\omega}\sin(\omega t)$ 

(b)  $\rightarrow \frac{1}{\omega^2} (\dot{q}(0))^2 + (q(0))^2 = S$ 

 $\dot{q}(0)$ 

ω

single point.

#### $\rightarrow q^2$ has dimension energy

East African Summer School in Optcs and Lasers - Leuchs

09 May 2024



#### amplitude & phase measurement



amplitude & phase measurement



$$I_2 - I_1 = 2 \Re\{q_1 q_2^*\}$$

$$\text{If } q_1 = 0 \quad \Rightarrow I_2 - I_1 = 0$$

#### But experiment shows noise:



$$q_1' = (q_1 - q_2)/\sqrt{2}$$
$$q_2' = (q_1 + q_2)/\sqrt{2}$$

 $I_{1} = |q_{1}'|^{2} = (|q_{1}|^{2} + |q_{2}|^{2} - q_{1}q_{2}^{*} - q_{2}q_{1}^{*})/2$  $I_{2} = |q_{2}'|^{2} = (|q_{1}|^{2} + |q_{2}|^{2} + q_{1}q_{2}^{*} + q_{2}q_{1}^{*})/2$ 

quantum state reconstruction of the vacuum state (zero-photon Fock state)

A I Lvovsky et al., Phys. Rev. Lett. 87, 050402 (2001)







East African Summer School in Optcs and Lasers - Leuchs



p is conjugate to variable q

 $\rightarrow p \sim \dot{q}$ 

 $P(q) = \Psi^*(q) \Psi(q)$ 

$$\Psi(q) = \int dp \tilde{\Psi}(p) e^{iqp}$$
$$\int dq \Psi^*(q) (-i) \frac{\partial}{\partial q} \Psi(q) = \int dp \tilde{\Psi}^*(p) p \tilde{\Psi}(p)$$

| variable      | conjugate variable                   |                      |                            | inertia                  |
|---------------|--------------------------------------|----------------------|----------------------------|--------------------------|
|               | Fourier                              | action<br>complement | time derivative            |                          |
| x             | $k = i  \partial / \partial x$       | р                    | $\dot{x} = p/m$            | m                        |
| t             | $\omega = i  \partial / \partial t$  | Е                    | -                          | -                        |
| arphi         | i $\partial/\partial \varphi$        | L                    | $\dot{\varphi} = L/\Theta$ | $\Theta = \mathrm{mr}^2$ |
|               | property of waves<br>or oscillations | particle property    |                            |                          |
| $M^{\dagger}$ | і д/дМ                               |                      | М                          |                          |
|               |                                      |                      |                            |                          |

<sup>†</sup> arbitrary variable

$$p \equiv -i\frac{\partial}{\partial q}$$

# still missing : width of $\Psi(q)$ and $p \equiv -i \frac{\partial}{\partial q} \iff \dot{q}$



He Ne laser of 1mW root mean square power fluctuations in radio frequency band

$$\langle (\Delta P)^2 \rangle = 2.5 \cdot 10^{-8}$$
 Watt

(same for phase .....)

$$\langle (\Delta P)^2 \rangle /_{4b^2} = 4 \langle q_A \rangle^2 \langle (\Delta q_A)^2 \rangle$$

 $\rightarrow q^2$  has dimension energy

09 May 2024

$$\hat{a} = \frac{1}{\sqrt{\hbar\omega}}q + \frac{\sqrt{\hbar\omega}}{2}\frac{\partial}{\partial q} = \frac{1}{\sqrt{\hbar\omega}}q + i\frac{\sqrt{\hbar\omega}}{2}p$$
interestingly enough:  

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{\hbar\omega}}q - \frac{\sqrt{\hbar\omega}}{2}\frac{\partial}{\partial q} = \frac{1}{\sqrt{\hbar\omega}}q - i\frac{\sqrt{\hbar\omega}}{2}p$$
eigen functions the same as for  
laser modes !!!
$$\frac{1}{\omega^2}(\dot{q}(0))^2 + (q(0))^2 = S$$

$$-\left(\frac{\hbar\omega}{2}\frac{\partial}{\partial q}\right)^2 \Psi(q) + q^2\Psi(q) = S\Psi(q)$$

$$\frac{\hbar\omega}{2}(\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger})\Psi(q) = S\Psi(q)$$
is eigen values
$$S_n = \left(n + \frac{1}{2}\right)\hbar\omega$$

 $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1} \; |n+1\rangle$ 

Field operators  $\hat{a}|n\rangle = \sqrt{n} |n-1\rangle$  $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1} |n+1\rangle$ 

 $\hat{a}^{\dagger} \hat{a} |n\rangle = n |n\rangle$  $\hat{a} \hat{a}^{\dagger} |n\rangle = (n+1) |n\rangle$ 

 $\left[\hat{a}, \hat{a}^{\dagger}\right] = \hat{a}\hat{a}^{\dagger} \cdot \hat{a}^{\dagger}\hat{a} = \hat{1}$ 

 $\{|n\rangle, n = 0, 1, 2, ...\}$ ortho-normal basis of Hilbert space eigen functions of  $\hat{a}$  ?

$$\hat{a} \sum_{n=0}^{\infty} c_n |n\rangle \stackrel{?}{=} \alpha \sum_{n=0}^{\infty} c_n |n\rangle \equiv \alpha |\alpha\rangle$$
$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \quad \checkmark$$

eigen functions of  $\hat{a}^{\dagger}$ ?

#### Continuous versus disrete variables

discrete dichotomic variables

$$\Psi = \alpha |0\rangle + \beta |1\rangle =$$
$$= \sum_{i=1}^{2} \alpha_{i} |i\rangle$$

#### many photons

$$\Psi = \sum_{i=1}^{\infty} \alpha_i |i\rangle$$

 $ightarrow \infty$  dim Hilbert space

'click'-detection

09 May 2024



#### types of continuous quantum variables

- field quadratures
- Stokes variables (polarization)

#### field quadrature detection (amplitude, phase, ...)



09 May 2024

East African Summer School in Optcs and Lasers - Leuchs

33

## **Optics and quantum information**

- field quantization
  - $\circ$  wavization
    - > optics
    - mechanics
  - o application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - > sensing
    - quantum computing
  - $\circ$  sensing
  - $\circ$  communication





"collapse of the wave function" or "projection"

09 May 2024

## measurement process in quantum physics

collapse of the wave function ... or

projection on to one of the superposed states

... it takes time to get used to it... visualization??

a superposition state contains information about two or more states so different that they seem to be mutually exclusive for us



East African Summer School in Optcs and Lasers - Leuchs



09 May 2024

## another more abstract example:













## quantum - entanglement ... and measurement





 $\dots \rightarrow$  projection , e.g.



## **Optics and quantum information**

- field quantization
  - $\circ$  wavization
    - > optics
    - mechanics
  - $\circ$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - > quantum computing
  - $\circ$  sensing
  - $\circ~$  communication

EUROPHYSICS LETTERS Europhys. Lett., 1 (4), pp. 173-179 (1986)

Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences.

P. GRANGIER, G. ROGER and A. ASPECT (\*) Institut d'Optique Théorique et Appliquée, B.P. 43 - F 91406 Orsay, France





a single photon is either reflected or transmitted but not both at the same time

East African Summer School in Optcs and Lasers - Leuchs

15 February 1986

43





measurement of field amplitudes (quadratures)



## **Optics and quantum information**

- field quantization
  - $\circ$  wavization
    - > optics
    - mechanics
  - $\circ~$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - o interferometry
    - sensing
    - > quantum computing
  - $\circ$  sensing
  - $\circ~$  communication

#### interferometer



## **Optics and quantum information**

- field quantization
  - $\circ$  wavization
    - > optics
    - mechanics
  - $\circ~$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - quantum computing
  - $\circ$  sensing
  - $\circ~\mbox{communication}$

THEORY OF COMPUTING, Volume 9 (4), 2013, pp. 143–252 www.theoryofcomputing.org

# The Computational Complexity of Linear Optics\*

Scott Aaronson<sup>†</sup>

Alex Arkhipov<sup>‡</sup>



Scott Aaronson Alex Arkhipov



M. A. Broome et al., Science 339, 794 (2013). M. Tillmann et al., Science 339, 798 (2013). A. Crespi et al., Nat. Photonics 7, 545 (2013). H. Wang et al., Nat. Photonics 11, 361 (2017).
Y. He et al., Phys. Rev. Lett. 118, 190501 (2017).
J. Loredo et al., Phys. Rev. Lett. 118, 130503 (2017).

PRL 119, 170501 (2017)

#### PHYSICAL REVIEW LETTERS

week ending 27 OCTOBER 2017

#### **Gaussian Boson Sampling**

Craig S. Hamilton,<sup>1,\*</sup> Regina Kruse,<sup>2</sup> Linda Sansoni,<sup>2</sup> Sonja Barkhofen,<sup>2</sup> Christine Silberhorn,<sup>2</sup> and Igor Jex<sup>1</sup>



## **Optics and quantum information**

- field quantization
  - $\circ$  wavization
    - > optics
    - mechanics
  - $\circ$  application to fields
- importance of measurement in quantum physics
- quantum uncertainty and correlations
- applications
  - $\circ$  interferometry
    - ➤ sensing
    - quantum computing
  - $\circ$  sensing
  - o communication

## quantum communication

- secure communication of classical information (quantum key distribution QKD)
  - security through loss of information by measurement
  - fibre technology
  - $\circ$  free space / satellite technology
- exchange of quantum information e.g. between quantum computers

## thank you

09 May 2024



East African Summer School in Optcs and Lasers - Leuchs

54

parametric down conversion:  
Hamiltonian
$$\begin{aligned}
\widehat{H}_{PCD} &= i\gamma(\widehat{a}_{1}^{\dagger}\widehat{a}_{2}^{\dagger} - \widehat{a}_{1}\widehat{a}_{2}) \\
\text{or} \\
\widehat{H}_{PCD} &= i\gamma(\widehat{b}\widehat{a}_{1}^{\dagger}\widehat{a}_{2}^{\dagger} - \widehat{b}^{\dagger}\widehat{a}_{1}\widehat{a}_{2}) \\
\text{amplification:} \\
\widehat{c} &= \sqrt{G}\widehat{a} + \sqrt{G-1}\widehat{b}^{\dagger} \\
\widehat{a}_{1} &= \widehat{a}_{2}
\end{aligned}$$
phase sensitive amplification:  

$$\widehat{c} &= \sqrt{G}\widehat{a} + \sqrt{G-1}\widehat{a}^{\dagger}
\end{aligned}$$

09 May 2024





state at output

 $f(\hat{a}_1^\prime,\hat{a}_2^\prime)|0,0
angle$ 

examples:

$$|\alpha, 0\rangle = e^{-|\alpha|^{2}/2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{n!} \hat{a}_{1}^{\dagger n} |0, 0\rangle \qquad \Rightarrow \quad e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \frac{\hat{a}_{1}^{\prime \dagger} + \hat{a}_{2}^{\prime \dagger}}{\sqrt{2}}} |0, 0\rangle = e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \frac{\hat{a}_{1}^{\prime \dagger} + \hat{\alpha}_{2}^{\prime \dagger}}{2}} e^{\alpha \frac{\hat{a}_{1}^{\prime \dagger} + \hat{\alpha}_{2}^{\prime \dagger}}{\sqrt{2}}} |0, 0\rangle = e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \frac{\hat{a}_{1}^{\prime \dagger} + \hat{\alpha}_{2}^{\prime \dagger}}{\sqrt{2}}} |0, 0\rangle$$
$$= e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \hat{a}_{1}^{\dagger}} |0, 0\rangle$$
$$= \left|\frac{\alpha}{\sqrt{2}}, \frac{\alpha}{\sqrt{2}}\right|$$

#### Continuous variables q, p

their distribution described by phase space distribution



$$\langle n \rangle = \langle \alpha | \hat{a}^{\dagger} \hat{a} | \alpha \rangle = |\alpha|^2$$

$$\sqrt{\langle \Delta n^2 \rangle} = \sqrt{\langle n^2 \rangle - \langle n \rangle^2} = \left[ \langle \alpha | \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a} | \alpha \rangle - \langle \alpha | \hat{a}^{\dagger} \hat{a} | \alpha \rangle^2 \right]^{\frac{1}{2}}$$
$$= \sqrt{|\alpha|^4 + |\alpha|^2 - |\alpha|^4} = \sqrt{\langle n \rangle}$$

09 May 2024



noise higher than expected!



#### amplitude & phase measurement

homodyne:

measures Wigner function projection

#### <u>but</u>:

→ "8-port homodyning" measures Q-function of light source, which is the convolution of ist Wigner function with the vacuum



| Ordering                                   | Normal                                                                       | Symmetric                                                                                                                                       | Antinormal                                                                       |
|--------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Energy                                     | $\left\langle n\right  \hat{a}^{\dagger} \hat{a} \left  n \right\rangle = n$ | $\begin{array}{l} \langle n   \frac{1}{2} (\hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger})   n \rangle = \\ n + \frac{1}{2} \end{array}$ | $\left\langle n\right \hat{a}\hat{a}^{\dagger}\left n\right\rangle = n+1$        |
| Detection<br>scheme                        | Direct detection:<br>click detector,<br>photon number<br>resolving           | Homodyne: 4-port<br>detection                                                                                                                   | Double-homodyne:<br>8-port detection                                             |
| Determining<br>phase-space<br>distribution | Reconstruction by<br>deconvoluting the<br>Wigner function                    | Tomographic<br>reconstruction from<br>homodyne data                                                                                             | Phase-space<br>distribution directly<br>measured with<br>heterodyne<br>detection |
| Corresponding<br>representation            | P-distribution                                                               | Wigner function                                                                                                                                 | Q-function                                                                       |

 Table 4.1 Overview of quasi-probability distributions

09 May 2024

Quantum Interference between a Single-Photon Fock State and a Coherent State

A Windhager et al., arXiv:1009.1844v2

$$\hat{a}_{1}^{\dagger}|0,0\rangle = |1,0\rangle \rightarrow \frac{1}{\sqrt{2}} \left( \hat{a}_{1}^{\prime \dagger} + \hat{a}_{2}^{\prime \dagger} \right) |0,0\rangle = \frac{1}{\sqrt{2}} \left( |1,0\rangle + |0,1\rangle \right)$$

becomes much more involved in the continuous variable picture

$$W_{\hat{\rho}}(q,p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \langle q - y/2 | \hat{\rho} | q + y/2 \rangle \exp(iyp/\hbar) dy$$

$$\hat{\rho}_{3} = |t'|^{2} |t\alpha\rangle_{3} \langle t\alpha|_{3} + |r'|^{2} \hat{D}_{3}(t\alpha) |1\rangle_{3} \langle 1|_{3} \hat{D}_{3}^{\dagger}(t\alpha).$$

$$\hat{\rho}_{2} = |r|^{2} |r\alpha\rangle_{2} \langle r\alpha|_{2} + |t|^{2} \hat{D}_{2}(r\alpha) |1\rangle_{2} \langle 1|_{2} \hat{D}_{2}^{\dagger}(r\alpha)$$

$$W_{\hat{\rho}_{3}} = |t'|^{2} W_{\hat{\rho}(\hat{D}(t\alpha)|0\rangle)} + |r'|^{2} W_{\hat{\rho}(\hat{D}(t\alpha)|1\rangle)}$$

$$W_{\hat{\rho}(\hat{D}(t\alpha)|0\rangle)}(q,p) = W_{\hat{\rho}(|0\rangle)}(q',p') = \frac{1}{\pi\hbar} \exp\left[-\left(\frac{q'}{q_{0}}\right)^{2} - \left(\frac{p'q_{0}}{\hbar}\right)^{2}\right]$$

$$W_{\hat{\rho}(\hat{D}(t\alpha)|1\rangle)}(q,p) = W_{\hat{\rho}(|1\rangle)}(q',p')$$

$$= -\frac{1}{\pi\hbar} \exp\left[-\left(\frac{q'}{q_{0}}\right)^{2} - \left(\frac{p'q_{0}}{\hbar}\right)^{2}\right] \left[1 + 2\left(-\left(\frac{q'}{q_{0}}\right)^{2} - \left(\frac{p'q_{0}}{\hbar}\right)^{2}\right)\right]$$

$$Q May 2024$$
East African Summer School in Optics and Lasers - Leuchs
$$Q May 2024$$

East African Summer School in Optcs and Lasers - Leuchs

09 May 2024

the case

the case

Gaussian states  $\rightarrow$  (Gaussian states)'

is, however, much simpler in the continuous variable picture





#### abstract phase space where excitation "lives"



"lab" phase space of classical optics

09 May 2024

**Coherent state wave function** 

$$\psi_{\alpha}(x,t) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left[-\frac{m\omega}{2\hbar} \left(x - \sqrt{\frac{2\hbar}{m\omega}} \operatorname{Re}\alpha\right)^2 + i\sqrt{\frac{2m\omega}{\hbar}} \operatorname{Im}\alpha\right]$$

Two-component cat state wave function (identical components, located at \pm x\_0)

$$\psi_{\text{cat}}(x) = N_3 (A_+ \exp[-\alpha (x - x_0)^2] + A_- \exp[-\alpha (x + x_0)^2]$$
$$|N_3|^2 = \sqrt{\frac{2\alpha}{\pi}} [|A_+|^2 + |A_-|^2 + \exp[-2\alpha x_0^2 (A_+^* A_- + A_-^* A_+)]$$

Wigner function

This was calculated in

https://www.sciencedirect.com/science/article/abs/pii/0031891474902158?via%3Dihub

09 May 2024



## Fírst experimental evidence



thermodynamical equilibrium

• population of states of different energy: Boltzmann distribution  $e^{-kT}$ 

#### ➤ ... mean energy

$$\langle \varepsilon \rangle = \int d\varepsilon P(\varepsilon) \varepsilon = kT$$
  $P(\varepsilon) = N e^{-\frac{\varepsilon}{kT}}$ 

#### Max Planck 1900

$$\langle \varepsilon \rangle = \sum_{n=0}^{\infty} P(\varepsilon) \varepsilon = \frac{hc/\lambda}{e^{\frac{hc}{\lambda kT} - 1}} \xrightarrow{T \to \infty} kT$$

$$P(\varepsilon) = N' e^{-\frac{n\Delta}{kT}}$$

$$\varepsilon = n\Delta$$

$$\Delta = hc/\lambda \xrightarrow{T \to \infty} quantum physic$$

S

ε

09 May 2024





East African Summer School in Optcs and Lasers - Leuchs

09 May 2024



