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â†â
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Quantum-Quadrature operator

E(t) = E0cos(ωt+ θ), = E0cos(θ)cos(ωt)− E0sin(θ)sin(ωt)

= X1cos(ωt) +X2sin(ωt)== X1cos(ωt) +X2sin(ωt)

Phasor representation of field

a(t) = E0e
−iθe−iωt = ae−iωt

a = X1 + iX2

X1 = Re(a) = 1
2 (a+ a∗)

X2 = Im(a) = 1
2i (a− a∗)
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Quadrature operator

In the Heisenberg picture, the field operator evolves as
E(x, t) = E1ε(âe

−iωt + â†eiωt)sin(kz) + i(âeiωt − â†e−iωt)cos(kz),

The combination of â† and â operators, is called quadrature.

The quadrature variables:

X̂1 =
â+â†√

2
, X̂2 =

â−â†√
2i

and obey [X̂1i, X̂2j] = 2iδi,j,

The Hamiltonian of the radiation field of a single mode

Ĥ = ℏω
4 (X̂1

2
+ X̂2

2
) = ℏω

2 (â
†â+ ââ†) = ℏω(â†â+ 1

2),

Ĥ = ℏω(n̂+ 1
2), where n̂ = â†â.
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Quantum states

Number states: |n⟩ = 1√
n!
(â†)n|0⟩,

|vac⟩ = |0⟩ → vacuum state.

Coherent state: |α⟩ = D(α)|0⟩,

D(α) = exp(αâ† − α∗â), D†(α)D(α) = I,

â|α⟩ = α|α⟩ → Eigenstate of annihilation operator,

⟨â†â⟩ = α∗α →Photon number,

A Coherent state is superposition of the number states:

|α⟩ =
∑∞

n=0 |n⟩⟨n|α⟩, |n⟩ =
(â†)n√

n!
|0⟩,

⟨n|α⟩ = αn
√
n!

exp(− 1
2 |α|

2),

|α⟩ = exp(− |α|2
2 )

∑∞
n=0

αn
√
n!
|n⟩
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Quantum states

Mixed states: represented by density operator ρ̂

ρ̂ = w1|σ1⟩⟨σ1⟩+ w2|σ2⟩⟨σ2|+ . . .
Attention

Superposition state is Not mixture of state
Consider the equal superposition state, |ϕ⟩ = 1√

2
(|a⟩+ |b⟩)

The density operator is: ρp = |ϕ⟩⟨ϕ| = 1
2 |a⟩⟨a|+

1
2 |a⟩⟨b|+

1
2 |b⟩⟨a|+

1
2 |b⟩⟨b|,

In contrast, the mixture of the states: ρ̂m = 1
2 |a⟩⟨a|+

1
2 |b⟩⟨b|.

Thermal state: represented as a mixture of number states,

ρ̂th = 1
G(|0⟩⟨0|+

G−1
G |1⟩⟨1|+ (G−1

G )2|2⟩⟨2|+ . . . )
where G = 1

1−e−ℏω/KBT
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Phasor diagram for a quantized field

Quantum
uncertainty
principle in the
field quadrature:

∆X1∆X2 ≥ 1
4

Coherent state

The shaded circle represents the

equal uncertainty in the two

quadratures. The field phase

can lie anywhere withing this

uncertainty circle.

Vacuum state

The shaded region of the pha-

sor diagram indicates the ran-

dom fluctuating field of the vac-

uum. The uncertainties in the

two quadratures are identical

and each equal to minimum,

∆Xvac
1 = ∆Xvac

2 = 1
2
.
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Squeezed state

Coherent state Squeezed state

In the squeezed case, the noise fluctuation reduces below the minimum limit in one quadrature

only.
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Phasor diagram comparing squeezed and other states

(a) coherent state (b) minimum uncertainty squeezed state which is narrower than the coher-

ent state in one direction, (c)Squeezed state with excess noise (d)An symmetric noisy but not

squeezed state. It is described by an ellipse, but no projection is narrower than the coherent

state.
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Different types of squeezed states

(a) amplitude, (b) phase squeezed state, (c) quadrature squeezed state, (d) vacuum quadrature

squeezed state
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Generation of Squeezed Light

Squeezing

Four wave mixing,

Kerr effect χ(3)

Najafabadi, et al 545
129717

Kalinin, et al, 6

202200143

Parametric down conversion

χ(2) (SPDC)

Self induced transparency
(SIT)

Najafabadi, et al, accepted

PRR.
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Photon number distribution for different states:

Coherent state:

Pcoh = exp(−|α|2) |α|
2n

n!

(∆n)2coh = ⟨n2⟩ − ⟨n⟩2
= |α|2 = ⟨n⟩,
∆n =

√
n.

Poissonian distribution

Number(Fock) state:

Pfock = δ

⟨∆n⟩2fock = 0,

∆n <
√
n.

Sub-Poissonian
distribution

Thermal state:

Pth = ⟨n⟩n
(1+⟨n⟩)n+1

⟨∆n⟩2th = ⟨n⟩2 + ⟨n⟩,
∆n >

√
n.

Super-Poissonian
distribution

Squeezed state:
Sub-Poissonian for the squeezed quadrature

Super-Poissonian for the not squeezed quadrature

L.Mandel, PRL, (1982)
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Measuring light statistics

Classical second order intensity correlation function

g2Class(0) =
⟨I(t)I(t+τ)⟩
(⟨I(t)⟩)2 = ⟨E∗(t)E∗(t+τ)E(t+τ)E(t)⟩

⟨E∗(t)E(t)⟩2

Using the second quantization

Êk(t) = E+
k
(t) + Ê−

k
(t) with Ê+

k
∝ âk. exp(−i(ωkt− k⃗ · r⃗)), Ê−

k
∝ â

†
k
. exp(i(ωkt− k⃗ · r⃗))

Quantum second order correlation function

g2Qm =
⟨Ê(−)

k (t)Ê
(−)
k (t+τ)Ê

(+)
k (t+τ)Ê

(+)
k (t)⟩

⟨Ê(−)
k (t)Ê

(+)
k (t)⟩2

=
⟨â†

kâ
†
kâkâk⟩

⟨â†
kâk⟩2

= ⟨n̂(n̂−1)⟩
⟨n̂⟩2 ,

g2Qm = ⟨n2⟩−⟨n⟩
⟨n⟩2 = (∆n)2+⟨n⟩2−⟨n⟩

⟨n⟩2 = 1 + (∆n)2−⟨n⟩
⟨n⟩2

g
(2)
coh(0) = 1, g

(2)
th (0) = 2, g(2)(0)sq = 3 + 1

⟨n̂⟩
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Caption
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Basis for the Wigner distribution

x̂, p̂ −→ [x̂, p̂] = i,
Û(x) = exp(−ixp̂),−→ Û Û † = 1,
V̂ (p) = exp(−ipx̂),−→ V̂ V̂ † = 1,

Û(x
′
)|x⟩ = |x+ x

′⟩,
V̂ (p

′
)|p⟩ = |p+ p

′⟩,
The commutation relation in the Weyleform

V̂ (p)Û(x) = eixpÛ(x)V̂ (p),
A general Displacement operator in terms of Weyle form:

D̂(x, p) = Û(p)V̂ (x)eixp/2 = exp[i(px̂− xp̂)].

Stratonovich-Weyle quantizer ŵ(x, p)
ŵ(x, p) = 1

(2π)2

∫
R2 −i(px

′ − xp
′
)D̂(x

′
, p

′
)dx

′
dp

′
.
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Wigner-weyl map

Consider Â to be an operator in Hilbert space:

a(x, p) = Tr[Âŵ(x, p)],

Â = 1
(2π)2

∫
R2 a(x, p) ˆw(x, p)dxdp.

Wigner function:

Wρ(x, p) = Tr[ρ̂ŵ(x, p)],
ρ̂ = 1

(2π)2

∫
ŵ(x, p)Wρ(x, p).
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Second order Correlation function in Wigner representation

For a single mode field, the g2(0) = ⟨â†â†ââ⟩
⟨â†â⟩2 = ⟨n̂(n̂−1)⟩

⟨n̂⟩2 , where

with [â, â†] = 1, n̂ = â†â
n̂W = 1

2 (â
†â+ ââ†) = n̂+ 1

2 , n̂2
W = n̂2 + n̂+ 1

2

n̂2 = n̂2
W − n̂W

g2 based on the symmertic ordering photon number:

g(2)(0) =
⟨n̂2

W⟩−2⟨n̂W⟩+ 1
2

(n̂W− 1
2 )

2 where:

n̂ = x̂2 + p̂2

⟨n̂W⟩ = 1
2

∫
(x̂2 + p̂2)Wρ(x,p)dxdp,

⟨n̂2
W⟩ = 1

4

∫
(x̂2 + p̂2)2Wρ(x,p)dxdp.
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Frame Title

0 1 2 3 4 5
⟨ ⟨n⟩

1
2
4
6
8

10
12

�2
⟩0

)

Squeezed̂state
Thermal̂state
Coherent̂state
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Does g(2)(0) changes under attenuation?

Field passing through BS

with the linear loss.

âout =
√
ηâin −

√
1 − ηv

â
†
out =

√
ηâ

†
in −

√
1 − ηv

â†â = ηâ†â−
√
η(1 − η)â†v −

√
η(1 − η)â†v + (1 − η)v†v

Taking the expectation value ⟨ψ, 0|...|ψ, 0⟩

⟨â†â⟩ = η⟨â†â⟩

Similarly

⟨â†â†ââ⟩ = · · · = η2â†2â2

Thus, g2(0) is independent of losses!
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g2 for Coherent, thermal and Squeezed state

Attenuating the Squeezed field does not change the g2(0)
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Spontaneous parametric down Conversion (SPSD)

Caption
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Hanna Le Jeannic, et al , PRL 120(073603)(2018).
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Wigner function gained from Homodyne detection

Wigner functions for several HWP angles showing the transition from a thermal state corre-

sponding to the angle 0◦ to a squeezed vacuum state corresponding to 22.5◦ for two different

laser power.
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g(2)(0) gained from both direct and Homodyne detection

Values of g(2)(0) as a function of the angle of the wave plate. The results obtained from both

direct photon counting and via the Wigner function reconstructed from Homodyne detection.

24 / 25



Introduction
g(2) from Wigner phase space

Experiment
Experimental Setup

Thank you for your attention

It is our pleasure to dedicate this work to Rodney Loudon,

who will be remembered as a pioneer of quantum optics.

Submitted to the Philosophical Transactions of the Royal Society A.
Also check out K. Laiho, T. Dirmeier, et al , PLA, 435, 12805, (2022)
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